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Abstract

Understanding activities arising out of the interactions of a
configuration of moving objects is an important problem in
video understanding, with applications in surveillance and
monitoring, animation, medicine, etc. In this paper, we in-
troduce a novel method for activity modeling based on the
observation that that every activity has with it an associated
structure characterized by a non-rigid shape and a dynamic
model that characterizes the variations in the structure as
the activity unfolds. We propose two mathematical models
to characterize the non-rigid shape and its dynamics. In
our first approach, we propose to model an activity by the
polygonal shape formed by joining the locations of these
point masses at any time

�
, and its deformation over time.

This uses the statistical shape theory of Kendall. The second
approach models the trajectories of each separate class of
moving objects in 3D shape space, and thus can identify dif-
ferent kinds of activities. It is based on the factorization the-
orem for matrices, which has been used before in computer
vision for structure estimation. Deviations from the learned
normal shape for each activity is used to identify abnormal
ones. We demonstrate the applicability of our algorithms
using real-life video sequences in an airport surveillance
environment. We are able to identify the major activities
that take place in that setting and detect abnormal ones.

1 Introduction

Modeling and recognition of human activities using a video
sensor network poses many challenges. However, it suc-
cessful solution has numerous applications in video surveil-
lance, video retrieval and summarization, video-to-text syn-
thesis, video communications, biometrics, etc. Recognizing
activities is an extremely complicated task at which even
humans are often less than perfect. Most of the early work
on activity representation comes from the field of Artificial
Intelligence (AI) [1, 2]. The formalisms that have been em-
ployed include HMMs, logic programming and stochastic
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grammars [3, 4, 5, 6, 7, 8, 9, 10, 11]. Many uncertainty-
reasoning models have been actively pursued in the AI and
image understanding literature, including Belief networks
[12], Dempster-Shafer theory [13], and truth maintenance
systems (TMS) [14, 15, 16, 17, 18, 19]. Computer vision
based activity analysis algorithms have been proposed re-
cently for video surveillance applications. In [20], the au-
thors proposed building a tracking and monitoring system
using a “forest of sensors” distributed around the site of
interest. In [21], a method for recognizing events involv-
ing multiple objects using Bayesian inference has been pro-
posed. In spite of the existence of so many methods, there
is near unanimity in the vision community that a lot more
needs to be done in order to be able to recognize complex
activities from large amounts of video data.

We propose a novel approach to activity modeling using
the non-rigid shape of the configuration of moving points,
which can be separate point objects or different points on
the same object. Our model is based on the observation
that every activity has with it an associated structure char-
acterized by a non-rigid shape and a dynamic model that
characterizes the variations in the structure as the activity
unfolds. We propose two mathematical models for repre-
sent the shape and its dynamics.

� The first approach [22] is based on statistical shape the-
ory. The 2D or 3D shapes formed by the relative posi-
tions of entities participating in the activity being ob-
served are modeled using Kendalls shape theory. Vari-
ations in shape as the activity occurs are characterized
using a nonlinear dynamical model. An activity is rec-
ognized if it agrees with the learned parameters of the
shape and dynamics associated with that activity. Se-
quential Monte Carlo methods are used to estimate the
parameters of the shape model from the tracked points
in the video sequence.

� The second method [23], based on subspace analysis,
represents multiple activities in a video as a linear com-
bination of 3D basis shapes. The basis shapes model-
ing each activity are extracted using multi-object non-
rigid structure estimation. The structure and dynamical
properties of normal activities are learned a-priori and
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deviation from normal activities or recognition of the
modeled activities is done using the learned models.
The method, by virtue of its 3D representation, lends
itself to easy extension to the situation when multiple
cameras are looking at the same scene.

2 Justification for Shape-Dynamical
Activity Model

The basic idea this paper builds on is that many activities
have an associated structure and a dynamical model. Con-
sider, as an example, a dancer or figure skater, who is free to
move her hands and feet any way she likes. However, this
random movement does not constitute the activity of danc-
ing. For humans to perceive and appreciate the dance, the
different parts of the body have to move in a certain syn-
chronized manner. In mathematical terms, this is equivalent
to modeling the dance by the structure of the body of the
dancer and its dynamics. An analogous example exists in
the domain of video surveillance. Consider people getting
off a plane and walking to the terminal, where there is no
jet-bridge to constrain the path of the passengers. Every
person after disembarking, is free to move as he/she likes.
However, this does not constitute the activity of people get-
ting off a plane and heading to the terminal. The activity
here is comprised of people walking along a path that leads
to the terminal. Again, we see that the activity is defined by
a structure and the dynamics associated with the structure.
Using a shape-dynamical model is a higher level abstraction
of the individual trajectories and provides a method of ana-
lyzing all the points of interest together, thus modeling their
interactions in a very elegant way. In Figure 1, we show one
frame for both of the above example activities. Such a struc-
ture is present in a large number of activities, e.g. sitting,
walking, gymnastics, etc. and should be exploited for any
modeling or recognition algorithm. In this paper, we will
concentrate on the airport surveillance problem to demon-
strate our results. In future, we plan to build a shape-based
activity dictionary for modeling different kinds of activities.

3 Activity Recognition Using Statisti-
cal Shape Theory

As discussed in [22], we attempt to use Dryden and Mar-
dia’s statistical shape theory[24] ideas to model the shape
formed by the locations of a group of moving objects and
its deformations over time. We consider the example of
passengers getting off or boarding a plane in the airport
surveillance scenario (see Figure 1(b)). We consider the
locations of the passengers in every frame of the video se-
quence and resample the curve connecting the passenger lo-
cations at time

�
to represent it by a fixed number of points,

(a) (b)

Figure 1: Two examples of activities, (a) a dancer, (b) people
disembarking from an airplane. It is clear that for both of these
activities, there is an associated structure and it dynamics, which
defines the activity.

�
. The complex vector formed by these

�
points ( � and

� coordinate forming the real and imaginary parts) is con-
sidered. Certain pre-processing steps are carried out in or-
der to normalize the observation vector for scale and loca-
tion, as described in [24]. The resulting vector is referred
to as the shape for the activity at that time instant. Because
of the normalization, the space of all shapes is spherical.
The mean, computed over all the shapes at different time
instants, is learned. Each shape is projected onto the hyper-
plane, which is tangent to the shape space at the mean, in or-
der to obtain a set of tangent coordinates, represented as ��� .
The tangent coordinates lie in a

���	�
dimensional complex

space (one dimension is removed due to location normaliza-
tion, the other due to the projection), which is equivalent to���
���

dimensional real space. The mapping from the co-
ordinate positions to the tangent hyper-plane is non-linear.
The temporal evolution of the tangent projections is used to
classify between various activities. In Figure 2(a), we plot
the evaluation metric (see [22] for details) for the normal
and abnormal activities (an abnormal activity occurs when
a passenger deviates appreciably from the regular path fol-
lowed by others.).

4 Activity Recognition Using Sub-
space Analysis

Our second approach [23] to activity recognition uses a 3D
representation of the shape of the trajectory of each activ-
ity. In this case, not only are we able to recognize an ab-
normality, but are also able to verify each activity within a
known class of activities. We hypothesize that each activity
can be modeled by a basis shape corresponding to it. From
training videos of the various activities, these basis shapes
can be learned. The factorization theorem is used to com-
pute the basis shapes and the motion parameters associated
with them (see [23] for details). Considering the two activ-
ities of passengers deplaning or boarding and the luggage
cart arriving or leaving, the plot of the various values of the
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Figure 2: (a) Plots of the evaluation metric, based on Kendall’s
shape theory, for normal and abnormal activities. (b) Plot of the
projections of the various instances of the two activities onto the
basis shapes learned using the subspace analysis method.

projections onto the basis shapes, learned from the different
training examples, is shown in Figure 2(b), thus depicting
the clear demarcation between the two activities. Given a
test video sequence, the various activities can be identified,
and an abnormal one detected, by computing the projections
onto each of the basis shapes.

5 Conclusion
We have proposed two methods for representing activity in
low-resolution surveillance video using shape theory. The
idea of modeling activities using shape theory is based on
the premise that that every activity has with it an associated
structure characterized by a non-rigid shape and a dynamic
model that characterizes the variations in the structure as
the activity unfolds. In our first method, we model the dy-
namic configuration of objects by the shape formed by the
locations of these objects at every time instant and their de-
formations over time. We use Kendall’s statistical shape
theory to model the activity as a 2D shape, along with its
deformations. In the second method, we propose modeling
the trajectory of each different class of moving objects. It
represents each activity by a 3D basis shape and a set of per-
missible rotation matrices. The second method can be used
to identify between different kinds of activities, in addition
to detecting abnormalities.
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