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ABSTRACT

We study the change detection problem in a general HMM when
the change parameters are unknown and the change can be slow
or drastic. Drastic changes can be detected easily using the in-
crease in tracking error or the negative log of observation likeli-
hood (OL). But slow changes usually get missed. We have pro-
posed in past work a statistic called ELL which works for slow
change detection. Now single time estimates of any statistic can
be noisy. Hence we propose a modification of the Cumulative Sum
(CUSUM) algorithm which can be applied to ELL and OL and thus
improves both slow and drastic change detection performance.

1. INTRODUCTION

Change detection is required in many practical problems arising in
quality control, flight control, fault detection and in surveillance
problems like abnormal activity detection [1]. In most cases, the
underlying system in its normal state can be modeled as a paramet-
ric stochastic model which is usually nonlinear. The observations
are usually noisy (making the system partially observed). Such a
system forms a “general HMM” [2] (also referred to as a “partially
observed nonlinear dynamical model” or a “stochastic state space
model” in different contexts). It can be approximately tracked (es-
timate probability distribution of the hidden state variables given
observations) using a Particle Filter (PF) [3].

We study here the change detection problem in a general HMM
when the change parameters are unknown and the change can be
slow or drastic. We use a PF to estimate the posterior probability
distribution of the state at timet, Xt, given observations up tot,

Pr(Xt ∈ dx|Y1:t)
4
= πt(dx). Even when change parameters are

unknown, drastic changes can be detected easily using the increase
in tracking error [4] or the negative log of observation likelihood
(OL). OL is the negative log likelihood of the current observation
conditioned on all past observations. But slow changes usually get
missed. We have proposed in past work [5], a statistic called ELL
(Expected Log-Likelihood) which is able to detect slow changes.
We have also shown complementary behavior of ELL and OL for
slow and drastic changes [1].

Now single time instant estimates of ELL or OL may be noisy
and are prone to outliers. Hence in practice, one needs to aver-
age the statistic over a set of past time instants. A principled way
of doing this is the CUSUM algorithm [6]. For known change
parameters, the CUSUM algorithm finds the maximum (over all
previous time instants,t− p + 1) of the observation likelihood ra-
tio, LR(p, t), assuming that the change occurred at timet− p + 1
(see equation (2) in Section 3). For linear systems, the LR is well

defined but for nonlinear systems, linearization techniques like ex-
tended Kalman filters are the main tools [6]. These are compu-
tationally efficient but are not always applicable. In [7], the au-
thors attempt to use a particle filtering approach for evaluating the
CUSUM statistic without linearization. This, in the most general
case (when the PF is not asymptotically stable), would require to
run (1 + t) PFs to evaluate CUSUM at timet. In [7], they define a
modification of the CUSUM statistic which has non-growing com-
putational complexity witht.

For unknown changed system parameters, the LR can be re-
placed by Generalized Likelihood Ratio (GLR). The solution of
GLR for linear systems in well known [6]. But for nonlinear sys-
tems, CUSUM applied to GLR would require to run one PF for
each value of the unknown parameter. In [8], the authors con-
sidered a case where the unknown parameter belongs to a finite
set with cardinalityP . This required running(1 + Pt) PFs at
time t to evaluate CUSUM att. Hence the authors proposed to
search over a finite past of length∆, i.e. to useCUSUMt,∆ =
max0≤p≤∆ LR(p, t). For the general case where the unknown pa-
rameter belongs to an uncountable set, ML parameter estimation
procedures have been proposed, see a recent survey article [9]. But
most of these use a PF estimate of the joint posterior of all states,
πN

t (dx1:t|Y1:t) and the error in the joint posterior estimated us-
ing a fixed number of particles increases with time [9] (unstable).
Also, all of the above algorithms are based on observation LR and
hence are unable to detect slow changes [1].

In this paper, we propose to modify the CUSUM algorithm in
a different way. This modification is applicable to any single time
instant change detection statistic. We apply it to both OL and ELL
and so are able to detect drastic as well as slow changes. Also, it
can be evaluated using a single PF even when the unknown change
parameter belongs to an uncountable set and the CUSUM statistic
estimate is stable. The paper is organized as follows: In Section 2,
we discuss ELL and OL. The modified CUSUM algorithm and its
application to ELL and OL is discussed in Section 3. In Section
4, we study two example applications, discuss their stability and
show simulation results. Conclusions are presented in Section 5.

1.1. The General HMM Model and Problem Definition

The system (or state) process{Xt} is a Markov process with state
transition kernelQt(xt, dxt+1) and the observation process is a
memoryless function of the state given byYt = ht(Xt) + wt

wherewt is an i.i.d. noise process andht is, in general, a non-
linear function. The conditional distribution of the observation
given state,Gt(dyt, xt), is assumed to be absolutely continuous

and its pdf is given bygt(Yt, x)
4
= ψt(x). Now p0(x) (the prior

initial state distribution),Gt(dyt, xt), Qt(xt, dxt+1) are known



and assumed to be absolutely continuous1. Thus the prior distri-
bution of the state at anyt is also absolutely continuous and ad-
mits a density,pt(x). Note that we use the superscriptc is used
to denote any parameter related to the changed system,0 for the
original system andc,0 for the case when the observations of the
changed system are filtered using a filter optimal for the original
system2. Also theunnormalized filter kernel [2] is defined as
Rt(xt, dxt+1) = ψt(xt+1)Qt(xt, dxt+1).

We assume that the normal (original/unchanged) system has
state transition kernelQ0

t . A change (which can be slow or drastic)
in the system model begins to occur at some finite timetc and lasts
till a final finite time tf . In the time interval,[tc, tf ], the state
transition kernel isQc

t and aftertf it again becomesQ0
t . Both

Qc
t and the change start and end timestc, tf are assumed to be

unknown. The goal is to detect the change, with minimum delay.

1.2. Approximate Non-linear Filtering using a Particle Filter

The problem of nonlinear filtering is to compute at each timet,
the conditional probability distribution, of the stateXt given the
observation sequenceY1:t, πt(dx) = Pr(Xt ∈ dx|Y1:t). The
transition fromπt−1 to πt is:

πt−1 —-> πt|t−1 = Qt(πt−1) —-> πt =
ψtπt|t−1

(πt|t−1, ψt)

A Particle Filter [3] is a recursive algorithm for approximate non-
linear filtering which produces at each timet, a cloud ofN par-
ticles{x(i)

t } whose empirical measure,πN
t , closely “follows” πt.

At t = 0, it samplesN times fromπ0 to approximate it byπN
0 (dx)

4
=

1
N

∑N

i=1
δ

x
(i)
0

(dx). Then, for eacht, it runs the Bayes recursion:

πN
t−1

4
=

1

N

N∑
i=1

δ
x
(i)
t−1

(dx)—->πN
t|t−1

4
=

1

N
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i=1

δ
x̄
(i)
t

(dx)

—->π̄N
t
4
=

1

N
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w
(i)
t δ

x̄
(i)
t

(dx)—->πN
t
4
=
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δ
x
(i)
t
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where x̄
(i)
t ∼ Qt(x

(i)
t−1, dx), x(i)

t ∼ Multinomial({x̄(i)
t w

(i)
t }N

i=1),

w
(i)
t

4
=

ψt(x̄
(i)
t

)

(πN
t|t−1

,ψt)
.

2. CHANGE DETECTION STATISTICS: ELL AND OL

2.1. The ELL statistic

“Expected (negative) Log Likelihood” or ELL [5] at timet, is the
conditional expectation of the negative logarithm of the prior like-
lihood of the state at timet, under the no change hypothesis (H0),
given observations till timet, i.e.

ELL(Y1:t)
4
= E[− log p0

t (x)|Y1:t] = Eπt [− log p0
t (x)]. (1)

Using the PF estimateπN
t , the ELL estimate becomesELLN =

1
N

∑N

i=1
[− log p0

t (x
(i)
t )]. ELL as defined above is equal to the

Kerridge Inaccuracy [10] between the posterior and prior state pdf.

1Note that for ease of notation, we denote the pdf either by the same
symbol or by the lowercase of the probability distribution symbol

2At most places0,0 is replaced by0 andc,c by c

The Kerridge Inaccuracy [10] between two pdfsp andq is de-

fined asK(p : q) =
∫

p(x)[− log q(x)]dx. We haveELL(Y1:t)
4
=

Eπt [− log p0
t (x)] = K(πt : p0

t ).
Why ELL works: Now, taking expectation ofELL(Y 0

1:t) =
K(π0

t : p0
t ) over normal observation sequences, we get

EY 0
1:t

[ELL(Y 0
1:t)] = EY 0

1:t
Eπ0

t
[− log p0

t (x)] = Ep0
t
[− log p0

t (x)] =

H(p0
t ) = K(p0

t : p0
t )

4
= EK0

t whereH(.) denotes entropy. Sim-
ilarly, for the changed system observations,EY c

1:t
[ELL(Y c

1:t)] =

K(pc
t : p0

t )
4
= EKc

t , i.e. the expectation ofELL(Y c
1:t) taken over

changed system observation sequences is actually the Kerridge In-
accuracy between the changed system prior,pc

t , and the original
system prior,p0

t , which will be larger than the Kerridge Inaccu-
racy betweenp0

t andp0
t (entropy ofp0

t ) [11].
Now, ELL will detect the change whenEKc

t is “significantly”

larger thanEK0
t . Setting the change threshold toκt

4
= EK0

t +

3
√

V K0
t , whereV K0

t = V arY1:t(K
0
t ), will ensure a false alarm

probability less than0.11 (follows from the Chebyshev inequality
[12]). By the same logic, ifEKc

t − 3
√

V Kc
t > κt then the miss

probability [12] (probability of missing the change) will also be
less than0.11.

2.2. When ELL fails: The OL Statistic

The above analysis assumed no estimation errors in evaluating
ELL and if this were true ELL would work for drastic changes
as well. But, the PF being used is optimal for the unchanged sys-
tem. Hence when estimatingπt (required for evaluating the ELL)
for the changed system, there is “exact filtering error” [1]. Also the
particle filtering error is much larger in this case. The upper bound
on the approximation error in estimating the ELL is proportional
to the “rate of change” [1]. Hence ELL is approximated accurately
for a slow change and thus it detects such a change as soon as it
becomes “detectable” [1]. But ELL fails to detect drastic changes
because of large estimation error in evaluatingπt. But large es-
timation error in evaluatingπt also corresponds to a large value
of OL (Observation Likelihood) which can be used for detecting
such changes (Theorem 2.4 of chapter 2 of [1]). OL as explained
earlier, is the negative log likelihood of the current observation
conditioned on past observations under the no change hypothesis,
i.e. OL = − log Pr(Yt|Y1:t−1, H0). It is evaluated using a PF as
OLN

t = − log(Q0
t π

N
t−1, ψt). OL, on the other hand, takes longer

to detect a slow change or may not detect it at all (discussed in [1]).

3. THE MODIFIED CUSUM ALGORITHM

Now single time instant estimates of ELL or OL may be noisy
and prone to outliers. Hence in practice, one needs to average the
statistic over a set of past time instants. Averaging OL over pastp
time instants givesaOL(p, t) = (1/p)[− log Pr(Yt−p+1:t|Y1:t−p)].

Average ELL isaELL(p, t) = (1/p)
∑t

k=t−p+1
ELL(Y1:k).

But sinceELL(Y1:t) is not stationary and hence also not ergodic,
the above averaging cannot be justified for largep. For smallp,
one can use the standard assumption of approximating any nonsta-
tionary process by a piecewise stationary process over small time
intervals (same idea as that used to justify any other moving aver-
age). Instead ofaELL, one can evaluate joint ELL as
jELL(p, t) = (1/p)E[− log pt−p+1:t(Xt−p+1:t)|Y1:t], which is
the Kerridge Inaccuracy between the joint posterior distribution of
Xt−p+1:t givenY1:t and their joint prior. If usingaELL(p, t), the



threshold can be set asThaELL(p, t) = (1/p)EY1:t [aELL(p, t)]
which is the sum of individual entropies ofXt−p+1:t. If using
jELL(p, t), ThjELL(p, t) = (1/p)EY1:t [jELL(p, t)] which is
the joint entropy ofXt−p+1:t.

Now,for the case of known change parameters, the CUSUM
statistic applied to the observation likelihood ratio is [6, 7]

CUSUMt= max
1≤p≤t

log LR(p, t), where

log LR(p, t)
4
=log Prc(Yt−p+1:t|Y1:t−p)− log Pr0(Yt−p+1:t|Y1:t−p)

=[aOLc(p, t)− aOL0(p, t)] (2)

and change is declared ifCUSUMt > λ for some positive thresh-
old λ. For unknown change parameters and for any statistic, de-
noted bystat(p, t), one can modify this as follows: Set a threshold
for stat(p, t) for normal observations,Thstat(p, t)3, and replace
log LR(p, t) by [stat(p, t)− Thstat(p, t)], i.e. use

CUSUMstat
t = max

1≤p≤t
[stat(p, t)− Thstat(p, t)] (3)

wherestat is aOL0, aELL or jELL. Change is declared if
CUSUMstat

t > λ. Change time is given byt− p∗ + 1 wherep∗

is the argument maximizing[stat(p, t)− Thstat(p, t)] overp.
Now the error in the PF estimate of the joint posterior ofXt−p+1:t

givenY1:t increases asp increases, and as a thumb rule, the esti-
mates are meaningless forp > 5 [9]. Also as explained above,
aELL can be justified for only small values ofp. Thus in practice
we use the following modification (with∆ = 5):

CUSUMstat
t,∆ = max

1≤p≤∆
[stat(p, t)− Thstat(p, t)]. (4)

4. TWO APPLICATIONS

4.1. Bearings-only Target Tracking

In bearings-only target tracking (details in [3]), the target moves
on the x-y plane according to the standard second order model:

Xt = ΦXt−1 + Γnt, Φ =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 , Γ =




0.5 0
1 0
0 0.5
0 1


 ,(5)

whereXt = x1,t, ẋ1,t, x2,t, ẋ2,t. Herex1,t, x2,t denote the x and
y components of the target location andẋ1,t, ẋ2,t denote the x and
y components of the target velocity. The observation,Yt, is a noisy
measurement of the target bearing,Yt = tan−1(x2,t/x1,t) + wt.
In this case, the observation model is nonlinear, but the system
model is linear Gaussian and hencept(x) can be defined in closed
form. The system noise,nt, is zero mean i.i.d. Gaussian with
Σsys = 0.001I and the observation noise is zero mean i.i.d. trun-
cated Gaussian with varianceσ2

obs = 0.005 and truncation param-
eterB = 10σobs. We attempt to detect a change in the state dy-
namics where the change is due to an additive bias ofΓ[rσsys 0]T ,
for 10 time steps starting att = 5. The initial state was assumed
to be known (zero variance).
Stability: With the following mild assumption, the above sys-
tem satisfies the stability results of [1]: Assume that for eacht,
the x component of the target location is bounded, i.e. there ex-
ists aPt < ∞, s.t. −Pt ≤ x1,t ≤ Pt. Using this assumption,

3Usually takeThstat(p, t) = EY1:t [stat(p, t)]

along with the fact thath(x) = tan−1(x2,t/x1,t) and that the ob-
servation noise is truncated, it is easy to see that the support set of
ψt(x), Ex,Yt , compact. Using Example 3.10 of [2], this along with
the fact thatΦXt−1 is continuous, thatπ0 has compact support
and that the system noise is Gaussian, makes the unnormalized
filter kernelsR0

t , R
c,0
t , Rc

t mixing. Also sinceEx,Yt is compact,
supx∈Ex,Yt

ψt(x) is finite andMt = supx∈Ex,Yt
[− log pt(x)] is

finite4. Thus we satisfy all assumptions of Theorem 2.2 of Chap-
ter 2 of [1]. Also using an argument similar to that in Section
2.7.1 of [1]5, assumption (iv)′ of the stronger Theorem 2.1 is also
satisfied and hence it holds, i.e. the error between the true ELL
and its approximation averaged over PF realizations and observa-
tion sequences is eventually monotonically decreasing with time,
for largeN , and hence is stable. This implies that the error in
CUSUM-ELL (finite sum of past ELLs) estimate is also stable.
Simulation Results: ROC plots of Figure 1 compare perfor-
mance of ELL (blue -o), OL (red -*), CUSUM-ELL (black -square)
and CUSUM-OL (majenta -x). An ROC (Receiver Operating Char-
acteristics) plot for a change detection problem [6] is obtained
by plotting average detection delay against average time between
false alarms for different values of the detection threshold. We
simulated 20 realizations and calculated average detection delay
and average time between false alarms for different values of the
detection threshold. As can be seen from the figure, CUSUM-ELL
performs much better than ELL for all 3 cases. Also, CUSUM-
ELL and ELL significantly outperform CUSUM-OL and OL for
the slow change (r=1). In fact, in this example because of the na-
ture ofh(x), even for the faster (r=10) and drastic change (r=20),
CUSUM-ELL outperforms CUSUM-OL and OL.

4.2. Nonlinear State Dynamics

If the system dynamics is nonlinear, in most cases it is not possi-
ble to definept(x) in closed form. One solution for such cases is
to use prior knowledge to definept(x) as coming from a certain
parametric family for example a Gaussian or a mixture of Gaus-
sians. We study here an example discussed in [3] which has the
following nonlinear state dynamics:
Xt = Xt−1 + 25

Xt−1
1+X2

t−1
+ 8 cos(1.2(t − 1)) + nt andYt =

X2
t

20
+ wt wherent is Gaussian system noise withσ2

sys = 10 and
wt is truncated Gaussian observation noise withσ2

obs = 1. Initial
state is taken to be zero. We introduce a change by adding a bias
rσsys to the state equation for 10 time instants starting att = 5.
Based on prior knowledge, we takept(x) to be a Gaussian with
mean

∑t

τ=1
8 cos(1.2(τ − 1)) and varianceσ2

sys.
Stability: It is easy to see thatψt(x) has compact support,Ex,Yt .
Also, the system dynamics is continuous and system noise is Gaus-
sian. This along with the fact thatπ0 has compact support makes
R0

t , R
c,0
t , Rc

t mixing. SinceEx,Yt is compact,supx∈Ex,Yt
ψt(x)

is finite andMt = supx∈Ex,Yt
[− log pt(x)] is finite. Thus all as-

sumptions of Theorem 2.2 of Chapter 2 of [1] are satisfied.
Simulation Results: We show ROC plots in Figure 2 for com-
paring performance of ELL (blue -o), OL (red -*), CUSUM-aELL
(black -square), CUSUM-jELL (green -4) and CUSUM-OL (ma-
jenta -x). Here ELL outperforms OL and CUSUM-aELL/jELL

4Continuous functions (hereψt(x) and [− log pt(x)]) map compact
sets onto compact sets.

5The difference here is that since−Pt ≤ x1,t ≤ Pt, the system noise
is truncated Gaussian distributed instead of Gaussian
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Fig. 1. Bearings-only tracking example: ROC curves comparing ELL, CUSUM on aELL, OL and CUSUM on OL
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Fig. 2. Nonlinear System Model example: ROC curves comparing ELL, CUSUM on aELL, CUSUM on jELL, OL and CUSUM on OL.
Note that in (b), CUSUM-aELL and CUSUM-jELL remain at zero while in (c), CUSUM-OL and OL remain at zero.

outperform CUSUM-OL for the slow (r=1) and faster (r=2) change
and vice versa for the drastic (r=10) change. Infact for r=10, CUSUM-
OL and OL have zero detection delay while CUSUM-ELL and
ELL completely fail. Also, for all cases, CUSUM-ELL is better
than ELL and CUSUM-OL is better than OL. CUSUM-aELL and
CUSUM-jELL have comparable performance, jELL is better at
lower thresholds while aELL is better at higher thresholds.

5. CONCLUSIONS

We have modified the CUSUM algorithm to work for change de-
tection in nonlinear systems with unknown change parameters.
This modification can be applied to the ELL statistic [5] and is
the first application of CUSUM for slow change detection. Also
our modified CUSUM can be evaluated using a single PF and the
CUSUM statistic estimates are stable. As part of future work, we
would like to use ML parameter estimation [9] to reduce the “exact
filtering error” [1] in ELL (and CUSUM-ELL) approximation.
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