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Abstract

Geometric active contours are formulated in a manner
which is parameterization independent. As such, they are
amenable to representation as the zero level set of the graph
of a higher dimensional function. This representation is
able to deal with singularities and changes in topology of
the contour. It has been used very successfully in static im-
ages for segmentation and registration problems where the
contour (represented as an implicit curve) is evolved until
it minimizes an image based energy functional. But track-
ing involves estimating the global motion of the object and
its local deformations as a function of time. Some attempts
have been made to use geometric active contours for track-
ing, but most of these minimize the energy at each frame and
do not utilize the temporal coherency of the motion or the
deformation. On the other hand, tracking algorithms us-
ing Kalman filters or Particle filters have been proposed for
finite dimensional representations of shape. But these are
dependent on the chosen parametrization and cannot han-
dle changes in curve topology. In the present work, we for-
mulate a particle filtering algorithm in the geometric active
contour framework that can be used for tracking moving
and deforming objects.

1 Introduction

The problem of tracking moving and deforming objects
has been a topic of substantial research in the field of Com-
puter Vision; see [1, 30] and the references therein. In this
paper, we propose a scheme which combines the advantages
of particle filtering and geometric active contours realized
via level set models for dynamic tracking.

In order to appreciate this methodology, we briefly re-
view some previous related work. First of all, a number

of different representations of shape have been proposed in
literature together with algorithms for tracking using such
representations. In particular, the notion ofshapehas been
found to be very useful in this enterprise. For example, the
shape of a set ofN discrete points (calledlandmarks) in
RM is defined [12, 8] as the equivalence class ofRMN un-
der the Euclidean similarity group inRM . The dynamics
of the similarity group defines the global motion while the
dynamics of the equivalence class defines the deformation.
In [34], the authors define a prior dynamical model on the
deformation and on the similarity group parameters. A par-
ticle filter [9] is then used to track the deformation and the
global motion over time.

The possible parameterizations of shape are of course
very important. We should note that various finite dimen-
sional parameterizations of continuous curves have been
proposed, perhaps most prominently the B-spline represen-
tation used for a “snake model” as in [30]. Isard and Blake
(see [1] and references therein) apply the B-spline represen-
tation for contours of objects and propose the Condensation
algorithm [10] which treats the affine group parameters as
the state vector, learns a prior dynamical model for them and
uses a particle filter [9] to estimate them from the noisy ob-
servations. Since this approach only tracks the affine para-
meters it cannot handle local deformations of the deforming
object (see e.g., the fish example in Section 5.1). One pos-
sible solution proposed in [37], is to use deformable tem-
plates to model prior shapes allowing for many deforma-
tion modes of shapes. Some other approaches to tracking
are given in [4, 29, 15].

Another approach for representing contours is via the
level set technique [20, 27] which is an implicit representa-
tion of contours. For segmenting a shape using level sets, an
initial guess of the contour is deformed until it minimizes an
image-based energy functional. Different energy function-
als which utilize different features of the image have been



used in literature; see e.g. [13, 17, 3, 14, 16, 2]. Some pre-
vious work on tracking using level set methods is given in
[38, 19, 21, 36, 11].

In [19], the authors use dynamic active contours for
tracking. The state space is defined by the contour’s po-
sition and the deformation velocity. Explicit observations
of the contour and the contour deformation velocity are in-
corporated into the PDE using an error injection technique.
The prediction step in this approach is obtained using the
principle of least action which uses the current image (and
hence the predicted contour velocity is correlated with the
observation). This can be a problem if there are some out-
lier observations (such as occlusions) and hence they define
a separate occlusion handling method.

The work in this paper extends the ideas presented in
[36, 11]. More precisely, in [36], the authors propose a
definition for motion and shape deformation for a deform-
ing object. Motion is parameterized by a finite dimensional
group action (e.g. Euclidean or Affine) while shape defor-
mation is the total deformation of the object contour (infi-
nite dimensional group) modulo the finite dimensional mo-
tion group. This is calleddeformotion. Tracking is then de-
fined as a trajectory on the finite dimensional motion group.
This approach relies only on the observed images for track-
ing and does not use any prior information on the dynamics
of the group action or of the deformation. As a result it fails
if there is an outlier observation or if there is occlusion. To
address this problem, [11] proposes a generic local observer
to incorporate prior information about the system dynamics
in the “deformotion” framework. They impose a constant
velocity prior on the group action and a zero velocity prior
on the contour. The observed value of the group action and
the contour is obtained by a joint minimization of the en-
ergy. This is linearly combined with the value predicted by
the system dynamics using an observer.

This approach suffers from two problems. First, as in
[36], they must perform a joint minimization over the group
action and the contour at each time step which is computa-
tionally very intensive. Second, for nonlinear systems such
as the one used in [11], there is no systematic way to choose
the observer to guarantee stability. The present paper ad-
dresses the above limitations. We formalize the incorpo-
ration of a prior system model along with an observation
model. A particle filter is used to estimate the conditional
probability distribution of the group action and the contour
at timet, conditioned on all observations up to timet.

Other approaches closely related to our work are given
in [30, 23]. Here the authors use a Kalman filter in con-
junction with active contours to track nonrigid objects. The
Kalman filter was used for predicting possible movements
of the object, while the active contours allowed for tracking
deformations in the object.

This paper is organized as follows: In the next section we

discuss the particle filter and level set method. In Section 3
we describe the state space model and Section 4 discusses
the algorithm in detail. Experimental results are given in
Section 5. Limitations and future work are discussed in Sec-
tion 6.

2 Preliminaries

In this section, we review some basic notions from the
theory of level set evolutions and particle filtering which
we will need in the sequel.

2.1 Particle Filtering

Let Xt ∈ Rn be a state vector evolving according to
the following difference equation:Xt+1 = ft(Xt) + ut

whereut is i.i.d. random noise with known probability
distribution function (pdf),pu,t. At discrete times, obser-
vationsYt ∈ Rp become available. These measurements
are related to the state vector via the observation equation:
Yt = ht(Xt) + vt wherevt is measurement noise with
known pdfpv,t. It is assumed that the initial state distribu-
tion denoted byπ0(dx), the state transition kernel denoted
by Kt(Xt, Xt+1) = pu,t(Xt+1 − ft(Xt)) and the obser-
vation likelihood given the state, denoted bygt(Yt|Xt) =
pv,t(Yt−ht(Xt)), are known. The particle filter (PF) [9, 7]
is a sequential Monte Carlo method which produces at each
time t, a cloud ofN particles,{X(i)

t }N
i=1, whose empirical

measure closely “follows”πt(dxt|Y0:t), the posterior dis-
tribution of the state given past observations (denoted by
πt|t(dx) in the rest of the paper). The PF was first intro-
duced in [9] as the Bayesian Bootstrap filter and its first
application to tracking in computer vision was the Conden-
sation algorithm [10].

The algorithm starts with samplingN times from
the initial state distributionπ0(dx) to approximate it by
πN

0 (dx) = 1
N

∑N
i=1 δ

X
(i)
0

(dx) and thenimplements the

Bayes’ recursionat each time step. Now, the distribution
of Xt−1 given observations upto timet− 1 can be approx-
imated byπN

t−1|t−1(dx) = 1
N

∑N
i=1 δ

X
(i)
t−1

(dx). Thepre-

diction step samples the new statēX(i)
t from the distribu-

tion Kt−1(X
(i)
t−1, .). The empirical distribution of this new

cloud of particles,πN
t|t−1(dx) = 1

N

∑N
i=1 δ

X̄
(i)
t

(dx) is an
approximation to the conditional probability distribution of
Xt given observations upto timet − 1 (prediction distri-
bution). In the update step, each particle is weighted in
proportion to the likelihood of the observation at timet, Yt,
i.e.

w
(i)
t =

gt(Yt|X̄(i)
t )

∑N
i=1 gt(Yt|X̄(i)

t )
.



π̄N
t|t(dx) = 1

N

∑N
i=1 w

(i)
t δ

X̄
(i)
t

(dx) is then an estimate of
πt|t (filtering distribution). We resampleN times with re-
placement fromπ̄N

t|t(dx) to obtain the empirical estimate

πN
t|t(dx) = 1

N

∑N
i=1 δ

X
(i)
t

(dx). Note that both̄πN
t|t andπN

t|t
approximateπt|t but the resampling step is used because
it increases the sampling efficiency by eliminating samples
with very low weights.

2.2 Curve Evolution Using Level Sets

Geometric active contours evolving according to edge
based and/or region based energy flow are very commonly
used for image segmentation. In these methods, starting
from an initial estimate, the curve deforms under the influ-
ence of various forces until it fits the object boundaries. The
curve evolution equation is obtained by reducing an energy
Eimage as fast as possible, i.e., by doing a gradient descent
on Eimage. In general,Eimage may depend on a com-
bination of image based features and external constraints
(smoothness, shape etc) [17, 3]. The level set methods of
Osher and Sethian [20, 28] offer a natural and numerically
robust implementation of such curve evolution equations.
Level sets have the advantage of being parameter indepen-
dent (i.e. they are implicit representation of the curve) and
can handle topological changes naturally.

We now briefly go over the level set representation of a
given curve evolution equation. LetC(p, τ) : S1× [0, θ) →
R2 be a family of curves satisfying the following evolution
equation:

−∇CEimage =
∂C

∂τ
= βN (1)

where,τ is an artificial time-marching parameter. The basic
idea of the level set approach is to embed the contour as the
level set of a graphΦ : R2 −→ R and then evolve the graph
so that this level set moves according to the prescribed flow.
In this manner, the level set may develop singularities and
change topology whileΦ itself remains smooth and main-
tains the form of a graph. Formulating the correct evolution
of Φ amounts to solving

∇Φ(C, τ) · ∂C

∂τ
+

∂Φ
∂τ

= 0 . (2)

so that the level set of interest maintains a constant value
as the graph,Φ evolves. Choosing the zero level set ofΦ
to defineC and choosingΦ to be negative insideC and
positive outsideC, allows us to writeN = −∇Φ/ ‖ ∇Φ ‖.
So the level set implementation of (1) becomes:

∂Φ
∂τ

= β ‖ ∇Φ ‖ (3)

Finally, given an initial curve, one must generate an initial
level set function. A well known scheme [28] is to use a
signed distance function.

3 The State Space Model

Let At denote the 6-dimensional affine parameter vector
(see equation 8) andµt denote the contour (represented as
the zero level set ofΦ) at time t. We propose to use the
affine parameters and the contour as the state, i.e.Xt =
[At, µt] and treat the image at timet as the observation, i.e.
Yt = Image(t). The prediction step forXt consists of:

1. predicting the local deformations in the shape of the
object

2. predicting the affine motion of the object.

The affine motion prediction in (2) is obtained from the state
dynamics forAt, which is given by a first or second or-
der (constant velocity or acceleration) autoregressive (AR)
model on the affine parameters (see Section 4.1). Since the
curve is infinite-dimensional, it is difficult to have a predic-
tion model for local shape deformation. Hence, we assume
that: prediction for local shape deformation at timet = lo-
cal shape deformation at timet−1. This can be realized by
doing a gradient descent on the image energyEimage (any
image dependent energy, for e.g. equation (9)) at timet−1:

C̃t = Ct−1 = fL
CE(µt−1, Yt−1). (4)

Thus, the prediction forXt depends onXt−1 =
[At−1, µt−1] and the observation att− 1, Yt−1. In equation
(4), fL

CE(µ, Y ) is given byL iterations of gradient descent:

µk = µk−1 − αk∇µEimage(µk−1, Y ), k = 1, 2, 3, .., L

with fL
CE(µ, Y ) = µL, µ0 = µ

The choice ofL depends on the particular PDE used for
doing curve evolution. In our experiments, we found that
L = 4 was a good choice. Ifµt−1 is evolved until con-
vergence, one would reach a local minimum of the energy
Eimage. But this is not desirable since the local minimum
would be independent of all starting contours in its domain
of attraction and would only depend on the observation,
Yt−1. Thus the state at timet would loose its dependence
on the state at timet− 1 and this may cause loss of track in
cases where the observation is bad. But ifµt−1 is evolved
only a fixed number of times, it will deviate the contour only
a little (in a direction which reduces the energyEimage as
fast as possible) so that particles with state closer to the true
state will have smaller energy than other particles and these
will get propagated during the resampling step.

Now, the probability of observationYt = Image(t) given
stateXt = [At, µt] can be defined as

p(Yt|Xt)
4
= e−Eimage(µt,Yt) (5)



4 The Algorithm

Based on the description above, the proposed algorithm
can be written as follows:

1. Prediction Step:
Perform L steps of curve evolution for each sample as
follows: 1

C̃
(i)
t = C

(i)
t−1 = fL

CE(µ(i)
t−1, Yt−1)

Generate samples{Ã(i)
t , µ̃

(i)
t }N

i=1 using:

Ã
(i)
t = fAR(A(i)

t−1, u
(i)
t−1)

µ̃t
(i) = Ã

(i)
t (C(i)

t−1)

Thus we have

π(At, µt|Y1:t−1) ≈
N∑

i=1

1
N

δ
Ã

(i)
t ,µ̃

(i)
t

(At, µt)

2. Update Step:

(a) Weight each sample by

w
(i)
t =

e−Eimage(µ̃
(i)
t ,Yt)

∑N
j=1 e−Eimage(µ̃

(j)
t ,Yt)

Thus we have

π(At, µt|Y1:t) ≈
N∑

i=1

w
(i)
t δ

Ã
(i)
t ,µ̃

(i)
t

(At, µt)

(b) Resample from the above distribution to generate
N particles{A(i)

t , µ
(i)
t } distributed according to

π(At, µt|Y1:t), i.e.

π(At, µt|Y1:t) ≈
N∑

i=1

1
N

δ
A

(i)
t ,µ

(i)
t

(At, µt)

3. Go back to the prediction step fort + 1.

Note : ScalingEimage by a constant factor will affect the
resampling step. This scaling factor will decide how much
one trusts the system model versus the observation model.

We discuss the details of the above algorithm in the fol-
lowing subsections2.

1To find the best contour at timet−1, find the MAP estimate, i.e., find
the particle with the maximum probability and evolveonly this contour
until Eimage is minimized or until a user defined criteria is satisfied. This
is the best estimate of the position and shape of the object at timet− 1.

2Note that the above algorithm differs from the standard particle filter
in that the prediction step is a function of the previous state and also the
previous observation.

Remark 1 Note that, one could include the curve evolution
equation in the update step once the observation at time t is
available. However, this will change the stateXt based on
the observationYt. Thus, the existing convergence results
[7] of the particle filtering estimate of the posteriorπN

t to
the true posteriorπt asN → ∞ cannot be applied. We are
working on studying how this modification might change
the convergence results, if at all.

4.1 The AR model

In the above algorithmfAR could be any suitable pre-
diction function which can model the dynamics of motion
of the moving object. Rather than conjuring up a model that
is merely plausible, one can learn the dynamics of motion
from a training set. This can be done using an autoregres-
sive (AR) model. Below, we describe the second-order AR
process in which the affine parameters at a given time de-
pend on two previous time-steps:

At+1−A = B1(At−A)+B2(At−1−S)+B0wt+1 (6)

whereAt is theNx dimensional affine parameter vector (8),
B1, B2, B0 areNx ×Nx matrices learneda priori, wt+1 is
a vector ofNx independent random N(0,1) variables andA
is the steady state mean of the model. We refer the inter-
ested reader to [1] for further details on how to learn these
parameter matrices and the advantages of using the second-
order model (AR-2) versus the first-order model (AR-1).

4.1.1 Learning Affine Motion

Many approaches [35, 18] have been reported in the litera-
ture for finding the affine parameters that relate one image
to the other. Most of these methods require a set of feature
points to be known before one can find the affine parame-
ters that relate them. In [22] the author proposes a method
which does not require feature points to be known, instead
only the source and target images are required. The affine
transformation that relates the curveC(t) andC(t − 1) is
given by:

C(x, y, t) = C(m1x+m2y+m5,m3x+m4y+m6, t−1)

where,mi are the affine parameters. In order to estimate
these parameters, the following quadratic error is to be min-
imized:

E(~m) =
∑

x,y∈ω

[C(x, y, t)−

C(m1x + m2y + m5,m3x + m4y + m6, t− 1)]2

which is linearized and then minimized to give

~m =

[ ∑
x,y∈ω

~d ~dT

]−1[ ∑
x,y∈ω

~d k

]
(7)



where the scalar k and the vectors~d , ~m are given as3:

k = Ct + xCx + yCy

~dT = (xCx yCx xCy yCy Cx Cy)

~m = (m1 m2 m3 m4 m5 m6)T (8)

Derivation details are available in [22]. Once the affine
parameter vector~m is known for the training set, the AR
model parameter matrices can be learned as given in [1].

4.2 The Model of Chan and Vese

Many methods [5, 38, 24, 31, 14] which incorporate
geometric and/or photometric (color, texture, intensity) in-
formation have been shown to segment images robustly in
presence of noise and clutter. In the prediction step above,
fCE could be any edge based or region based (or a com-
bination of both) curve evolution equation. In our numeri-
cal experiments we have used the Mumford-Shah functional
[17] as modelled by Chan and Vese [3] to obtain the curve
evolution equation, which we describe briefly. We seek to
minimize the following energy:

Eimage = Ecv(c1, c2, Φ) =
∫

Ω

(f − c1)2H(Φ)dx dy

+
∫

Ω

(f − c2)2(1−H(Φ)) dx dy

+ ν

∫

Ω

|∇H(Φ)|dx dy

(9)

wherec1 andc2 are defined as:

c1 =
∫

f(x, y)H(Φ)dx dy∫
H(Φ)dx dy

, c2 =
∫

f(x, y)(1−H(Φ))dx dy∫
(1−H(Φ))dx dy

H(Φ) is the Heaviside function defined as:

H(Φ) =

{
1 Φ ≥ 0 ,

0 else
(10)

f(x, y) is the image andΦ is the level set function as defined
in Section 2.2 before. The Euler-Lagrange equation for this
functional can be implemented by the following gradient
descent [3, 17]:

∂Φ
∂t

= δε(Φ)
[
ν div

( ∇Φ
|∇Φ|

)
− (f − c1)2 + (f − c2)2

]

(11)
where,

δε(s) =
ε

π(ε2 + s2)
3Note: the subscripts in this equation denote partial derivatives

4.3 Dealing with Multiple Objects

In principle, the Condensation filter [1] could be used for
tracking multiple objects. The posterior distribution will be
multi-modal with each mode corresponding to one object.
However, in practice it is very likely that a peak correspond-
ing to the dominant likelihood value will increasingly dom-
inate over all other peaks when the estimation progresses
over time. In other words, a dominant peak is established
if some objects obtain larger likelihood values more fre-
quently. So, if the posterior is propagated with fixed num-
ber of samples, eventually, all samples will be around the
dominant peak. This problem becomes more pronounced in
cases where the objects being tracked do not have similar
photometric or geometric properties. We deal with this is-
sue as given in [33] by first finding the clusters within the
state density to construct a Voronoi tessalation [25] and then
resampling within each Voronoi cell separately as follows:

1. Every step, build an importance function which re-
sults in equal number of samples being taken in each
Voronoi cell

2. Every N steps, rescale the weights in each cell so that
the peak weight is 1.

Other solutions proposed by [26, 29, 15] could also be
used in tackling this problem of sample impoverishment.

4.4 Coping with Occlusions

Many active contour models [14, 24, 6] which use shape
information have been reported in the literature. Prior shape
knowledge is necessary when dealing with occlusions. In
particular, in [38], the authors incorporate “shape energy”
in the curve evolution equation to deal with occlusions. Any
such energy term can be used in the proposed model to deal
with occlusions. In numerical experiments we have dealt
with this issue in a slightly different way by incorporating
the shape information in the update step, (see algorithm step
2) instead of the prediction step, i.e. we calculate the weight
for each particle using the following:

wi
t+1 = λ1

e−Ei
cv

∑N
j=1 e−Ej

cv

+ λ2(1−
Ei

dissimilarity∑N
j=1 Ej

dissimilarity

)

(12)
whereλ1 + λ2 = 1 andEdissimilarity is the dissimilarity
measured2(Φt,Φi) as given in [6] by,

d2(Φt, Φi) =
∫

Ω

(Φt − Φi)2
h(Φt) + h(Φi)

2
dx dy,

with h(Φ) =
H(Φ)∫

Ω
H(Φ) dx dy



whereΦt andΦi are the level set functions of a template
shape and the current contour shape respectively andH(Φ)
is the Heaviside function as defined before in (10). The
dissimilarity measure gives an estimate of how different any
two given shapes (in particular, their corresponding level
sets) are. So, higher values ofEdissimilarity indicate more
dissimilarity in shape. Using this strategy, particles which
are closer to the template shape are more likely to be chosen
than particles with “occluded shapes” (i.e., shapes which
include the occlusion).

5 Experiments

In this section we describe some experiments performed
to test the proposed tracking algorithm. Results of applying
the proposed method on three image sequences are given
below. The model of Chan and Vese [3], as described ear-
lier, was used for curve evolution. Level set implementation
was done using narrow band evolution [28]. Learning [1]
was performed on images without the background clutter,
i.e. on the outlines of the object.

5.1 Fish Sequence

In the fish video, the shape of the fish undergoes sud-
den deformation as the fish turns or gets partially occluded
(see Figure 3, Frames 167, 181). This local shape defor-
mation cannot be modelled using an affine motion model.
Hence, such motion is difficult to track using the standard
Condensation filter [1]. As can been seen in the images,
(Figure 3) the proposed method can robustly track nonrigid
deformations in the shape of the fish. Note that,no shape
information either in curve evolution or in the weighting
step was used in tracking this sequence, i.e. we did not use
the dissimilarity term specified in Section 4.4. For this test
sequence, an AR-1 model [1] was used for affine motion
prediction.

5.2 Car Sequence

In this sequence, the car is occluded as it passes through
the lamp post. It is unclear if the standard Condensation al-
gorithm will be able to track the car all the way, since the
shape of the car (including the shadow) undergoes a change
which is not affine. Notice that the shadow of the car moves
in a non-linear way from the side to the front of the car.
On the other hand, trying to track such a sequence using
geometric active contours (for example, (11)) without any
“shape energy” gives very poor results as shown in Figure
1. However, using the proposed method and a weighting
strategy as described in Section 4.4 the car can be success-
fully tracked (Figure 2). Note that we used equation (11) for

the curve evolution which does not contain any shape term.
A second-order autoregressive model was used forfAR.

5.3 Couple Sequence

The walking couple sequence demonstrates multiple ob-
ject tracking. In general, tracking such a sequence by the
standard Condensation method [1] can give erroneous re-
sults when the couple come very close to each other or touch
each other, since the measurements made for the person
on the right can be interpreted by the algorithm as coming
from the left. One solution has been proposed in [29]. Our
method naturally avoids this problem since it uses “region
based” energyEcv (9) and weighting as given in Section
4.4 to find the observation probabilities. To track multiple
objects, we used the method described in Section 4.3. Since
the number of frames in the video is less (about 22) no dy-
namical motion model was learnt. This video demonstrates
the fact that, the proposed algorithm can track robustly (see
Figure 4) even when the learnt model is completely absent.

6 Limitations and Future Work

In this paper, we proposed a particle filtering algorithm
for geometric active contours which can be used for track-
ing moving and deforming objects. The proposed method
can deal with partial occlusions and can track robustly even
in the absence of a learnt model.

The above framework has several limitations which we
intend to overcome in our future work. First, we have to
include some kind of shape information when we track ob-
jects which undergo major occlusions. This restricts our
ability to track highly deformable objects in such situations.
Secondly, the algorithm might perform poorly if the object
being tracked iscompletely occludedfor many frames.

Also, in our current framework the prediction step for the
contour is deterministic. We use this model because adding
noise to an infinite dimensional representation of the con-
tour is not easy. Nonetheless in [32], the authors have per-
formed PCA on a set of signed distance functions of train-
ing shapes to obtain principal directions of variation of the
signed distance function for a class of shapes. We can adopt
a similar idea and add noise in the principal variation direc-
tions. This approach can also provide a shape prior.
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