4284

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 16, AUGUST 15, 2014

An Online Algorithm for Separating Sparse and
Low-Dimensional Signal Sequences From Their Sum

Han Guo, Chenlu Qiu, and Namrata Vaswani

Abstract—This paper designs and extensively evaluates an
online algorithm, called practical recursive projected compressive
sensing (Prac-ReProCS), for recovering a time sequence of sparse
vectors S; and a time sequence of dense vectors L; from their
sum, M¢ := S; + L;, when the L;’s lie in a slowly changing low-di-
mensional subspace of the full space. A key application where this
problem occurs is in real-time video layering where the goal is
to separate a video sequence into a slowly changing background
sequence and a sparse foreground sequence that consists of one
or more moving regions/objects on-the-fly. Prac-ReProCS is a
practical modification of its theoretical counterpart which was
analyzed in our recent work. Extension to the undersampled case
is also developed. Extensive experimental comparisons demon-
strating the advantage of the approach for both simulated and
real videos, over existing batch and recursive methods, are shown.

Index Terms—Online robust PCA, recursive sparse recovery,
large but structured noise, compressed sensing.

I. INTRODUCTION

HIS paper designs and evaluates a practical algorithm for
recovering a time sequence of sparse vectors Sy and a time
sequence of dense vectors L; from their sum, M; = S; +
L;, when the L;’s lie in a slowly changing low-dimensional
subspace of R™. The magnitude of the entries of L; could be
larger, roughly equal or smaller than that of the nonzero entries
of S;. The extension to the undersampled case, M; := AS; +
B L, is also developed. The above problem can be interpreted
as one of online/recursive sparse recovery from potentially large
but structured noise. In this case, S; is the quantity of interest
and L, is the potentially large but structured low-dimensional
noise. Alternatively it can be posed as a recursive/online robust
principal components analysis (PCA) problem. In this case L;,
or in fact, the subspace in which it lies, is the quantity of interest
while S; is the outlier.
A key application where the above problem occurs is in
video layering where the goal is to separate a slowly changing
background from moving foreground objects/regions [4], [5].

Manuscript received September 03, 2013; revised February 07, 2014; ac-
cepted May 20, 2014. Date of publication June 18, 2014; date of current version
July 18, 2014. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Martin Haardt. This work was par-
tially supported by NSF grants CCF-0917015, CCF-1117125 and I1S-1117509.
A portion of this work was presented at Allerton 2010, Allerton 2011, and
ICASSP 2014.

The authors are with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50010 USA (e-mail: hanguo@iastate.edu;
chenlu@iastate.edu; namrata@iastate.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2014.2331612

The foreground layer, e.g. moving people/objects, is of interest
in applications such as automatic video surveillance, tracking
moving objects, or video conferencing. The background se-
quence is of interest in applications such as background editing
(video editing applications). In most static camera videos, the
background images do not change much over time and hence
the background image sequence is well modeled as lying in
a fixed or slowly-changing low-dimensional subspace of R™
[5], [6]. Moreover the changes are typically global, e.g. due
to lighting variations, and hence modeling it as a dense image
sequence is valid too [5]. The foreground layer usually consists
of one or more moving objects/persons/regions that move in a
correlated fashion, i.e. it is a sparse image sequence that often
changes in a correlated fashion over time. Other applications
where the above problem occurs include solving the video
layering problem from compressive video measurements, e.g.
those acquired using a single-pixel camera; online detection of
brain activation patterns from full or undersampled functional
MRI (fMRI) sequences (the “active” part of the brain forms the
sparse image, while the rest of the brain which does not change
much over time forms the low-dimensional part); or sensor
networks based detection and tracking of abnormal events such
as forest fires or oil spills. The single pixel imaging and under-
sampled fMRI applications are examples of the compressive
case, M, = AS; + BL; with B = A.

Related Work: Most high dimensional data often approxi-
mately lie in a lower dimensional subspace. Principal compo-
nents’ analysis (PCA) is a widely used dimension reduction
technique that finds a small number of orthogonal basis vectors
(principal components), along which most of the variability of
the dataset lies. For a given dimension, , PCA finds the r-di-
mensional subspace that minimizes the mean squared error be-
tween data vectors and their projections into this subspace [7].
It is well known that PCA is very sensitive to outliers. Com-
puting the PCs in the presence of outliers is called robust PCA.
Solving the robust PCA problem recursively as more data comes
in is referred to as online or recursive robust PCA. “Outlier” is
a loosely defined term that usually refers to any corruption that
is not small compared to the true signal (or data vector) and that
occurs only occasionally. As suggested in [8], an outlier can be
nicely modeled as a sparse vector.

In the last few decades, there has been a large amount of work
on robust PCA, e.g. [4], [9]-[12], and recursive robust PCA
e.g. [13]-[15]. In most of these works, either the locations of
the missing/corrupted data points are assumed known [13] (not
a practical assumption); or they first detect the corrupted data
points and then replace their values using nearby values [14];
or weight each data point in proportion to its reliability (thus
soft-detecting and down-weighting the likely outliers) [4], [15];

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GUO et al.: SEPARATING SPARSE AND LOW-DIMENSIONAL SIGNAL SEQUENCES

or just remove the entire outlier vector [11], [12]. Detecting or
soft-detecting outliers (S;) as in [4], [14], [15] is easy when the
outlier magnitude is large, but not when it is of the same order
or smaller than that of the L;’s.

In a series of recent works [5], [16], a new and elegant solu-
tion to robust PCA called Principal Components’ Pursuit (PCP)
has been proposed, that does not require a two step outlier lo-
cation detection/correction process and also does not throw out
the entire vector. It redefines batch robust PCA as a problem
of separating a low rank matrix, £; := [Lq,.... L], from a
sparse matrix, S; := [S1,..., St], using the measurement ma-
trix, M, := [My, ..., M;] = £, + S;. Other recent works that
also study batch algorithms for recovering a sparse S; and a
low-rank £; from M, := £, + &; or from undersampled mea-
surements include [17]-[26]. It was shown in [5] that by solving
PCP:

1£i§1||£||* + A||S||1 subject to L+ & = M, 6))
one can recover £; and S; exactly, provided that (a) £; is
“dense”; (b) any element of the matrix S; is nonzero w.p. g,
and zero w.p. 1 — p, independent of all others (in particular, this
means that the support sets of the different S;’s are independent
over time); and (c) the rank of £, and the support size of S,
are small enough. Here || A« is the nuclear norm of a matrix
A (sum of singular values of A) while || A]|; is the #; norm of
A seen as a long vector.

Notice that most applications described above require an
online solution. A batch solution would need a long delay;
and would also be much slower and more memory-intensive
than a recursive solution. Moreover, the assumption that the
foreground support is independent over time is not usually
valid. To address these issues, in the conference versions of this
work [1], [2], we introduced a novel recursive solution called
Recursive Projected Compressive Sensing (ReProCS). In recent
work [27]-[29], we have obtained performance guarantees for
ReProCS. Under mild assumptions (denseness, slow enough
subspace change of I, and “some” support change at least
every h frames of S;), we showed that, with high probability
(w.h.p.), ReProCS can exactly recover the support set of S; at
all times; and the reconstruction errors of both S; and L; are
upper bounded by a time invariant and small value. The work
of [27], [28] contains a partial result while [29] is a complete
correctness result.

Contributions: The contributions of this work are as fol-
lows. (1) We design a practically usable modification of the
ReProCS algorithm studied in [27]-[29]. By “practically
usable”, we mean that (a) it requires fewer parameters and
we develop simple heuristics to set these parameters without
any model knowledge; (b) it exploits practically motivated
assumptions and we demonstrate that these assumptions are
valid for real video data. While denseness and gradual support
change are also used in earlier works—[5], [16] and [30]
respectively—slow subspace change is the key new (and valid)
assumption introduced in ReProCS. (2) We show via extensive
simulation and real video experiments that practical-ReProCS
is more robust to correlated support change of S; than PCP
and other existing work. Also, it is also able to recover small
magnitude sparse vectors significantly better than other existing
recursive as well as batch algorithms. (3) We also develop a

4285

compressive practical-ReProCS algorithm that can recover S;
from M,; = AS; + BL;. In this case A and B can be fat,
square or tall.

More Related Work: Other very recent work on recursive/
online robust PCA includes [31]-[35].

Some other related work includes work that uses structured
sparsity models, e.g. [36]. For our problem, if it is known that
the sparse vector consists of one or a few connected regions,
these ideas could be incorporated into our algorithm as well.
On the other hand, the advantage of the current approach that
only uses sparsity is that it works both for the case of a few
connected regions as well as for the case of multiple small sized
moving objects, e.g. see the airport video results at http://www.
ece.iastate.edu/~chenlu/ReProCS/Video ReProCS.htm.

Paper Organization: We give the precise problem definition
and assumptions in Section II. The practical ReProCS algorithm
is developed in Section III. The algorithm for the compressive
measurements’ case is developed in Section IV. In Section V,
we demonstrate using real videos that the key assumptions used
by our algorithm are true in practice. Experimental comparisons
on simulated and real data are shown in Section VI. Conclusions
and future work are discussed in Section VII.

A. Notation

ForasetT C {1,2,---n}, we use |T| to denote its cardi-
nality; and we use T to denote its complement, i.e. T := {i €
{1,2,...n} : i ¢ T}. The symbols U, N, \ denote set union set
intersection and set difference respectively (recall 71 \ T :
11 NT%). For a vector v, v; denotes the ith entry of v and vr
denotes a vector consisting of the entries of v indexed by 7'. We
use ||v||,, to denote the £, norm of v. The support of v, supp(v),
is the set of indices at which v is nonzero, supp(v) := {i : v; #
0}. We say that v is s-sparse if [supp(v)| < s.
For a matrix B, B’ denotes its transpose, and BT denotes
its pseudo-inverse. For a matrix with linearly independent
columns, BT = (B'B) ' B’. The notation [.] denotes an empty
matrix. We use I to denote an identity matrix. For an m X n
matrix B and an index set T C {1,2,...n}, Br is the sub-ma-
trix of B containing columns with indices in the set T'. Notice
that By = BIp. We use B \ Br to denote By.. Given another
matrix Bs of size m X ng, [B Bs] constructs a new matrix by
concatenating matrices B and B> in horizontal direction. Thus,
[(B\ Br) Bs] = [Br- Ba]. We use the notation B SEP sy
to denote the singular value decomposition (SVD) of I3 with
the diagonal entries of > being arranged in non-decreasing
order.
The interval notation [¢1, 2] := {#1,41 + 1,- -, {2} and sim-
ilarly the matrix [Ls, Ly,] := [Le,, Ly 41, -+, Liy
Definition 1.1: The s-restricted isometry constant (RIC) [37],
by, for an n x m matrix ¥ is the smallest real number satisfying
(1 —6,)||z)3 < ||\I/T.LH§ < (1 + &)||lz|3 for all sets T with
|T'| < s and all real vectors x of length |T|.
Definition 1.2: For a matrix M,
 range(M) denotes the subspace spanned by the columns
of M.

e M is a basis matrix if M'M = 1.

 The notation @ = basis(range(M)), or Q@ = basis(M)
for short, means that () is a basis matrix for range(M) i.e.
Q satisfies Q) = I and range(Q) = range(M).

4286

Definition 1.3:

» The b% left singular values’ set of a matrix M is the
smallest set of indices of its singular values that contains
at least b% of the total singular values’ energy. In other
words, if M SYD U YV, it is the smallest set T" such that
Yier(Mis = 155 Lo (X)),

* The corresponding matrix of left singular vectors, Uz, is
referred to as the 6% left singular vectors’ matrix.

« The notation [Q),] = approx—basis(M, b%) means that
() is the b% left singular vectors’ matrix for M and ¥ is the
diagonal matrix with diagonal entries equal to the b% left
singular values’ set.

 The notation (= approx — busis(M,r) means that @
contains the left singular vectors of M corresponding to
its r largest singular values. This also sometimes referred
to as: () contains the r top singular vectors of M.

II. PROBLEM DEFINITION AND ASSUMPTIONS

The measurement vector at time ¢, My, is an n dimensional
vector which can be decomposed as

]\/[t = St + Lt~ (2)
Let 7; denote the support set of Sy, i.e.,

Si); # 0}

We assume that S; and L. satisfy the assumptions given below
in the next three subsections. Suppose that an initial training se-
quence which does not contain the sparse components is avail-
able, i.e. we are given Mypain = [Mi;1 < & < lipain) With
M; = L,. This is used to get an initial estimate of the subspace
in which the L,’s lie.! At each £ > #,iy, the goal is to recur-
sively estimate 5; and Ly and the subspace in which L lies. By

“recursively” we mean: use St 1, Lt 1 and the previous sub-
space estimate to estimate S; and L.

The magnitude of the entries of Z; may be small, of the same
order, or large compared to that of the nonzero entries of S;.
In applications where 5 is the signal of interest, the case when
| L+||2 is of the same order or larger than ||.S¢||2 is the difficult
case.

A key application where the above problem occurs is in sepa-
rating a video sequence into background and foreground layers.
Let Im, denote the image at time Z, F}; denote the foreground
image at £ and B; the background image at , all arranged as
1-D vectors. Then, the image sequence satisfies

(F),
(), = { (Bt))i

T; :=supp(S:) = {i : (

ifi € supp(F})
ifi & supp(F}). (3)

In fMRI, F; is the sparse active region image while 13; is the
background brain image. In both cases, it is fair to assume that
an initial background-only training sequence is available. For
video this means there are no moving objects/regions in the fore-
ground. For fMRI, this means some frames are captured without
providing any stimulus to the subject.

f an initial sequence without .S, ’s is not available, one can use a batch robust
PCA algorithm to get the initial subspace estimate as long as the initial sequence
satisfies its required assumptions.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 16, AUGUST 15, 2014

Let 1+ denote the empirical mean of the training background
images. Ifwelet Ly := By—p, My := Imy—p, Ty := supp(F),
and

(St)g, == (Fr = Bi)g,. (St)g; :=0,
then, clearly, M; = S; + L;. Once we get the estimates Lf, Sf,
we can also recover the foreground and background as
B, = IA/t+“’a Ty = Sllpp(gt)v (ﬁt)

= (Tmy)4, (Ft) =

A. Slowly Changing Low-Dimensional Subspace Change

We assume that for = large enough, any 7 length sub-
sequence of the L;’s lies in a subspace of R™ of di-
mension less than min(7,n), and usually much less
than min(7,n). In other words, for 7 large enough,
maxy rank([Ly 41, ... L;]) < min(r, n). Also, this subspace
is either fixed or changes slowly over time.

One way to model this is as follows [27]. Let L; = Pay
where F; is an n X vy basis matrix with ; < n that is piecewise
constant with time, i.e. P, = Py forallt € [t;,t;,1) and F(;,
changes as

Py = [(Py-nBi \ Piyoia) » gy new]
where Py new and Py q14 are basis matrices of size 7 X ¢ new
and n X ¢; q1q respectively with P (J) e P(-1 =20 and R, is

a rotation matrix. Moreover, (a) 0 < lel(ci,new — Ciold) <
Cdif (b) 0 S Cyj.new S Cmax < T0; (C) (tj+1 - t_]) > ro + caits
and (d) there are a total of .J change times with J < (n — ¢ —
Cdif)/cmax-

Clearly, (a) implies that 7, < 79 + cqif = Tmax and (d)
implies that ryax + Jemax <€ n. This, along with (b) and
(c), helps to ensure that for any 7 > Tmax + Cmax, 707 1=
maxgrank([Ls 711, ... L¢]) < min(7, n),and for 7 > ry.x+
Cax> 70T <€ min(T, n)2.

By slow subspace change, we mean that: for t € [¢;,4;41),
(I = P(;—1)P(;_1y)Le|[2 is initially small and increases grad-
ually. In particﬂlar, we assume that, for ¢ € [t;,¢; + a),

(i)

and increases gradually after ¢; + «. One model for “increases
gradually” is as given in [27, Sec III-B]. Nothing in this paper
requires the specific model and hence we do not repeat it here.

< Tnew K Hlin(HLt”27 ”SfHQ)

2To address a reviewer comment, we explain this in detail here. Notice
first that (c) implies that (#;,1 — ;) > Also, (b) implies that
rank([Ltl o wak*l]) < Tmax + (kK — 1)cmax. First consider the case
when both + — 7 + 1 and lie in [#;.#;41 — 1]. In this case, 7" < Pmax
for any 7. Thus forany t;1; —t; > 7 3> Tuax, "7 <€ min(7, n). Next
consider the case whent — 741 € [t;,%;_1 — 1] and ¢ € [t;41.%;42 —1]. In
this case, 1" < T'max + Cmax. Thus, forany t; 42 —#; > 7 3> 'max + Cmax,
r*™ & min(r, n). Finally consider the case whent — 7 + 1 € [t;, t;41 — 1]
and t € [tj+;c+1,tj+k+2 - 1] for a0 < k < J - 1. In thiS
case, T can be rewritten as T = (thrIchl — tj41) + 1 + 72 with
T = Tj+l —_ (t - 7 + 1) and Te 1= t — (fj+k+1 bl 1) Clearly,
r*7 < (Tmax + (A — Demax) + min(71, max)Fmin(7, ¢max) <
Kkrmax 4+ min(7y, emax)+min(m, emax) € (fj40-2 — tir1) +
min(7i. emax)+ mMin(7o, cmax) < (Fjpeqe — tjp1) + 71+ 72 = T
Moreover, 77 < max + (K + 1)max < Pmax + JCmax <€ 1. Thus, in this
case again for any 7, r**7 & min(7,n).

T max-

GUO et al.: SEPARATING SPARSE AND LOW-DIMENSIONAL SIGNAL SEQUENCES

The above piecewise constant subspace change model is a
simplified model for what typically happens in practice. In most
cases, P; changes a little at each ¢ in such a way that the low-
dimensional assumption approximately holds. If we try to model
this, it would result in a nonstationary model that is difficult to
precisely define or to verify (it would require multiple video
sequences of the same type to verify). 3

Since background images typically change only a little over
time (except in case of a camera viewpoint change or a scene
change), it is valid to model the mean-subtracted background
image sequence as lying in a slowly changing low-dimensional
subspace. We verify this assumption in Section V.

B. Denseness

To state the denseness assumption, we first need to define the
denseness coefficient. This is a simplification of the one intro-
duced in our earlier work [27].

Definition 2.1 (Denseness Coefficient): For a matrix or a
vector B, define

ks(B) = ks (range(B)) 1= ‘1%1‘a<x HIT’basis(B)H2 4

where ||.||2 is the vector or matrix 2-norm. Recall that basis(3)
is short for basis(range(B)). Similarly xs(B) is short for
rs(range(B)). Notice that r4(B) is a property of the subspace
range(3). Note also that (3} is a non-decreasing function
of s and of rank(B).

We assume that the subspace spanned by the L;’s is dense,
ie.

ioe (Py) = s ([Bey - Ly]) < e

for a x. significantly smaller than one. Moreover, a sim-
ilar assumption holds for P(j),new with a tighter bound:
KJQS(P(‘]')’HSW) < Kpew < Kx. This assumption is similar
to one of the denseness assumptions used in [5], [38]. In
[5], a bound is assumed on %3 (U7) and %1(V) where U and
V' are the matrices containing the left and right singular
vectors of the entire matrix, [L1, La...L¢]; and a tighter
bound is assumed on max; ; |(UV');;|. In our notation,
U= [}j((J)vlj(l),new1 s P(J),new}-

The following lemma, proved in [27], relates the RIC of I —
PP’ when P is a basis matrix, to the denseness coefficient for
range(P). Notice that I — PP’ is an n x n matrix that has rank
(n — rank(P)) and so it cannot be inverted.

Lemma 2.2: For a basis matrix, P,

64(I — PP") = ky(P)>.

Thus, the denseness assumption implies that the RIC of the ma-
trix (I — P(.j)P(’j)) is small. Using any of the RIC based sparse
recovery results, e.g. [39], this ensures that for ¢ € [¢;,%;41),
s-sparse vectors S; are recoverable from (1 — P(j)P(’j))Mt =
(I — P(;)F;))S: by 1 minimization.

Very often, the background images primarily change due to
lighting changes (in case of indoor sequences) or due to moving
waters or moving leaves (in case of many outdoor sequences)
[5], [27]. All of these result in global changes and hence it is

3With letting 2+ be a zero mean random variable with a covariance matrix that
is constant for sub-intervals within [¢;,¢;41), the above model is a piecewise
wide sense stationary approximation to the nonstationary model.

4287

valid to assume that the subspace spanned by the background
image sequences is dense.

C. Small Support Size, Some Support Change, Small Support
Change Assumption on S;

Let the sets of support additions and removals be
Ay =T \Ti_q, Acyp =T 1\ T}
(1) We assume that
ITy| + min (|73, |Ay] + [Acy]) < 54 sa where sa < s.

In particular, this implies that we either need | 13| < s and |A; |+
[Ae | < sa (S; is sparse with support size at most s, and its
support changes slowly) or, in cases when the change |A;| +
|A, 4| is large, we need |T;| < 0.5(s+s4) (need a tighter bound
on the support size).

(2) We also assume that there is some support change every
few frames, i.e. at least once every / frames, |A¢| > $A min.
Practically, this is needed to ensure that at least some of the
background behind the foreground is visible so that the changes
to the background subspace can be estimated.

In the video application, foreground images typically con-
sist of one or more moving objects/people/regions and hence
are sparse. Also, typically the objects are not static, i.e. there
is some support change at least every few frames. On the other
hand, since the objects usually do not move very fast, slow sup-
port change is also valid most of the time. The time when the
support change is almost comparable to the support size is usu-
ally when the object is entering or leaving the image, but these
are the exactly the times when the object’s support size is itself
small (being smaller than 0.5(s+ s,) is a valid). We show some
verification of these assumptions in Section V.

III. PRAC-REPROCS: PRACTICAL REPROCS

We first develop a practical algorithm based on the basic Re-
ProCS idea from our earlier work [27]. Then we discuss how
the sparse recovery and support estimation steps can be im-
proved. The complete algorithm is summarized in Algorithm
1. Finally we discuss an alternate subspace update procedure in
Section III-D.

A. Basic Algorithm

We use 5}, Tt, ﬁt to denote estimates of S}, its support, 7%,
and L, respectively; and we use F; to denote the basis matrix
for the estimated subspace of L, at time ¢. Also, let

o, = (I - Pt,lﬁgfl) .)

Given the initial training sequence which does not con-
tain the sparse components, Mivain = [L1,L2,... Ly,
we compute Py as an approximate basis for My, i.e.
Py = approx — basis(M¢rain, 0%). Let 7 rank(ﬁo). We
need to compute an approximate basis because for real data,
the L;’s are only approximately low-dimensional. We use
b% 95% or b% 99.99% depending on whether the
low-rank part is approximately low-rank or almost exactly
low-rank. After this, at each time £, ReProCS involves 4 steps:

4288

(a) Perpendicular Projection; (b) Sparse Recovery (recover 7;
and 5;); (c) Recover L;; (d) Subspace Update (update F;).

Perpendicular Projection. In the first step, at time £, we
project the measurement vector, M, into the space orthogonal
to range(Py_1) to get the projected measurement vector,

yp = Py M. (6)

Sparse Recovery (Recover 7; and S;). With the above pro-
jection, ¥; can be rewritten as

ye = ®,.8; + By where 3, := &, L. @)

Because of the slow subspace change assumption, projecting
orthogonal to range(F;_1) nullifies most of the contribution of
L; and hence §; can be interpreted as small “noise”. We explain
this in detail in Appendix A.

Thus, the problem of recovering S; from y; becomes a tradi-
tional noisy sparse recovery/CS problem. Notice that, since the
n X n projection matrix, ¢, has rank n — rank(£;_1), therefore
7+ has only this many “effective” measurements, even though its
length is n. To recover S, from y;, one can use ¢; minimization
[39], [40], or any of the greedy or iterative thresholding algo-
rithms from literature. In this work we use £; minimization: we
solve

min, ||#||1 s.t. |lye — @, <€ ®)
and denote its solution by S't:cs. By the denseness assumption,
F;_4 is dense. Since Pt,l approximates it, this is true for f’t,l
as well [27, Lemma 6.6]. Thus, by Lemma 2.2,the RIC of ®,
is small enough. Using [39, Theorem 1], this and the fact that
[is small ensures that .S; can be accurately recovered from ;.
The constraint £ used in the minimization should equal || 3¢ ||, or
its upper bound. Since /3; is unknown we set { = || [;’t||2 where
By = Oy Ly 4. R

By thresholding on S . to get an estimate of its support fol-
lowed by computing a least squares (LS) estimate of .Sy on the
estimated support and setting it to zero everywhere else, we
can get a more accurate estimate, Sy, as suggested in [41]. We
discuss better support estimation and its parameter setting in
Section III-C. R X

Recover L. The estimate S, is used to estimate L; as L; =
M, — S;. Thus, if S; is recoverefi accurately, so will L;.

Subspace Update (Update P;). Within a short delay after
every subspace change time, one needs to update the subspace
estimate, F;. To do this in a provably reliable fashion, we in-
troduced the projection PCA (p-PCA) algorithm in [27]. The
algorithm studied there used knowledge of the subspace change
times 7; and of the number of new directions ¢; nevw. Let P(-1
denote the final estimate of a basis for the span of P; _1y. Itis
assumed that the delay between change times is large enough so
that P; 1y is an accurate estimate. At¢ = ¢;+a—1, p-PCA gets
the first estimate of the new directions, P@»)’neml , by projecting
the last v Ly’s perpendicular to]5(]-,1) followed by computing
the ¢; new top left singular vectors of the projected data matrix. It
then updates the subspace estimate as b= []5(1) P(j),new,l]'
The same procedure is repeated at every ¢ = ¢; + ko — 1
for k = 2,3,... K and each time we update the subspace as
Py = [P(j_1y, P(j) new,x)- Here K is chosen so that the subspace
estimation error decays down to a small enough value within X
p-PCA steps.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 16, AUGUST 15, 2014

In this paper, we design a practical version of p-PCA which
does not need knowledge of ¢; or ¢; yew. This is summarized
in Algorithm 1. The key idea is as follows. We let ,,,;,, be the
7th largest singular value of the training dataset. This serves as
the noise threshold for approximately low rank data. We split
projection PCA into two phases: “detect subspace change” and
“p-PCA”. We are in the detect phase when the previous sub-
space has been accurately estimated. Denote the basis matrix for
this subspace by F(;_1). We detect the subspace change as fol-
lows. Every « frames, we project the last o Lys perpendicular
to P(;_1y and compute the SVD of the resulting matrix. If there
are any singular values above 7,;,,, this means that the subspace
has changed. At this point, we enter the “p-PCA” phase. In this
phase, we repeat the K p-PCA steps described above with the
following change: we estimate ¢; yew as the number of singular
values above Gpin, but clipped at [« /3] (i.e. if the number is
more than [« /3] then we clip it to [«;/3]). We stop either when
the stopping criterion given in step 4biv is achieved (k > Ky,
and the projection of L; along Pjevw x is not too different from
that along Pnew.k;) or when k& > K ax.

For the above algorithm, with theoretically motivated choices
of algorithm parameters, under the assumptions from Section II,
it is possible to show that, w.h.p., the support of S; is exactly
recovered, the subspace of L;’s is accurately recovered within a
finite delay of the change time. We provide a brief overview of
the proof from [27], [29] in Appendix A that helps explain why
the above approach works.

Remark 3.1: The p-PCA algorithm only allows addition of
new directions. If the goal is to estimate the span of [L1, . . . L¢],
then this is what is needed. If the goal is sparse recovery, then
one can get a smaller rank estimate of P, by also including a step
to delete the span of the removed directions, £} ,14. This will
result in more “effective” measurements available for the sparse
recovery step and hence possibly in improved performance. The
simplest way to do this is to do one simple PCA step every some
frames. In our experiments, this did not help much though. A
provably accurate solution is described in [27, Sec VII].

Remark 3.2: The p-PCA algorithm works on small batches
of o frames. This can be made fully recursive if we compute
the SVD of ({ — P(j_l)P{j_l))[Lt,aH, ...Ly] using the
incremental SVD (inc-SVD) procedure summarized in Al-
gorithm 2 [13] for one frame at a time. As explained in [13]
and references therein, we can get the left singular vectors
and singular values of any matrix M = [Mi, Mo, ... M,]
recursively by starting with P = [],¥ = [] and calling
[P, 3] = inc — SVD(P, 3, M;) for every column i or for short
batches of columns of size of &/ k. Since we use o« = 20 which
is a small value, the use of incremental SVD does not speed
up the algorithm in practice and hence we do not report results
using it.

B. Exploiting Slow Support Change When Valid

In [27], [28], we always used #; minimization followed
by thresholding and LS for sparse recovery. However if slow
support change holds, one can replace simple ¢; minimization
by modified-CS [30] which requires fewer measurements
for exact/accurate recovery as long as the previous support
estimate, 71;_1, is an accurate enoggh predictor of the current
support, 73. In our application, 7;_; is likely to contain a

GUO et al.: SEPARATING SPARSE AND LOW-DIMENSIONAL SIGNAL SEQUENCES

Algorithm 1 Practical ReProCS-pPCA

Input: M;; Output: Tt 5‘5, I:t; Parameters: ¢, b, &, Kpin, Kmax. We used a = 20, Kjyin = 3, Kimax = 10 in all experiments
(o needs to only be large compared to ¢pax); We used b = 95 for approximately low-rank data (all real videos and the lake
video with simulated foreground) and used b = 99.99 for almost exactly low rank data (simulated data); we used ¢ = 1
whenever ||S;||2 was of the same order or larger than ||L;||2 (all real videos and the lake video) and used ¢ = 0.25 when it

4289

was much smaller (simulated data with small magnitude S;).

Initialization

o [Py, 3] approx- ba51s(\/—[]\[1 - My,..],0%).

o Set 7+ rank(Pg) Fmin + (Zo)r #)> to = tuain, flag = detect

« Initialize Py, < Py and T} « [].
For ¢ > tain do

1) Perpendicular Projection: compute y; < ®;M,; with &, [— 15,,,113[,1

2) Sparse Recovery (Recover Sy and T})

. |T,,20T,,1\
@) 1f T2l <05

i) Compute S.cs as the solution of (8) with &= ||<I>tﬁt,1|\2.

i) T, « Thresh(S}_CS,w
Else

) with w =¢

i) Compute S‘Ms as the solution of (9) with T'=T}_1, \ =

|[M¢]|?/n. Here T < Thresh(z,w) means that 7' = {i :

()] = w}.

mhf,\T’ =, € = ||y Lyylo-

ii) Ii,dd — Prune(é’hcs, lA.4|T,,_1 |). Here T < Prune(x, k) returns indices of the k largest magnitude elements of z.
iii) Stada = LS(ys, ¢, Tuaa). Here & < LS(y, A, T') means that &7 = (A7’ Ap)~'Ar'y and &pe = 0.

iv) T} < Thresh(S; a4q, w) With w = ¢
b) S; + LS(y,, @1, 1))
3) EstimaleAL,‘: Ii,, «— M; — 5,
4) Update P;: projection PCA

[[Mi][* /.

a) If flag = detect and mod(f —t; +1,a) = 0, (here mod(t,a) is the remainder when ¢ is divided by @)

i) compute the SVD of \/_

(I = PGy By Le- Ml,...i

+] and check if any singular values are above Gpin

ii) if the above number is more than zero then set flag <— pPCA, increment j < j + 1, set fj —1t—a+1, reset

k+1
ElsePtePt 1.
b) If flag = pPCA and mOd(t*t]‘Fl a) =0,
i

=

7

compute the SVD of (I — P] 1P(J 1))[Lt s .ﬁt],

ii) let P] new.k retain all its left singular vectors with singular values above i, or all a/3 top left singular vectors

whichever is smaller,

iii) update P~ [P(J 1) P new k] increment k < k + 1

. W,z — PIV\I
iv) If k > Ko and 132 a1 (Pinew,i=1 P} ew,i—1

—Pjnew.i P VL2

J.new, i

<001 fori=k—2k—1,k;or k= Kpax,

HZ, a+tl Pj new,i— 1P new,i— 1LfH2

then K < k, Pj) — [P(J 1 P] new, i) and reset flag < detect.

Else Pt — PL_].

significant number of extras and in this case, a better idea is to
solve the following weighted £, problem [42], [43]

(Dt$||2 <6 T = thl)

ming A|zp ||, +||@re | 5.t ||yr —
with A < 1 (modified-CS solves the above with A = 0). Denote
its solution by S; ... One way to pick A is to let it be proportional
to the estimate of the percentage of extras in Ty 1. If slow sup-
port change does not hold, the previous support estimate is not
a good predictor of the current support. In this case, doing the
above is a bad idea and one should instead solve simple ¢4, i.e.
solve (9) with A = 1. As explained in [43], if the support esti-
mate contains at least 50% correct entries, then weighted ¢ is

better than simple £;. We use the above criteria with true values
|7 _2nTy_1|
B 0.5

(9) with A = 'T‘*T\iT'*‘ else we solve it with A = 1.
t—1

replaced by estimates. Thus, if , then we solve

C. Improved Support Estimation

A simple way to estimate the support is by thresholding the
solution of (9). This can be improved by using the Add-LS-Del
procedure for support and signal value estimation [30]. We pro-
ceed as follows. First we compute the set T ,4q by thresholding
on S},cs in order to retain its &k largest magnitude entries. We
then compute a LS estimate of S; on Tt,add while setting it to

zero everywhere else. As explained earlier, because of the LS
step, S’; add is a less biased estimate of S; than St cs. We let
k=1 4|Tt_1\ to allow for a small increase in the support size
from ¢ — 1 to £. A larger value of & also makes it more likely
that elements of the set (73 \ 7; _1) are detected into the support
estimate.4 X

The final estimate of the support, 7%, is obtained by thresh-
olding on S¢ .44 using a threshold w. If w is appropriately
chosen, this step helps to delete some of the extra elements
from Tddd and this ensures that the size of Tt does not keep
increasing (unless the object’s size is increasing). An LS
estimate computed on 7; gives us the final estimate of S,
ie. Sy = LS(y:, A, T;). We use w V[Me]|2/n except
in situations where ||S¢|| <« ||L¢]—in this case we use
w = 0.254/||M¢||?/n. An alternate approach is to let w be pro-
portional to the noise magnitude seen by the £; step, i.e. to let
w = ¢||8|| ., however this approach required different values
of ¢ for different experiments (it is not possible to specify one
g that works for all experiments).

The complete algorithm with all the above steps is summa-
rized in Algorithm 1.

“Due to the larger weight on the || (4 D || term as compared to that on the
t— 1
=, 1) ||1 term, the solution of (9) is biased towards zero on 77, and thus

the solution values along (7 \ T,_ 1) are smaller than the true ones.

4290

Algorithm 2: [P,] = inc — SVD(P, %, D)

1) set D proj «— P'Dand D, « (I — PP’)D
2) compute QR decomposition of D ,i.e. D ¢ LK (here
J is a basis matrix and K is an ujper trlangular matrix)

3) compute the SVD: {(E D| proj D psy

4) update P — [P J]P and ¥ — %

Note: As explained in [13], due to numerical errors, step

4 done too often can eventually result in P no longer
being a basis matrix. This typically occurs when one tries
to use inc-SVD at every time ¢, i.e. when D is a column
vector. This can be addressed using the modified Gram
Schmidt re-orthonormalization procedure whenever loss of
orthogonality is detected [13].

D. Simplifying Subspace Update: Simple Recursive PCA

Even the practical version of p-PCA needs to set K, and
K ax besides also setting b and «. Thus, we also experiment
with using PCA to replace p-PCA (it is difficult to prove a
performance guarantee with PCA but that does not necessarily
mean that the algorithm itself will not work). The simplest
way to do this is to compute the top 7 left singular vectors of
[L1, Ly, ... Ly] cither at each time ¢ or every a frames. While
this is 51mple, its complexity will keep increasing with time ¢
which is not desirable. Even if we use the last d frames instead
of all past frames, d will still need to be large compared to
7 to get an accurate estimate. To address this issue, we can
use the recursive PCA (incremental SVD) algorithm given in
Algorithm 2. We give the complete algorithm that uses this and
a rank 7 truncation step every d frames (motivated by [13]) in
Algorithm 3.

Algorithm 3: Practical ReProCS-Recursive-PCA

Input: M;; Output: 73, S;, L;; Parameters: ¢, b, «r, set
« = 20 in all experiments, set ¢, b as explained in Algorithm 1.

Initialization: [Py, 3o] «—
approx — basis([My, ... My,], b%),
T IdIlk(Po) d — 37“ initialize mep — B, mep — Y,
P(ttrmn) — P[] and Tf — [] For it > tnam do
1) Perpendicular Projection: do as in Algorithm 1.
2) Sparse Recovery: do as in Algorithm 1.
3) Estimate L;: do as in Algorithm 1.
4) Update P;: recursive PCA
a) Ifmod@‘ ttrain, @) = 0,
1) [Ptmp Zitmp] — R
inc — SVD(Ptmp Efmp [Lf atls- L))
where inc-SVD is given in Algorlthm 2.
11) A-Pt — A(Ptmp)l:f
Else P, — P,_1.
b) If modA(t — ttrain, d)y =0,

1) Ponp < (Pomp)y.; and Xpp — (Zt’mp)lzf,lﬁ'

IV. COMPRESSIVE MEASUREMENTS: RECOVERING 5}

Consider the problem of recovering S; from
Mt = AST + BLt

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 16, AUGUST 15, 2014

when A and B are m X n and m X no matrices, S; is an n length
vector and L; is an ny length vector. In general /m can be larger,
equal or smaller than n or no. In the compressive measurements’
case, m < n. To specify the assumptions needed in this case, we
need to define the basis matrix for range(B F;)) and we need
to define a generalization of the denseness coefficient.

Definition 4.1: Let Q; := basis(BF;)) and let Q; new =
basis((I — Q; 1Q%_1)BP).

Definition 4.2: For a matrix or a vector M, define

ks, A(M) = g 4 (range(M)) := max || Ar'basis(M)]|,

(10)
where ||.||2 is the vector or matrix 2-norm. This quantifies the
incoherence between the subspace spanned by any set of s
columns of A and the range of M.

We assume the following.

1) L; and S; satisfy the assumptions of Section 11-A, II-C.

2) The matrix A satisfies the restricted isometry property [39],
ie. 8:(A4) < b, < 1.

3) The denseness assumption is replaced by: xas 4(Q;) <
s K26 A(Q) new) < Fuew < Ky for a k., that is small
compared to one. Notice that this depends on the L;’s and
on the matrices A and B.

Assume that we are given an initial training sequence that
satisfies M; = BL; fort = 1,2,...%ain. The goal is to re-
cover S; at each time ¢. It is not possible to recover L; un-
less I3 is time-varying (this case is studied in [44]). In many
imaging applications, e.g. undersampled fMRI or single-pixel
video imaging, B = A (B = A is a partial Fourier matrix for
MRI and is a random Gaussian or Rademacher matrix for single-
pixel imaging). On the other hand, if L; is large but low-dimen-
sional sensor noise, then B = I (identity matrix), while A is the
measurement matrix.

Let L; := BL,. It is easy to see that if L; lies in a slowly
changing low-dimensional subspace, the same is also true for
the sequence Lt Consider the problem of recovering S; from
M, = ASf+Lf when an initial training sequence M; := Lf for
t =1,2,.. . lain is available. Using this sequence, it is possible
to estimate its approximate basis (o as explained earlier. If we
then project M; into the subspace orthogonal to range(()), the
resulting vector y; := $, M, satisfies

Y = (PLA)S: + B

where 3; = ®,BL,; is small noise for the same reasons ex-
plained earlier. Thus, one can still recover S; from y; by ¢; or
weighted £; minimization followed by support recovery and LS.

Then, f/t gets recovered as IN/t — M, — AS} and this is used for
updating its subspace estimate. We summarize the resulting al-
gorithm in Algorithm 4. This is being analyzed in ongoing work
[45].

The following lemma explains why some of the extra as-
sumptions are needed for this case.

Lemma 4.3: [45] For a basis matrix, Q,

85 (I = QQNA) < ks a(Q)? +64(A)

Using the above lemma with) = ();, it is clear that incoher-
ence of (J; w.r.t. any set of 25 columns of A along with RIP
of A ensures that any s sparse vector = can be recovered from

GUO et al.: SEPARATING SPARSE AND LOW-DIMENSIONAL SIGNAL SEQUENCES

4291

—o&— curtain
—&— lake

)L /I L]

o
7

=)

I(I=Fia F

O-T/n
|Ad/1T [
O—a,1/IT:)

Faravavars >
N%4viv,5 4TaTaTaVaVaTays ATATATARMICl Y, Va'aVaray,

£ Vi VaTaTata’s DA YATATaTa S T aVaravars

0.08 SRR RINA IS AT

normalized size
1)

—O— curtain | |
—¥— lake

800 900 1000 1100 1200 1300 1400 1500 1600 1700
time

(a)

50 55

time

(b)

60 65 70 75 80 30 80

Fig. 1. (a) Verification of slow subspace change assumption. (b) Verification of denseness assumption. (c) Verification of small support size, small support change.

y = (I — @Q;Q})Az by £, minimization. In compressive Re-
ProCS, the measurement matrix uses () ; instead of (; and also
involves small noise. With more work, these arguments can be
extended to this case as well [see [45]].

Algorithm 4: Compressive ReProCS

Use Algorithm 1 or 3 with the following changes.
* Replace @, in step 2 by ¢, A.

* Replace step 3 by Ly — M, — AS,.
« Use L, in place of L, and Q in place of P everywhere.

V. MODEL VERIFICATION

A. Low-Dimensional and Slow Subspace Change Assumption

We used two background image sequence datasets. The first
was a video of lake water motion. For this sequence, n = 6480
and the number of images were 1500. The second was an indoor
video of window curtains moving due to the wind. There was
also some lighting variation. The latter part of this sequence also
contains a foreground (various persons coming in, writing on
the board and leaving). For this sequence, the image size was
n 5120 and the number of background-only images were
1755. Both sequences are posted at http://www.ece.iastate.edu/
~hanguo/PracReProCS.html.

First note that any given background image sequence will
never be exactly low-dimensional, but only be approximately
so. Secondly, in practical data, the subspace does not just change
as simply as in the model of Section II-A. Typically there are
some changes to the subspace at every time ¢. Moreover, with
just one training sequence of a given type, it is not possible to
estimate the covariance matrix of L; at each ¢ and thus one
cannot detect the subspace change times. The only thing one
can do is to assume that there may be a change every 7 frames,
and that during these 7 frames the L,’s are stationary and er-
godic; estimate the covariance matrix of L, for this period using
a time average; compute its eigenvectors corresponding to 6%
energy (or equivalently compute the b% approximate basis of
[L¢—741,- .- L¢]) and use these as P;y. These can be used to
test our assumptions.

Testing for slow subspace change can be done in various
ways. In [27, Fig 6], we do this after low-rankifying the video
data first. This helps to very clearly demonstrate slow subspace
change, but then it is not checking what we really do on real

video data. In this work, we proceed without low-rankifying
the data. We let ¢y = O and ¢; = £y + j7 with 7 = 725. Let
L; denote the mean subtracted background image sequence,
ie. Ly = By — p where o = (1/t1) Zil:o B;. We computed
Py as Py = approx — basis([Ly,,... Ly, —1],95%). We
observed that rank(F(;)) < 38 for curtain sequence, while
rank(P;y) < 33 for lake sequence. In other words, 95% of
the energy is contained in only 38 or lesser directions in either
case, i.e. both sequences are approximately low-dimensional.
Notice that the dimension of the matrix [Ltj,...Ltj +1,1}
is n x 7 and min(n,7) T = 725 is much larger than
38. To test for slow subspace change, in Fig. 1(a), we plot
[[(T — P(jq)P(’j,l))Lt||2/\|Lt||2 when t € [£;,%;11). Notice
that, after every change time (; = 725, 1450), this quantity is
initially small for the first 100—150 frames and then increases
gradually. It later decreases also but that is allowed (all we need
is that it be small initially and increase slowly).

B. Denseness Assumption

Exactly verifying the denseness assumption is impossible
since computing r:4(.) has exponential complexity (one needs
to check all sets T of size s). Instead, to get some idea if it
holds even just for T replaced by T3, in Fig. 1(b), we plot
max; [|I,"(P(;))ill, where T; is the true or estimated support
of S; at time ¢. For the lake sequence, 7} is simulated and
hence known. For the curtain sequence, we select a part of the
sequence in which the person is wearing a black shirt (against a
white curtains’ background). This part corresponds to £ = 35 to
t = 80. For this part, ReProCS returns a very accurate estimate
of 7}, and we use this estimated support as a proxy for the true
support T5.

C. Support Size, Support Change and Slow Support Change

For real video sequences, it is not possible to get the true fore-
ground support. Thus we used 7} for the part of the curtain se-
quence described above in Section V-B as a proxy for 7;. We
plot the support size normalized by the image size |T3|/n, and
we plot the number of additions and removals normalized by
the support size, i.e. |A;|/|T;| and |A. +|/|7T%| in Fig. 1(c). No-
tice from the figure that the support size is at most 10.2% of the
image size. Notice also that at least at every 3 frames, there is at
least a 1% support change. Thus there is some support change
every few frames, thus exposing the part of the background be-
hind the foreground. Finally notice that the maximum number

4292 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 16, AUGUST 15, 2014

TABLE 1
COMPARISON OF RECONSTRUCTION ERRORS OF DIFFERENT ALGORITHMS FOR SIMULATED DATA. HERE, | T, |/ IS THE SPARSITY RATIO OF S,, E[.] DENOTES
THE MONTE CARLO AVERAGE COMPUTED OVER 100 REALIZATIONS AND ||.|| 7 IS THE FROBENIUS NORM OF A MATRIX. ALSO, S = [S1, 52, ... St] AND
518 ITS ESTIMATE; (O); = (M,); IF¢ € T, AND (O); = 0 OTHERWISE AND (J; IS DEFINED SIMILARLY WITH THE ESTIMATES. (} AND (J ARE THE
CORRESPONDING MATRICES. WE SHOW ERROR FOR (J FOR iRSL AND ADAPTED-iSVD SINCE THESE ALGORITHMS CAN ONLY RETURN AN ESTIMATE OF THE
OUTLIER SUPPORT 1% ; THEY DO NOT RETURN THE BACKGROUND ESTIMATE

(a) (St)z = 100 for ¢ € T} and (St)@ =0fori e th
E|lS — SIIZ/ElSIE E||O — OlI%/E[OlI%
[Ti[/n || ReProCS-pPCA | RSL PCP GRASTA || adaptediSVD | iRSL
9% 1.52 x 1072 0.0580 | 0.0021 | 3.75 x 10—4 0.0283 0.9105
27% 1.90 x 102 0.0198 | 0.6852 0.1043 0.0637 0.9058
(b) (St); = 10 for ¢ € Ty and (St)l =0 for ¢ € TY
E|lS — SI%/EISIE E[|O — Ol /E[Oll%
[Ti[/n || ReProCS-pPCA | RSL PCP GRASTA || adaptediSVD | iRSL
9% 0.0344 8.7247 | 0.2120 0.1390 0.2346 0.9739
27% 0.0668 3.3166 | 0.6456 0.1275 0.3509 0.9778

of support changes is only 9.9% of the support size, i.e. slow
support change holds for this piece.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we show comparisons of ReProCS with
other batch and recursive algorithms for robust PCA. For
implementing the ¢; or weighted ¢; minimizations, we used
the YALL1 #; minimization toolbox [46], its code is available
at http://yalll.blogs.rice.edu/.

Code and data for our algorithms and for all exper-
iments given below is available at http://www.ece.ias-
tate.edu/~hanguo/ReProCS demo.rar.

Simulated Data: In this experiment, the measurement at time
t, My := L+ S, isann x 1 vector withn = 100. We generated
L, using the autoregressive model described in [1] with auto-re-
gression parameter 0.1, and the decay parameter fy = 0.1.
The covariance of a direction decayed to zero before being re-
moved. There was one change time ¢1. For ¢ < &1, P, = Fy
was a rank ro = 20 matrix and Cov(a;) was a diagonal matrix
with entries 10%,0.7079 x 10%,0.70792 x 10%, ... 14.13. At
t =11, ¢ = €1 new = 2 new directions, | jev, got added with
Cov(aunew) being diagonal with entries 60 and 50. Also, the
variance along two existing directions started to decay to zero
exponentially. We used #4,,;, = 2000 and ¢ = ttpain + 5. The
matrix [Py Pi new] Was generated as the first 22 columns of an
n X n random orthonormal matrix (generated by first generating
an . X n matrix random Gaussian matrix and then orthonormal-
izing it). For 1 < ¢ < #4yan, S; = 0 and hence M; = L;. For
t > ti1ain, the support set, Ty, was generated in a correlated
fashion: S; contained one block of size 9 or 27 (small and large
support size cases). The block stayed static with probability 0.8
and move up or down by one pixel with probability 0.1 each
independently at each time. Thus the support sets were highly
correlated. The magnitude of the nonzero elements of S; is fixed
at either 100 (large) or 10 (small).

For the small magnitude S; case, ||L;[|, ranged from 150
to 250 while ||S;||, was equal to 30 and 52, i.e. in this case
IS¢l < || L¢||5. For the large magnitude case, ||S¢||, was
300 and 520. We implemented ReProCS (Algorithm 1) with
b = 99.99 since this data is exactly low-rank. We used ¢ = 0.25
for the small magnitude S; case and ¢ = 1 for the other case.

We compared with three recursive robust PCA methods—incre-
mental robust subspace learning (iRSL) [15] and adapted (out-
lier-detection enabled) incremental SVD (adapted-iSVD) [13]
and GRASTA [31]—and with two batch methods—Principal
Components’ Pursuit (PCP) [5]° and robust subspace learning
(RSL)6 [4]. Results are shown in Table 1.

From these experiments, we can conclude that ReProCS is
able to successfully recover both small magnitude and fairly
large support-sized S;’s; iRSL has very bad performance in
both cases; RSL, PCP and GRASTA work to some extent in
certain cases, though not as well as ReProCS. ReProCS oper-
ates by first approximately nullifying L., i.e. computing y; as
in (6), and then recovering S; by exploiting its sparsity. iRSL
and RSL also compute y; the same way, but they directly use
y: to detect or soft-detect (and down-weight) the support of S;
by thresholding. Recall that y; can be rewritten as y; = S; +
(=P 1P/_15) + f:. As the support size of S; increases, the
interference due to (— P, _1 P/, S;) becomes larger, resulting in
wrong estimates of S;. For the same reason, direct thresholding
is also difficult when some entries of S; are small while others
are not. Adapted-iSVD is our adaptation of iSVD [13] in which
we use the approach of iRSL described above to provide the out-
lier locations to iSVD (iSVD is an algorithm for recursive PCA
with missing entries or what can be called recursive low-rank
matrix completion). It fills in the corrupted locations of L; by
imposing that L, lies in range(F;_1). We used a threshold of
0.5 min;eT, |(St);| for both iRSL and adapted-iSVD (we also
tried various other options for thresholds but with similar re-
sults). Since adapted-iSVD and iRSL are recursive methods, a
wrong S;, in turn, results in wrong subspace updates, thus also
causing /3, to become large and finally causing the error to blow
up.

RSL works to some extent for larger support size of S;’s
but fails when the magnitude of the nonzero S;’s is small. PCP
fails since the support sets are generated in a highly correlated
fashion and the support sizes are large (resulting in the matrix
&; being quite rank deficient also). GRASTA [31] is a recent
recursive method from 2012. It was implemented using code

SWe use the Accelerated Proximal Gradient algorithm [47] and Inexact ALM
algorithm [48] (designed for large scale problems) to solve PCP (1). The code
is available at http://perception.csl.uiuc.edu/matrix-rank/sample _code.html.

6The code of RSL is available at http://www.salleurl.edu/~ftorre/papers/rpca/
rpca.zip.

GUO et al.: SEPARATING SPARSE AND LOW-DIMENSIONAL SIGNAL SEQUENCES

—©—ReProCS-pPCA
—#—ReProCS-Recursive-PCA | |
—A—PCP

NMSE

—6—RSL
—&—GRASTA
—v—MG

30 40
time

(@

50 60 70 80

4293

1600
1400 |
1200

1000

Norm

800

600 -

400

200

50 60 70

40
time

(b)

80

Fig. 2. Experiments on partly simulated video. (a) Normalized mean squared error in recovering S, for realizations. (b) Comparison of ||.S, ||, and || L.||2 for one
realization. MG refers to the batch algorithm of [34], [35] implemented using code provided by the authors. There was not enough information in the papers or in

the code to successfully implement the recursive algorithm.

posted at https://sites.google.com/site/hejunzz/grasta. We tried
two versions of GRASTA: the demo code as it is and the demo
code modified so that it used as much information as ReProCS
used (i.e. we used all available frames for training instead of just
100; we used all measurements instead of just 20% randomly se-
lected pixels; and we used + returned by ReProCS as the rank
input instead of using rank = 5 always). In this paper, we show
the latter case. Both experiments are shown on our supplemen-
tary material page http://www.ece.iastate.edu/~hanguo/PracRe-
ProCS.html.

Partly Simulated Video: Lake Video With Simulated Fore-
ground: In the comparisons shown next, we only compare with
PCP, RSL and GRASTA. To address a reviewer comment, we
also compare with the batch algorithm of [34], [35] (referred to
as MG in the figures) implemented using code provided by the
authors. There was not enough information in the papers or in
the code to successfully implement the recursive algorithm.

We implemented ReProCS (Algorithm 1 and Algorithm 3)
with b = 95 since the videos are only approximately low-rank
and we used ¢ = 1 since the magnitude of S; is not small com-
pared to that of L;. The performance of both ReProCS-pPCA
(Algorithm 1) and ReProCS-recursive-PCA (Algorithm 1) was
very similar. Results with using the latter are shown in Fig. 6.

We used the lake sequence described earlier to serve as a real
background sequence. Foreground consisting of a rectangular
moving object was overlaid on top of it using (3). The use of a
real background sequence allows us to evaluate performance for
data that only approximately satisfies the low-dimensional and
slow subspace change assumptions. The use of the simulated
foreground allows us to control its intensity so that the resulting
S; is small or of the same order as L; (making it a difficult
sequence), see Fig. 2(b).

The foreground F}; was generated as follows. For 1 < ¢ <
terain, Ft = 0. For ¢ > tip4in, F¢ consists of a 45 X 25 moving
block whose centroid moves horizontally according to a con-
stant velocity model with small random acceleration [49, Ex-
ample V.B.2]. To be precise, let p;, be the horizontal location
of the block’s centroid at time ¢, let v; denote its horizontal
velocity. Then g; := [f :] satisfies g; = Gg: 1 + [T?t] where

11 . . .
G = [0 1} and n; is a zero mean truncated Gaussian with

variance) and with —2/Q < |ns] < 2+/Q). The nonzero
pixels’ intensity is i.i.d. over time and space and distributed
as uniform(by, bs), ie. (F); ~ uniformn(by,bs) for i € 1.
In our experiments, we generated the data with #;,.;, = 1420,
bl = 170, bg = 230, Pio+1 = 27, Vig+1 = 0.5 and Q = 0.02.
With these values of by, b2, as can be seen from Fig. 2(b), || S]],
is roughly equal or smaller than || L,||, making it a difficult se-
quence. Since it is not much smaller, ReProCS used ¢ = 1; since
background data is approximately low-rank it used b = 95.

We generated 50 realizations of the video sequence using
these parameters and compared all the algorithms to estimate
St, Ly and then the foreground and the background sequences.
We show comparisons of the normalized mean squared error
(NMSE) in recovering S; in Fig. 2(a). Visual comparisons of
both foreground and background recovery for one realization
are shown in Fig. 3. The recovered foreground image is shown
as a white-black image showing the foreground support: pixels
in the support estimate are white. PCP gives large error for this
sequence since the object moves in a highly correlated fashion
and occupies a large part of the image. GRASTA also does not
work. RSL is able to recover a large part of the object correctly,
however it also recovers many more extras than ReProCS. The
reason is that the magnitude of the nonzero entries of .S; is quite
small (recall that (S;), = (F; — By), for ¢ € T}) and is such
that || L, ||, is about as large as ||S;]|, or sometimes larger (see
Fig. 2(b)).

Real Video Sequences: Next we show comparisons on two
real video sequences. These are originally taken from
http://perception.i2r.a-star.edu.sg/bk _model/bk index.html and
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/
testimages.htm, respectively. The first is the curtain sequence
described earlier. For ¢ > 1755, in the foreground, a person
with a black shirt walks in, writes on the board and then walks
out, then a second person with a white shirt does the same and
then a third person with a white shirt does the same. This video
is challenging because (i) the white shirt color and the
curtains’ color is quite similar, making the corresponding S,
small in magnitude; and (ii) because the background variations
are quite large while the foreground person moves slowly.
As can be seen from Fig. 4, ReProCS’s performance is
significantly better than that of the other algorithms for both

4294

GRASTA
(fo)

PCP
(fe)

RSL
(fe)

original ReProCS

(fg)

MG
(fe)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 16, AUGUST 15, 2014

MG
(bg)

GRASTA
(bg)

ReProCS
(bg)

RSL

(bg) (bg)

Fig. 3. Original video att = fi,.in + 30, 60, 70 and its foreground (fg) and background (bg) layer recovery results using ReProCS (ReProCS-pCA) and other
algorithms. MG refers to the batch algorithm of [34], [35] implemented using code provided by the authors. There was not enough information in the papers or in
the code to successfully implement the recursive algorithm. For fg, we only show the fg support in white for ease of display.

RSL
(fe)

GRASTA
(fg)

ReProCS
(fg)

original

MG
(fg)

PCP
(bg)

RSL
(bg)

MG
(bg)

ReProCS
(bg)

GRASTA
(bg)

Fig. 4. Original video sequence at ¢ = t.,.in + 60, 120, 199, 475, 1148 and its foreground (fg) and background (bg) layer recovery results using ReProCS
(ReProCS-pCA) and other algorithms. For fg, we only show the fg support in white for ease of display.

foreground and background recovery. This is most easily seen
from the recovered background images. One or more frames of
the background recovered by PCP, RSL and GRASTA
contains the person, while none of the ReProCS ones does.

The second sequence consists of a person entering a room
containing a computer monitor that contains a white moving re-
gion. Background changes due to lighting variations and due to
the computer monitor. The person moving in the foreground oc-
cupies a very large part of the image, so this is an example of a
sequence in which the use of weighted ¢; is essential (the sup-
port size is too large for simple #; to work). As can be seen from
Fig. 5, for most frames, ReProCS is able to recover the person
correctly. However, for the last few frames which consist of the
person in a white shirt in front of the white part of the screen, the
resulting S; is too small even for ReProCS to correctly recover.
The same is true for the other algorithms. Videos of all above ex-
periments and of a few others are posted at http://www.ece.ias-
tate.edu/~hanguo/PracReProCS.html.

Time Comparisons: The time comparisons are shown in
Table II. In terms of speed, GRASTA is the fastest even though
its performance is much worse. ReProCS is the second fastest.
We expect that ReProCS can be speeded up by using mex files

(C/C++ code) for the subspace update step. PCP and RSL are
slower because they jointly process the entire image sequence.
Moreover, ReProCS and GRASTA have the advantage of being
recursive methods, i.e. the foreground/background recovery is
available as soon as a new frame appears while PCP or RSL
need to wait for the entire image sequence.

Compressive ReProCS: Comparisons for Simulated Video:
We compare compressive ReProCS with SpaRCS [20] which
is a batch algorithm for undersampled robust PCA/separation
of sparse and low-dimensional parts (its code is downloaded
from http://www.ece.rice.edu/~aew2/sparcs.html). No code is
available for most of the other compressive batch robust PCA
algorithms such as [24], [25]. SpaRCS is a greedy approach
that combines ideas from CoSaMP [50] for sparse recovery and
ADMIRA [51] for matrix completion. The comparison is done
for compressive measurements of the lake sequence with fore-
ground simulated as explained earlier. The matrix B = A is
m X n random Gaussian with 7 = 0.7n. Recall that n = 6480.
The SpaRCS code required the background data rank and fore-
ground sparsity as inputs. For rank, we used # returned by Re-
ProCS, for sparsity we used the true size of the simulated fore-
ground. As can be seen from Fig. 7, SpaRCS does not work

GUO et al.: SEPARATING SPARSE AND LOW-DIMENSIONAL SIGNAL SEQUENCES 4295

MG
(fe)

GRASTA
(fe)

RSL
(fg)

PCP
(fg)

ReProCS
(bg)

RSL

(bg) (bg)

(fo)

Fig. 5. Original video sequence at ¢t = ti,ain + 42, 44, 52 and its foreground (fg) and background (bg) layer recovery results using ReProCS (ReProCS-pCA)

(bg)

and other algorithms. For fg, we only show the fg support in white for ease of display.

(a) (b)

Fig. 6. Foreground layer estimated by ReProCS-Recursive-PCA for the lake, curtain and person videos shown in Figs. 3, 4 and 5. As can be seen the recovery
performance is very similar to that of ReProCS-pPCA (Algorithm 1). (a) ¢ = 30, 60, 70; (b) t = 60, 120, 475; (c) t = 42, 44, 52.

-

TABLE 11
COMPARISON OF SPEED OF DIFFERENT ALGORITHMS. EXPERIMENTS WERE DONE ON A 64 bit WINDOWS 8 LAPTOP WITH 2.40 GHz 17 CPU AND 8G RAM.
SEQUENCE LENGTH REFERS TO THE LENGTH OF SEQUENCE FOR TRAINING PLUS THE LENGTH OF SEQUENCE FOR SEPARATION. FOR REPROCS AND GRASTA,
THE TIME IS SHOWN AS TRAINING TIME+RECOVERY TIME

DataSet | Image Size | Sequence Length ReProCS-pPCA ReProCS-Recursive-PCA PCP RSL GRASTA
Lake 72 x 90 1420 + 80 2.99 4 19.97 sec 2.99 4 19.43 sec 245.03 sec | 213.36 sec | 39.47 4+ 0.42 sec

Curtain 64 x 80 1755 4+ 1209 4.37 4+ 159.02 sec 4.37 4+ 157.21 sec 1079.59 sec | 643.98 sec | 40.01 + 5.13 sec
Person 120 x 160 200 + 52 0.46 + 42.43 sec 0.46 + 41.91 sec 27.72 sec 121.31 sec | 13.80+ 0.64 sec

ReProCS

original

SparCS

Fig. 7. Original video frames att = ¢;,.in + 30, 60, 70 and foreground layer
recovery by ReProCS and SparCS.

while compressive ReProCS is able to recover S; fairly accu-
rately, though of course the errors are larger than in the full
sampled case. All experiments shown in [20] are for very slow
changing backgrounds and for foregrounds with very small sup-
port sizes, while neither is true for our data.

VII. CONCLUSIONS AND FUTURE WORK

This work designed and evaluated Prac-ReProCS which is
a practically usable modification of its theoretical counterpart
that was studied in our earlier work [27]-[29]. We showed that
Prac-ReProCS has excellent performance for both simulated
data and for a real application (foreground-background separa-
tion in videos) and the performance is better than many of the

state-of-the-art algorithms from recent work. Moreover, most of
the assumptions used to obtain its guarantees are valid for real
videos. Finally we also proposed and evaluated a compressive
prac-ReProCS algorithm. In ongoing work, on one end, we are
working on performance guarantees for compressive ReProCS
[45] and on the other end, we are developing and evaluating a
related approach for functional MRI. In fMRI, one is allowed
to change the measurement matrix at each time. However if we
replace B = A by A; in Section IV the compressive ReProCS
algorithm does not apply because A;L; is not low-dimensional
[44].

APPENDIX

A. Detailed Discussion of Why ReProCS Works

Define the subspace estimation error as

SE(P, P) := H(I - Pﬁ’)PH
2

where both P and P are basis matrices. Notice that this quan-
tity is always between zero and one. It is equal to zero when
range(P) contains range(P) and it is equal to one if P'P; = 0
for at least one column of P.

Recall that for t € [t;,t;01 — 1], P = [Py_pR; \
Py olds P(j)_’new]. Thus, 1.; can be rewritten as

Lt = P(j,l)at,* + P(j):uewa/t;new

L, and a; . := P/,

 pr
where At new = P(j) v

k.

new

4296

Let ¢ := emax and 7; := 7o 4+ jc. We explain here the key
idea of why ReProCS works [27], [29]. Assume the following
hold besides the assumptions of Section II.

1) Subspace change is detected immediately, i.e. fj =1; and

Cj new 15 known.

2) Pick a ¢ < 1. Assume that |[L;]|, < -y, for a 7. that
satisfies v« < 1/y/7;C. Since is very small, . can be
very large.

3) Assume that (¢,41 — ¢;) > Ko for a K as defined below.

4) Assume the followmg model on the gradual increase of
G new: fort € [t; + (k — D)a,t; + ka — 1], ||ag newll, <
VP yew foral < v < 1.2 and Ynew < Ve

5) Assume that projection PCA “works” i.e. its estimates sat-
isfy SE(P(j) news Py mew k1) < 0.6F71 + 0.4¢C. The
proof of this statement is long and complicated and is given
in [27], [29].

6) Assume that projection PCA is done K times with K
chosen so that 0.6% ! + 0.4¢¢ < (.

Assume thatatt = 1;—1,SE(P;_1y, P;_1)) <rj 1 < 1.
We will argue below that SE(P(J-) I:’(,)) < r;¢. Since r; <
7o + Jc is small, this error is always small and bounded.

First consider a ¢ € [t;,4; + «). At this time, P, = Py
Thus,

Vel = || (= Brr i) 1

<SE (P2, Py n)) laeslly + ool
< ("'jflOW’* + Ynow

S \/E + Ynew -

By construction, /¢ is very small and hence the second term in
the bound is the dominant one. By the slow subspace assump-
||l,- Recall that 3; is the “noise” seen by the
sparse recovery step. The above shows that this noise is small
compared to ||S;||,. Moreover, using Lemma 2.2 and simple ar-
guments [see [27, Lemma 6.6]], it can be shown that

(11)

85(®r) < K2+ 11

is small. These two facts along with any RIP-based result for #;
minimization, e.g. [39], ensure that S; is recovered accurately
in this step. If the smallest nonzero entry of \S; is large enough, it
is possible get a support threshold w that ensures exact support
recovery. Then, the LS step gives a very accurate final estimate
of S; and it allows us to get an exact expression for ¢; := 5y —
St Since Lt = M; — St, this means that L; is also recovered
accurately and e; = Lt — L;. This is then used to argue that
p-PCAatt =t; + o — 1 “works”.

Next cons1derf € [t; + (k- Da,t; + ka — 1]. At this time,
P, = [P(] 1) P(]) new.k—1)- Then, it is easy to see that

16lly = || (1= Pis Pl I
<SE (P, By loesly

+5E (P(j),newa P(j),new,kfl) ||at,newl|2
< (rj-1€) e 4 (0.6 +0.4c¢) v
<VEH0.72" e

1'711ew
(12)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 16, AUGUST 15, 2014

Ignoring the first term, in this interval, |||, < 0.725 1y s
i.e. the noise seen by the sparse recovery step decreases expo-
nentially with every p-PCA step. This, along with a bound on
85(®;) (this bound needs a more complicated argument than that
for k = 1, see [27, Lemma 6.6]), ensures that the recovery error
of S;, and hence also of L; = M, — S}, decreases roughly expo-
nentially with &. This is then used to argue that the p-PCA error
also decays roughly exponentially with £.

Finally for ¢ € [t; + Ka, ;41 — 1], because of the choice of
K, we have that SE(P(J) news P(J) new, k) < ¢C. At this time,
we set P(?) [P(J)*LP(])aUCW] Thus, SE(F;), P(J)) <

SE(P(j 1) Pj)-1)+SE(Pymews Pjymew.xc) < 151C +

¢ = r;iC

REFERENCES

[1] C. Qiu and N. Vaswani, “Real-time robust principal components’ pur-
suit,” in Proc. Allerton Conf. Commun., Contr. Comput., 2010, pp.
591-598.

[2] C. Qiu and N. Vaswani, “Recursive sparse recovery in large but corre-
lated noise,” in Proc. Allerton Conf. Commun., Control, Comput.,2011,
pp. 752-759.

[3] H. Guo, C. Qiu, and N. Vaswani, “Practical reprocs for separating
sparse and low-dimensional signal sequences from their sum—Part
1,” presented at the IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Florence, Italy, 2014.

[4] E. De La Torre and M. J. Black, “A framework for robust subspace
learning,” Int. J. Comput. Vision, vol. 54, pp. 117-142, 2003.

[5] E.J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?,” J. ACM, vol. 58, no. 3, 2011.

[6] J. Wright and Y. Ma, “Dense error correction via 11-minimization,”
IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3540-3560, 2010.

[7] 1. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY,
USA: Springer, 2002.

[8] J. Wright and Y. Ma, “Dense error correction via 11-minimization,”
IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3540-3560, Jul. 2010.

[9] S. Roweis, “EM algorithms for PCA and SPCA,” Adv. Neural Inf.
Process. Syst., pp. 626—632, 1998.

[10] T. Zhang and G. Lerman, “A novel M-estimator for robust PCA,” J.
Mach. Learn. Res.,2013 [Online]. Available: http://arxiv.org/abs/1112.
4863, arXiv:1112.4863v3, to be published

[11] H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via outlier pur-
suit,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3047-3064, 2012.

[12] M. McCoy and J. A. Tropp, “Two proposals for robust PCA using
semidefinite programming,” Electron. J. Statist., vol. 5, pp. 1123-1160,
2011.

[13] M. Brand, “Incremental singular value decomposition of uncertain data
with missing values,” in Proc. Eur. Conf. Comput. Vision, 2002, pp.
707-720.

[14] D. Skocaj and A. Leonardis, “Weighted and robust incremental
method for subspace learning,” in Proc. IEEE Int. Conf. Comput.
Vision (ICCV), Oct. 2003, vol. 2, pp. 1494-1501.

[15] Y. Li, L. Xu, J. Morphett, and R. Jacobs, “An integrated algorithm of
incremental and robust PCA,” in Proc. IEEE Int. Conf. Image Process.
(ICIP), 2003, pp. 245-248.

[16] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky,
“Rank-sparsity incoherence for matrix decomposition,” SIAM J.
Optim., vol. 21, pp. 572-596, 2011.

[17] M. B. McCoy and J. A. Tropp, “Sharp recovery bounds for convex de-
convolution, with applications,” J. Found. Comput. Math, 2012 [On-
line]. Available: http://arxiv.org/abs/1205.1580, arXiv:1205.1580, to
be published

[18] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The
convex geometry of linear inverse problems,” Found. Comput. Math.,
no. 6, pp. 805-849, 2012.

[19] Y. Hu, S. Goud, and M. Jacob, “A fast majorize-minimize algorithm
for the recovery of sparse and low-rank matrices,” IEEE Trans. Image
Process., vol. 21, no. 2, pp. 742-753, Feb. 2012.

[20] A. E. Waters, A. C. Sankaranarayanan, and R. G. Baraniuk, “Sparcs:
Recovering low-rank and sparse matrices from compressive mea-
surements,” in Proc. Neural Inf. Process. Syst. (NIPS), 2011, pp.
1089-1097.

[21] E. Richard, P.-A. Savalle, and N. Vayatis, “Estimation of si-
multaneously sparse and low rank matrices,” in Proc. 29th
Int. Conf. Mach. Learn. (ICML 2012) [Online]. Available:
http://arxiv.org/abs/1206.6474, arXiv:1206.6474

[22] D. Hsu, S. M. Kakade, and T. Zhang, “Robust matrix decomposition
with sparse corruptions,” IEEE Trans. Inf. Theory, vol. 57, no. 11, pp.
7221-7234, 2011.

GUO et al.: SEPARATING SPARSE AND LOW-DIMENSIONAL SIGNAL SEQUENCES

[23] M. Mardani, G. Mateos, and G. B. Giannakis, “Recovery of low-rank
plus compressed sparse matrices with application to unveiling traffic
anomalies,” IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 5186-5205,
2013.

[24] J. Wright, A. Ganesh, K. Min, and Y. Ma, “Compressive principal com-
ponent pursuit,” Inf. Inference, vol. 2, no. 1, pp. 3268, 2013.

[25] A. Ganesh, K. Min, J. Wright, and Y. Ma, “Principal component pur-
suit with reduced linear measurements,” in Proc. IEEE Int. Symp. Inf.
Theory Process. (ISIT), 2012, pp. 1281-1285.

[26] M. Tao and X. Yuan, “Recovering low-rank and sparse components
of matrices from incomplete and noisy observations,” SIAM J. Optim.,
vol. 21, no. 1, pp. 57-81, 2011.

[27] C. Qiu, N. Vaswani, B. Lois, and L. Hogben, “Recursive robust PCA
or recursive sparse recovery in large but structured noise,” IEEE Trans.
Inf. Theory, vol. 60, no. 8, pp. 5007-5039, 2014.

[28] C. Qiu and N. Vaswani, “Recursive sparse recovery in large but struc-
tured noise—Part 2,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),2013,
pp. 864-868.

[29] “Blinded title,” in Double Blind Conf., 2014, submitted for publication.

[30] N. Vaswani and W. Lu, “Modified-CS: Modifying compressive
sensing for problems with partially known support,” IEEE Trans.
Signal Process., vol. 59, no. 9, pp. 4595-4607, Sep. 2010.

[31] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the Grass-
mannian for online foreground and background separation in subsam-
pled video,” in Proc. IEEE Conf. Comp. Vis. Pattern Recog. (CVPR),
2012, pp. 1568-1575.

[32] J. Feng, H. Xu, and S. Yan, “Online robust PCA via stochastic opti-
mization,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2013, pp.
404-412.

[33] J. Feng, H. Xu, S. Mannor, and S. Yan, “Online pca for contaminated
data,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2013, pp.
764-772.

[34] G. Mateos and G. Giannakis, “Robust PCA as bilinear decomposition
with outlier-sparsity regularization,” IEEE Trans. Signal Process., vol.
60, no. 10, pp. 5176-5190, Oct. 2012.

[35] M. Mardani, G. Mateos, and G. Giannakis, “Dynamic anomalography:
Tracking network anomalies via sparsity and low rank,” /EEE J. Sel.
Topics Signal Process., vol. 7, no. 1, pp. 50-66, Feb. 2013.

[36] K. Jia, T.-H. Chan, and Y. Ma, “Robust and practical face recognition
via structures sparsity,” in Proc. Eur. Conf. Comp. Vis. (ECCV), 2012,
pp. 331-344.

[37] E.Candes and T. Tao, “Decoding by linear programming,” /EEE Trans.
Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.

[38] E. J. Candés and B. Recht, “Exact matrix completion via convex opti-
mization,” Commun. ACM, vol. 55, no. 6, pp. 111-119, 2012.

[39] E. Candes, “The restricted isometry property and its implications for
compressed sensing,” Compte Rendus de [’Acad. des Sci., Paris, Ser.
1, pp. 589-592, 2008.

[40] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by
basis pursuit,” SIAM J. Scientif- Comput., vol. 20, pp. 33—-61, 1998.

[41] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation
when p is much larger than n,” Ann. Statist., vol. 35, no. 6, pp.
2313-2351, 2007.

[42] A. Khajehnejad, W. Xu, A. Avestimehr, and B. Hassibi, “Weighted
£, minimization for sparse recovery with prior information,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), 2009, pp. 483-487.

[43] M. P. Friedlander, H. Mansour, R. Saab, and O. Yilmaz, “Recovering
compressively sampled signals using partial support information,”
IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1122-1134, 2012.

[44] J. Zhan and N. Vaswani, “Separating sparse and low-dimensional
signal sequence from time-varying undersampled projections of their
sums,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), 2013, pp. 5905-5909.

[45] B. Lois, N. Vaswani, and C. Qiu, “Performance guarantees for under-
sampled recursive sparse recovery in large but structured noise,” in
Proc. GlobalSIP, 2013, pp. 1061-1064.

[46] J. Yang and Y. Zhang, “Alternating direction algorithms for 11 prob-
lems in compressive sensing,” Rice Univ., Houston, TX, USA, Tech.
Rep., Jun. 2010.

4297

[47] Z.Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast convex
optimization algorithms for exact recovery of a corrupted low-rank ma-
trix,” Univ. Illinois at Urbana-Champaign, Tech. Rep., Aug. 2009.

[48] Z. Lin, M. Chen, and Y. Ma, “Alternating direction algorithms for
11 problems in compressive sensing,” Univ. Illinois at Urbana-Cham-
paign, Tech. Rep., Nov. 2009.

[49] H. Vincent Poor, An Introduction to Signal Detection and Estimation,
2nd ed. New York, NY, USA: Springer, 1994.

[50] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comp. Harmon. Anal., vol.
26, no. 3, pp. 301-321, May 2009.

[51] K. Lee and Y. Bresler, “ADMIRA: Atomic decomposition for min-
imum rank approximation,” [EEE Trans. Inf. Theory, vol. 56, no. 9,
pp. 44024416, Sep. 2010.

Han Guo received the B.S. degree from North-
western Polytechnical University in China in 2012.

He is currently a Ph.D. student in Electrical and
Computer Engineering at Iowa State University,
Ames. His research interests are in sparse recovery,
robust PCA, and video analysis.

Chenlu Qiu received a B.S. from Southeast Uni-
versity in China in 2006 in Information Engineering
and a Ph.D. from lowa State University in 2013
in Electrical Engineering. She is currently with
the Traffic Management Research Institute of the
Ministry of Public Security, China. Her research
interests include robust PCA and video analysis.

Namrata Vaswani received the B.Tech. degree from
the Indian Institute of Technology (IIT), Delhi, in
1999 and the Ph.D. degree from the University of
Maryland, College Park, in 2004, both in electrical
engineering.

During 2004-2005, she was a Research Scientist at
Georgia Tech. Since fall 2005, she has been with the
Iowa State University (ISU), Ames, where she is cur-
rently an Associate Professor of Electrical and Com-
puter Engineering. She held the Harpole-Pentair As-
sistant Professorship at ISU during 20082009 and
received the Early Career Engineering Faculty Research Award in 2014. Her
research interests are in signal and information processing for problems moti-
vated by big-data and bio-imaging applications. Her current work focuses on
recursive sparse recovery, robust PCA, matrix completion and applications in
video and medical imaging.

Dr. Vaswani served an Associate Editor for IEEE TRANSACTIONS ON SIGNAL
PROCESSING from 2009 to 2013.

