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ABSTRACT defined but for nonlinear systems, linearization techniques like ex-
tended Kalman filters are the main tools [6]. These are compu-
We study the change detection problem in a general HMM when tationally efficient but are not always applicable. In [7], the au-
the change parameters are unknown and the change can be slowthors attempt to use a particle filtering approach for evaluating the
or drastic. Drastic changes can be detected easily using the in- CUSUM statistic without linearization. This, in the most general
crease in tracking error or the negative log of observation likeli- case (when the PF is not asymptotically stable), would require to
hood (OL). But slow changes usually get missed. We have pro-run (1 + t) PFs to evaluate CUSUM at tinte In [7], they define a
posed in past work a statistic called ELL which works for slow modification of the CUSUM statistic which has non-growing com-
change detection. Now single time estimates of any statistic canputational complexity wittt.
be noisy. Hence we propose a modification of the Cumulative Sum  For unknown changed system parameters, the LR can be re-
(CUSUM) algorithm which can be applied to ELL and OL and thus placed by Generalized Likelihood Ratio (GLR). The solution of
improves both slow and drastic change detection performance.  GLR for linear systems in well known [6]. But for nonlinear sys-
tems, CUSUM applied to GLR would require to run one PF for
each value of the unknown parameter. In [8], the authors con-
1. INTRODUCTION sidered a case where the unknown parameter belongs to a finite
set with cardinalityP. This required running1 + Pt) PFs at
Change detection is required in many practical problems arising in time ¢ to evaluate CUSUM at. Hence the authors proposed to
quality control, flight control, fault detection and in surveillance gearch over a finite past of length, i.e. to useCUSUM; n =
problems ||ke abnormal aCtiVity detection [l] In most cases, the maxo<p<A LR(p’ t) For the genera| case where the unknown pa_
underlying system in its normal state can be modeled as a parametrameter belongs to an uncountable set, ML parameter estimation
ric stochastic model Which is usually nonlinear. The observations procedures have been proposed, see a recent survey article [9]. But
are usually noisy (making the system partially observed). Such amost of these use a PF estimate of the joint posterior of all states,
system forms a “general HMM" [2] (also referred to as a “partially 7N (dz,.,|Y:.;) and the error in the joint posterior estimated us-
observed nonlinear dynamical model” or a “stochastic state spacejng a fixed number of particles increases with time [9] (unstable).
model” in different contexts). It can be approximately tracked (es- Also, all of the above algorithms are based on observation LR and
timate probability distribution of the hidden state variables given hence are unable to detect slow changes [1].
observations) using a Particle Filter (PF) [3]. In this paper, we propose to modify the CUSUM algorithm in

We study here the change detection problem in a general HMM g different way. This modification is applicable to any single time
when the change parameters are unknown and the change can bistant change detection statistic. We apply it to both OL and ELL
slow or drastic. We use a PF to estimate the posterior probability and so are able to detect drastic as well as slow changes. Also, it
distribution of the state at timg X, given observations up tg can be evaluated using a single PF even when the unknown change
Pr(X; € dz|Yi.) = 7 (dz). Even when change parameters are Parameter belongs to an uncountable set and the CUSUM statistic
unknown, drastic changes can be detected easily using the increasestimate is stable. The paper is organized as follows: In Section 2,
in tracking error [4] or the negative log of observation likelihood We discuss ELL and OL. The modified CUSUM algorithm and its
(OL). OL is the negative log likelihood of the current observation application to ELL and OL is discussed in Section 3. In Section
conditioned on all past observations. But slow changes usually get4, wWe study two example applications, discuss their stability and
missed. We have proposed in past work [5], a statistic called ELL show simulation results. Conclusions are presented in Section 5.
(Expected Log-Likelihood) which is able to detect slow changes.

We have also shown complementary behavior of ELL and OL for 1.1. The General HMM Model and Problem Definition
slow and drastic changes [1].

Now single time instant estimates of ELL or OL may be noisy
and are prone to outliers. Hence in practice, one needs to aver 4 !
age the statistic over a set of past time instants. A principled way Memoryless function of the state given by = he(X:) + w
of doing this is the CUSUM algorithm [6]. For known change ‘Wherew: is anii.d. noise process arid is, in general, a non-
parameters, the CUSUM algorithm finds the maximum (over all Ilnear function. The cqndltlonal distribution of the observatlon
previous time instants,— p + 1) of the observation likelihood ra- ~ 9\ven stateG(dy:, =), is assumed to be absolutely continuous
tio, LR(p, t), assuming that the change occurred at timep + 1 and its pdf is given by (Y%, x) = Ye(xz). Now po(x) (the prior
(see equation (2) in Section 3). For linear systems, the LR is well initial state distribution)G:(dy:, z:), Q¢(x+, dx:+1) are known

The system (or state) procegX’; } is a Markov process with state
transition kernelQ:(x+, dz:+1) and the observation process is a



and assumed to be absolutely contindouBhus the prior distri-
bution of the state at anyis also absolutely continuous and ad-
mits a densityp:(z). Note that we use the superscripis used

to denote any parameter related to the changed syStéon,the
original system and° for the case when the observations of the
changed system are filtered using a filter optimal for the original
system. Also theunnormalized filter kernel [2] is defined as
Ri(we, dwes1) = e(Te41) Qe (e, dwesa).

The Kerridge Inaccuracy [10] between two pdf andgq is de-

finedask (p : q) = [ p(x)[— log q(x)]dx. We haveELL(Y: ) 2
Er,[=logp{ (z)] = K (e pt)
Why ELL works: Now, taking expectation aB LL(Y,) =

K (= : p?) over normal observation sequences, we get
Eyo [ELL(Y\%)] = EYO Epo[~logp(z)] = E[~log p} (x)] =

H(p?) = K(p : ) EK whereH (.) denotes entropy. Sim-

We assume that the normal (original/unchanged) system hasilarly, for the changed system observatiofs;e [ELL(Yy,)] =

state transition kerne)?. A change (which can be slow or drastic)
in the system model begins to occur at some finite tipend lasts
till a final finite time ¢;. In the time interval,[t., ¢f], the state
transition kernel isQ§ and aftert it again becomes)?. Both
Q¢ and the change start and end tiniest; are assumed to be
unknown. The goal is to detect the change, with minimum delay.

1.2. Approximate Non-linear Filtering using a Particle Filter

The problem of nonlinear filtering is to compute at each time
the conditional probability distribution, of the sta¥, given the
observation sequencg .;, m:(dx) = Pr(X: € dz|Y1+). The
transition fromm,_1 to m; is:

Uy —
M1 —=> Ty¢—1 = Qi(m—1) —>m = ( et

Tt|t—1, T/’t)
A Particle Filter [3] is a recursive algorithm for approximate non-
linear filtering which produces at each timea cloud of N par-
ticles {xﬁi)} whose empirical measure;", closely “follows” 7;
Att = 0, it samplesV times fromr, to approximate it byr{’ (dx) =
% Zf\;l N0 (dz). Then, for each, it runs the Bayes recursion:
0

N N
Al

ﬂ-tfl:N ;5I§?1(d$) '>7Tt|t 1= Z
1 N N

~N2& OF N e~ N2 _

—>T = Zwt 69_#) (dax)—>m, = Z 6xi[) (dz)
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Where:p ~ Qi(z;”,dx), z;” ~ Multinomial({z,"” w;"” };Z,),

w(” AN T/)t(xi )
o (wﬁt,l,wt)'

2. CHANGE DETECTION STATISTICS: ELL AND OL

2.1. The ELL statistic

“Expected (negative) Log Likelihood” or ELL [5] at timg is the
conditional expectation of the negative logarithm of the prior like-
lihood of the state at timg under the no change hypothesi(,
given observations till time, i.e.

ELL(Yi:t) 2 E[~logp (2)|Yi.e] = B, [~ (@)

Using the PF estimate;", the ELL estimate becomegsLL" =
LSV [~ logp?(f”)]. ELL as defined above is equal to the

log p¢ (z)].

Kerridge Inaccuracy [10] between the posterior and prior state pdf.

INote that for ease of notation, we denote the pdf either by the sameJELL(p,t)

symbol or by the lowercase of the probability distribution symbol
2At most place$-0 is replaced by and<:¢ by ¢

K(pg : ) EK{,i.e. the expectation df L L(Y7;; ) taken over
changed system observation sequences is actually the Kerridge In-
accuracy between the changed system pyifrand the original
system prior,pt, which will be Iarger than the Kerridge Inaccu-
racy between? andp? (entropy ofp?) [11].

Now, ELL will detect the change wheli K/ is “significantly”

larger thanEK?. Setting the change thresholdte 2 EK? +
31/ VK?, whereVK? = Vary,,, (K?), willensure a false alarm
probability less tha.11 (follows from the Chebyshev inequality
[12]). By the same logic, iEKf — 3,/V K{ > k. then the miss
probability [12] (probability of missing the change) will also be
less thar0.11.

2.2. When ELL fails: The OL Statistic

The above analysis assumed no estimation errors in evaluating
ELL and if this were true ELL would work for drastic changes
as well. But, the PF being used is optimal for the unchanged sys-
tem. Hence when estimating (required for evaluating the ELL)

for the changed system, there is “exact filtering error” [1]. Also the
particle filtering error is much larger in this case. The upper bound
on the approximation error in estimating the ELL is proportional
to the “rate of change” [1]. Hence ELL is approximated accurately
for a slow change and thus it detects such a change as soon as it
becomes “detectable” [1]. But ELL fails to detect drastic changes
because of large estimation error in evaluating But large es-
timation error in evaluatingr; also corresponds to a large value

of OL (Observation Likelihood) which can be used for detecting
such changes (Theorem 2.4 of chapter 2 of [1]). OL as explained
earlier, is the negative log likelihood of the current observation
conditioned on past observations under the no change hypothesis,
i.e. OL = —log Pr(Y:|Y1.t—1, Ho). Itis evaluated using a PF as
OLY = —1log(Q¥m;Y1,4:). OL, on the other hand, takes longer

to detect a slow change or may not detect it at all (discussed in [1]).

3. THE MODIFIED CUSUM ALGORITHM

Now single time instant estimates of ELL or OL may be noisy
and prone to outliers. Hence in practice, one needs to average the
statistic over a set of past time instants. Averaging OL over past
time instants giveaO L(p, t) = (1/p)[—log Pr(Yi—pt1:¢|Y1:e—p)].
Average ELL isaELL(p,t) = (1/p) Y, _, ., ELL(Yi).

But sinceE L L(Y1.¢+) is not stationary and hence also not ergodic,
the above averaging cannot be justified for lapgeFor smallp,

one can use the standard assumption of approximating any nonsta-
tionary process by a piecewise stationary process over small time
intervals (same idea as that used to justify any other moving aver-
age). Instead ai EL L, one can evaluate joint ELL as

= (1/p)E[— logpt—p+1:t(Xt—p+1:t)lylzt}, which is

the Kerridge Inaccuracy between the joint posterior distribution of
Xi—p+1:¢ givenYi., and their joint prior. If usingiELL(p, t), the



threshold can be set 822X (p, t) = (1/p) Ey,,,[aELL(p,t)]
which is the sum of individual entropies of;_,+1... If using

along with the fact thak(z) = tan™'(z2,;/21,¢) and that the ob-
servation noise is truncated, it is easy to see that the support set of
JELL(p,t), TR PEE (p,t) = (1/p)Ey,,, [j ELL(p,t)] which is Yi(x), Ezy,, compact. Using Example 3.10 of [2], this along with
the joint entropy ofX;_p11:¢. the fact that® X;_, is continuous, thatrp has compact support
Now,for the case of known change parameters, the CUSUM and that the system noise is Gaussian, makes the unnormalized
statistic applied to the observation likelihood ratio is [6, 7] filter kernelsRY?, Rf’o, R{ mixing. Also sinceE, y, is compact,
SUPzEE, y, Py () is finite andM, = SUPzeE, y, [— log pe(z)] is
finite*. Thus we satisfy all assumptions of Theorem 2.2 of Chap-
ter 2 of [1]. Also using an argument similar to that in Section
2.7.1 of [1F, assumption (iV)of the stronger Theorem 2.1 is also
(2) satisfied and hence it holds, i.e. the error between the true ELL
and its approximation averaged over PF realizations and observa-
and change is declaredifU SU M, > X for some positive thresh-  tion sequences is eventually monotonically decreasing with time,
old A. For unknown change parameters and for any statistic, de-for large N, and hence is stable. This implies that the error in
noted bystat(p, t), one can modify this as follows: Setathreshold CUSUM-ELL (finite sum of past ELLs) estimate is also stable.
for stat(p, t) for normal observations'h*“* (p, t)°, and replace  Simulation Results: ROC plots of Figure 1 compare perfor-
log LR(p, t) by [stat(p,t) — Th***(p,t)], i.e. use mance of ELL (blue -0), OL (red -*), CUSUM-ELL (blackquare)
and CUSUM-OL (majenta -x). An ROC (Receiver Operating Char-
acteristics) plot for a change detection problem [6] is obtained
by plotting average detection delay against average time between
false alarms for different values of the detection threshold. We
simulated 20 realizations and calculated average detection delay
is the argument maximizingtat(p, t) — Th***!(p, t)] overp. and average time between false alarms for different values of the
Now the error in the PF estimate of the joint posteriokef ,+1.:  detection threshold. As can be seen from the figure, CUSUM-ELL
givenYi.; increases ag increases, and as a thumb rule, the esti- performs much better than ELL for all 3 cases. Also, CUSUM-
mates are meaningless fpr> 5 [9]. Also as explained above, ELL and ELL significantly outperform CUSUM-OL and OL for
aELL can be justified for only small values pf Thus in practice the slow change (r=1). In fact, in this example because of the na-
we use the following modification (withh = 5): ture of h(z), even for the faster (r=10) and drastic change (r=20),
CUSUM-ELL outperforms CUSUM-OL and OL.

CUSU M= max log LR(p,t), where
1<p<t

log LR(p, t)élog Pro(Yi—pt1:4|Yie—p) — log PTO(Yt—P+1¢t|Y1¢i—P)
=[aOL°(p,t) — aOL° (p,1)]

CUSUM;*™ €)

tat(p,t) — Th** (p,t
ggggt[s at(p,t) (p,1)]

where stat is aOL®, aELL or jELL. Change is declared if
CUSUM;:* > ). Change time is given by— p* + 1 wherep*

CUSUMR' = 4)

tat(p,t) — Th** (p, t)].
lrgrzang[s at(p, 1) (p,1)]

4.2. Nonlinear State Dynamics

4. TWO APPLICATIONS o . . . .
If the system dynamics is nonlinear, in most cases it is not possi-

ble to definep; (z) in closed form. One solution for such cases is

] ) o to use prior knowledge to defing (z) as coming from a certain
In bearings-only target tracking (details in [3]), the target moves parametric family for example a Gaussian or a mixture of Gaus-

on the x-y plane according to the standard second order model:  gjans. We study here an example discussed in [3] which has the
following nonlinear state dynamics:

4.1. Bearings-only Target Tracking

1100 0.5 0 Sa
— — — t—1
Xe=@Xeoand T, @= | g5y | T=1 905 |0 Heren. is Gaussi tem noise witf, . — 10 and
0001 0 1 50 + w¢ wheren; IS Gaussian system noise wi ys = an

w; is truncated Gaussian observation noise with, = 1. Initial
state is taken to be zero. We introduce a change by adding a bias

whereX; = x1¢, @1,¢, To2.t, T2, HErexy ¢, z2 . denote the x and ) juce i
rosys 10 the state equation for 10 time instants starting &t 5.

y components of the target location aid,, ©2,: denote the x and
y components of the target velocity. The observatidnjs a noisy Based on prior knowledge, we take(z) to be a Gaussian with
measurement of the target bearing,= tan ™' (v2,:/x1.¢) + we. meanZ’i:1 8 cos(1.2(T — 1)) and variance?,,.

In this case, the observation model is nonlinear, but the systemStability: Itis easy to see that, (x) has compact suppotk, vy, .

model is linear Gaussian and hengéz) can be defined in closed
form. The system noisey:, is zero mean i.i.d. Gaussian with
Ysys = 0.0017 and the observation noise is zero mean i.i.d. trun-
cated Gaussian with varianeg,, = 0.005 and truncation param-
eterB = 100.,5s. We attempt to detect a change in the state dy-
namics where the change is due to an additive bid¥§waf, s 0]7,

for 10 time steps starting at= 5. The initial state was assumed
to be known (zero variance).

Stability:  With the following mild assumption, the above sys-
tem satisfies the stability results of [1]: Assume that for egch

the x component of the target location is bounded, i.e. there ex-

ists aP; < oo, s.t. —P; < z1+ < P;. Using this assumption,

SUsually takeTh®tet(p, t) = Ey,,, [stat(p,t)]

Also, the system dynamics is continuous and system noise is Gaus-
sian. This along with the fact that, has compact support makes
RY, RY°, R¢ mixing. SinceE,.y, is compactsupzeg, v, ¥t ()

is finite andM; = supsck, , [~ logp:(z)] is finite. Thus all as-
sumptions of Theorem 2.2 of Chapter 2 of [1] are satisfied.
Simulation Results: We show ROC plots in Figure 2 for com-
paring performance of ELL (blue -0), OL (red -*), CUSUM-aELL
(black square), CUSUM-JELL (green A) and CUSUM-OL (ma-

jenta -x). Here ELL outperforms OL and CUSUM-aELL/JELL

4Continuous functions (herg; (x) and [— log pt (x)]) map compact
sets onto compact sets.

5The difference here is that sineeP; < z1,+ < Py, the system noise
is truncated Gaussian distributed instead of Gaussian
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Fig. 1. Bearings-only tracking example: ROC curves comparing ELL, CUSUM on aELL, OL and CUSUM on OL
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Fig. 2. Nonlinear System Model example: ROC curves comparing ELL, CUSUM on aELL, CUSUM on JELL, OL and CUSUM on OL.
Note that in (b), CUSUM-aELL and CUSUM-JELL remain at zero while in (c), CUSUM-OL and OL remain at zero.

outperform CUSUM-OL for the slow (r=1) and faster (r=2) change
and vice versa for the drastic (r=10) change. Infact for r=10, CUSUM-
OL and OL have zero detection delay while CUSUM-ELL and [3]
ELL completely fail. Also, for all cases, CUSUM-ELL is better

than ELL and CUSUM-OL is better than OL. CUSUM-aELL and
CUSUM-JELL have comparable performance, JELL is better at
lower thresholds while aELL is better at higher thresholds.

(4]

(5]
5. CONCLUSIONS

We have modified the CUSUM algorithm to work for change de- [6]
tection in nonlinear systems with unknown change parameters.
This modification can be applied to the ELL statistic [5] and is [7]
the first application of CUSUM for slow change detection. Also
our modified CUSUM can be evaluated using a single PF and the
CUSUM statistic estimates are stable. As part of future work, we
would like to use ML parameter estimation [9] to reduce the “exact
filtering error” [1] in ELL (and CUSUM-ELL) approximation.

(8]

9]
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