
SUMMARIZATION AND INDEXING OF HUMAN ACTIVITY SEQUENCES

Bi Song*, Namrata Vaswani**, Amit K. Roy-Chowdhury*

*Dept. of EE, University of California, Riverside, CA 92521, {bsong,amitrc}@ee.ucr.edu
**Dept. of ECE, Iowa State University, Ames, IA 50011, namrata@iastate.edu

ABSTRACT

In order to summarize a video consisting of a sequence of differ-
ent activities, there are three fundamental problems: tracking the
objects of interest, detecting the activity change time andrecogniz-
ing the new activity. This paper presents an algorithm for achieving
all these three tasks simultaneously and presents results on how it
can used for indexing and summarizing a indexing and summarizing
(tracking) a real-life video sequence. Human activities are repre-
sented by a model for the dynamics of the shape of the human body
contour (shape ofk landmarks uniformly chosen on the outer con-
tour). Measures are designed for detecting both gradual transitions
and sudden changes between activity models.

1. INTRODUCTION

In order to index and summarize human activity sequences, itis nec-
essary to i) track the activities, ii) detect the change fromone activity
to the next and ii) recognize the next activity. We develop a novel
framework for persistent and simultaneoustracking and recogni-
tion of human activities consisting of the following steps which take
place in a loop: (i) modeling the appearance and motion of single ac-
tivity sequences and tracking them, (ii) detecting a changefrom one
activity to the next, and (iii) classifying which is the nextactivity to
change to and start tracking it. This paper presents an algorithm for
achieving all these three tasks and presents results on how it can used
for indexing and summarizing a long sequence consisting of differ-
ent human activities. Human activities are represented by amodel
for the dynamics of the shape [1] of the human body contour (shape
of k landmarks uniformly chosen on the outer contour). This is mo-
tivated by the fact that the shape of the body changes in the course
of various activities. Moreover, the shape representation[1] makes
the method insensitive to camera zoom (scale changes), translation
and in-plane rotation.

Tracking is performed using a particle filter that uses a motion
model taken from [2] and a piecewise stationary shape dynamical
model [3]. A nonlinear observation equation that relates the pre-
dicted landmark configuration with the input image. The piecewise
stationary model used here is similar in spirit to switched linear dy-
namic systems [4], but in our case the state space model is nonlinear.
Note that in our framework, the tracked observations are used to
recognize an activity, the corresponding dynamical model of which
drives the tracking for the next frame. The tracking algorithm is thus
similar in spirit to the well-known CONDENSATION algorithm[5],
but differs from it in (i) the use of local shape deformation mod-
els (as compared to only affine deformation modeling in [5]);(ii)
performing simultaneous recognition and tracking using change de-
tection statistics like ELL [6] and tracking error [7]. These measures
can handle both slow and sudden changes of activities and serve as
a feedback signal, which initiates a search for switching toa new

activity model, and the whole process repeats. A diagram explaining
our overall approach is shown in Figure 1. We present experimen-
tal results on automatically tracking and indexing a real life video
sequence of different activities.
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Fig. 1. Overall approach for simultaneous tracking and recognition.
The recognition module for using Tracking Error is shown on the
right. An analogous module operates for using ELL as well.

1.1. Relation to Previous Work

There has been much recent work on human activity recognition [8,
9, 10, 11]. Key-frame segmentation methods [12] only detectthe
switching instances and often require the entire video to beavailable
a-priori. Video surveillance methods also address the problems of
tracking and recognition, but usually the tracks are obtained first,
followed by recognition [13, 2].

Simultaneous tracking of the moving persons and recognition of
activities has been performed in many applications using a Dynamic
Bayesian Network (DBN) model tracked by a Rao-Blackwellized
particle filter [14, 15, 4, 16]. The events are recognized by track-
ing discrete state space variables (whose dynamics is defined by the
DBN) using a particle filter (PF) and moving object motion is mod-
eled by a linear dynamical system tracked by a Kalman filter inside
the PF. [4] performs figure tracking by defining a DBN to switchbe-
tween various linear dynamical systems (also called Switched Lin-
ear Dynamical System or SLDS). Discrete state space variables have
also been used in many other joint recognition and tracking contexts
in video analysis, e.g. Chapter 16 of [15] (Condensation forgesture
tracking and recognition), [17, 18].

Using a discrete mode as a state variable requires knowledgeof
its dynamics. In cases when this is not known, one can choose to
detect a change by using tracking error (TE) [7] or the recently pro-
posed ELL statistic [6] and then recognize the new activity by match-
ing it with the activities in the database. TE based model switching
and re-initialization [7] is a common technique in systems and con-
trol literature. But in computer vision it has been used withonly
limited success because of the difficulty of re-initialization. In the
current application, we are able to do this successfully. Also, for



gradual changes, we are able to prevent large loss of track from oc-
curring by using ELL which is able to detect a change before com-
plete loss of track.

We start by describing the state space model (Section 2), fol-
lowed by tracking using filters, change detection and recognition
strategy (Section 3). We then show detailed experiments andana-
lyze the results (Section 4).

2. STATE SPACE MODEL FOR ACTIVITY SEQUENCES

Our state space is the shape and global motion (scale, rotation, trans-
lation) of k landmark points used to represent the outer contour of
the object of interest. In past work [2, 3], we have extended the sta-
tistical theory for landmark shapes [1] to define stochasticdynamic
models for shape deformation. We model the motion/deformation of
a changing configuration of landmark points as scaled Euclidean mo-
tion (translation, rotation, isotropic scaling) of a “meanshape” plus
its non-rigid deformation. The term “shape activity” is used to de-
note a particular stochastic model for shape deformation. We define
a “stationary shape activity” (SSA) as one for which the meanshape
remains constant with time and the deformation model is stationary
[2]. A piecewise stationary shape activity (PSSA) model [3]models
a shape activity with slowly varying “mean shape” (approximated as
piecewise constant). It is represented by a sequence of SSAswith
nonstationary transitions which we detect using ELL [6] or tracking
error [7].

The state vectorXt = [vt, st, θt, at, bt] wherevt = v(zt, µ)
denotes the tangent coordinates [1] of the shape,zt, computed in
the tangent space ofµ andst, θt, at, bt denote the isotropic scale,
rotation, x and y translation. Complex notation taken from [1] is
used simplify writing of equations.∗ denotes conjugate transpose
of a complex vector andj =

√
−1. The predicted configuration of

landmark points at timet is h(Xt) = ztste
jθt + at + jbt where the

shape,zt = (1 − v∗
t vt)

1/2µ + vt.
We use the same global motion model as in [2]. We describe the

shape dynamical model below.

2.1. Piecewise Stationary Shape Activity (PSSA) Model

We refer the reader to [3] for more details about the PSSA model.
Let the “mean shape” change times betµ1

, tµ2
, tµ3

, ... and the cor-
responding means beµ1, µ2, µ3, .... Betweentµj−1

≤ t < tµj
,

µt = µj−1 and thusvt = vt(zt, µj−1). During this interval, the
dynamics is similar to that for an SSA, i.e.,

vt(zt, µj−1) = Avvt−1(zt−1, µj−1) + nt, nt ∼ N (0, Σv,t)

zt = (1 − v
∗
t vt)

1/2
µj−1 + vt. (1)

At the change time instant,t = tµj
, µt = µj and so the tangent

coordinatevt−1 needs to be recalculated in the new tangent space
with respect toµt = µj . This is achieved as follows [3]:

vt−1(zt−1, µj) = [I − µjµ
∗
j ]zt−1e

j 6 z∗

t−1
µj) (2)

Once this is done, the equations of (1) apply with mean shapeµj .

2.2. Observation Model

We perform edge detection on the imageIt and use the edge map,
Gt = Υ(It), to obtain the observed landmarks,Γt ⊂ Gt. Our
method is inspired by [5]. Given the predicted location of landmarks,
Ŷt = h(Xt) = ztste

jθt + at + jbt, we search along the normal

direction to each predicted landmark until we find an edge point and
we treat this as the observed landmark location. Thus the observation
likelihood is

p(Γt|Xt) ∝ exp{−
KX

k=1

1

2rkK
||qk − f(qk, Gt)||2}, (3)

whereK is the shape vector dimension,rk is the variance of the
kth landmark,qk is thekth predicted landmark, i.e.,qk = Ŷt,k and
f(qk, Gt) = Γt is the nearest edge point ofqk along its normal
direction.

3. TRACKING, CHANGE DETECTION, RECOGNITION

3.1. Tracking using Particle Filters

In this paper, we use a particle filter for “tracking”, i.e., for obtaining
observations on the fly by tracing along the normals of the predicted
configuration,Ŷt, to search for the closest edge (as described in Sec-
tion 2.2). The particle filter (PF) is a sequential Monte Carlo method
(sequential importance sampling plus resampling) which provides at
eacht, anN sample Monte Carlo approximation to the prediction
distribution, πt|t−1(dx) = Pr(Xt ∈ dx|Y1:t−1), which is used
to search for new observed landmarks. These are then used to up-
dateπt|t−1 to get the filtering (posterior) distribution,πt|t(dx) =
Pr(Xt ∈ dx|Y1:t). We use a particle filter because the observation
model is nonlinear and the posterior can temporarily becomemulti-
model when there are false edges due to background clutter.

3.2. Change Point Detection

As explained earlier, each activity is represented by an SSAor a
PSSA (sequence of SSAs) model, for example the bending across
activity shown in Figure 2 is composed of 3 SSA pieces. The se-
quence of activities forms a long PSSA. We use ELL [6] and tracking
error [7] described below to detect the change time from one SSA to
the next. If the change is gradual as, for example within an activity
(e.g. see bending across activity and the ELL plot in Figure 2), the
loss of track is small and slow. For such examples, ELL detects the
change faster than tracking error. For our state space model, ELL is
computed as

ELL
N
t =

1

N

NX
i=1

v
(i)T

t Σ−1
v v

(i)
t + constant (4)

whereN is the number of particles andΣv is the covariance matrix
of the tangent coordinates for the current stationary piece.

If the activity change is sudden, it will cause the PF, and tuned to
the dynamical model of a particular activity, to lose track when the
activity changes. This is because under the existing activity model
with which the PF operates, the new observations would appear to
have very large observation noise. Thus the tracking error (TE) [7]
(Euclidian norm of the error between the mean predicted landmark
configuration and the observed one) will increase when the activity
changes and this can be used to detect the change times.

3.3. Model Switching to a New Activity

Once the change has been detected, the next problem is to deter-
mine the correct activity from the class of previously learned activ-
ity models. This is known as the problem ofmodel switching. This
is done by projecting the observed landmark configuration,Γt, onto



the mean shape for each of the learned activities and choosing the
one with the largest projection or the smallest projection error (mea-
sured using Procrustes distance [1]). In practice, this is done for a
few frames before a final decision is made, since individual frames of
different activities may be similar. If the distance is above a certain
threshold for all activities in the database, we decide thatthe current
activity is not within the learned database and this is indicated.

3.4. Simultaneous Tracking, Change Detection and Recognition
(Simul-TraCR) Algorithm

We now outline the main steps of the simultaneous tracking and
recognition algorithm, incorporating change detection and model
switching. For simplicity, let us assume that there are two activi-
ties in the sequence,A1 andA2. For the first frame inA1, the region
of interest (a person or a group of people) is detected based on the
application requirements (not part of this paper) and the correspond-
ing model for the activity is determined as in Section 3.3. After this
initialization, the algorithm now proceeds as follows.

Track Based on the detected region and the chosen dynamical
model, the particle filter is used to track the activity. Measures for
determining the accuracy of the tracking algorithm (TE and ELL)
are computed for each frame.

Change Detection When the fidelity measures exceed a cer-
tain threshold (details in Section 4) for a few consecutive frames,
a change is detected.

Model Switching Once the change is detected, the new shape
vector is obtained from the edge map of image frame and a search
is initiated for the correct activity model. Once the correct activity
model is identified, we use this and go back to Track.

Note that change detection and switching may be between dif-
ferent portions of the same activity, specifically, for those activities
in which a non-stationary dynamical model is needed.

4. EXPERIMENTAL RESULTS

We now show examples of our Simul-TraCR algorithm for index-
ing and summarizing (tracking) a sequence consisting of 10 differ-
ent activities captured in video. The training and testing sequences
were captured separately on different days. The binarized silhouette
denoting the contour of the person in every frame of thetraining
sequence is obtained using background subtraction. The landmarks
were obtained by uniformly sampling the silhouette contour. The
global motion and shape is computed for the landmark configuration
at each frame [1]. This is used to learn the parameters of the dy-
namical model for each SSA activity as discussed in [2]. In the test-
ing sequence, the silhouette is pre-computed only in the first frame
if the background information is available; otherwise we use mo-
tion segmentation over a few initial frames to obtain the silhouette.
Thereafter it is obtained as the output of the tracking algorithm, as
explained above. The database we collected consists of 10 activities
(whose composition make up a number of normal everyday activ-
ities), bending across, walking towards camera and bendingdown,
leaning forward and backward, leaning sideward, looking around,
turning head, turning upper body, squatting, bending with hands out-
stretched, and walking. We will refer to thenth activity as Actn.

In Figure 2, we show four frames from the 3 stationary pieces
(SSAs) that constitute Act1 (Bending Across) and the ELL andtrack-
ing error plots. The first row shows one frame from each piece -
Standing Straight (SS), Half Bent (HB) and Fully Bent (FB). The
transitions SS-HB and HB-FB were gradual and hence are detected
by ELL faster than by Tracking Error. The pink horizontal lines in

the ELL plot are the average value of ELL for that activity piece
(equal to the effective rank ofΣv) and change is declared when
ELL significantly exceeds this value. ELL is always computedw.r.t.
the SSA that is being used to track the current frame. ELL detects
change before significant loss of track and hence we switch tothe
next SSA piece without the tracking error ever increases appreciably
(varies about an average value of about 60). The first image inthe
bottom row is frame 54 .As can be seen the landmarks on the leftarm
are very close to each other and overlapping (change in topology of
underlying continuous contour). Thus there is a change in their or-
der. Landmark shape is sensitive to the ordering of landmarks and
this is detected as a sudden increase in ELL.

In Figure 3, we show some frames from a set of individual activi-
ties stitched together and the Tracking Error plot. Since the activities
were stitched together by us, the transitions from one to thenext are
sudden. This models a situation where disparate activity videos (i.e.,
not a continuous sequence) are stitched together, like in a digital li-
brary. These are detected easily using the increase in Tracking Error.
The plot is for the following sequence: Act3, Act4, Act8, Act9 and
Act7. One frame for each activity along with the tracking error is
also shown. The number of frames that are used to recognize anac-
tivity is called the “delay” due to model switching. The following
observations were made in the experimentation process. ForAct7,
Act8 and Act9, the delay needed to get correct recognition will be
very small, while Act3 and Act4 need longer delays to find the cor-
rect model to switch to. This is because initial poses of the body in
Act3 and Act4 is very similar to other activities.

5. CONCLUSIONS

In this paper, we proposed a novel system for indexing and summa-
rizing (tracking object of interest) a video consisting of asequence
of human activities. This is achieved through an algorithm for si-
multaneous and persistent tracking and recognition. We usea non-
linear, piecewise stationary model defined on the shape of human
body contour to represent activities. The activity change times are
detected using ELL and Tracking Error statistics. The activities are
recognized by comparing the tracked observations against aprior
database. We demonstrate the effectiveness of our system byshow-
ing experimental results on real life video of different activities.
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