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ABSTRACT

In this work, we study the application of compressive sensing (CS)

based approaches for blood oxygenation level dependent (BOLD)

contrast functional MR imaging (fMRI). In particular, we show, via

exhaustive experiments on actual MR scanner data for brain fMRI,

that our recently proposed approach for recursive reconstruction of

sparse signal sequences, modified-CS-residual, outperforms other

existing CS based approaches. Modified-CS-residual exploits the

fact that the sparsity pattern of brain fMRI sequences and their sig-

nal values change slowly over time. It provides a fast, yet accurate,

reconstruction approach that is able to accurately track the changes

of the active pixels, while using only about 30% measurements per

frame. Significantly improved performance over existing work is

shown in terms of practically relevant metrics such as active pixel

time courses, activation maps and receiver operating characteristic

(ROC) curves.

Index Terms— Compressive Sensing, Functional MRI

1. INTRODUCTION

The static sparse recovery problem has been well studied for a while,

e.g. [1, 2]. The recent work on Compressed Sensing (CS) [3, 4]

provides the missing theoretical guarantees for these approaches to

work. The goal of sparse recovery (henceforth referred to as CS) is

to recover a (approximately) sparse signal or image from undersam-

pled measurements by using the fact of sparsity. In this work, we

evaluate CS based approaches for blood oxygenation level depen-

dent (BOLD) contrast functional MR imaging (fMRI). We show, via

exhaustive experiments on actual MR scanner data for brain fMRI,

that our recently proposed approach for recursive reconstruction of

sparse signal sequences, modified-CS-residual, outperforms other

existing CS based approaches.

In BOLD contrast fMRI, a time-series of T ∗

2 -weighted images

are collected as the subject is presented a controlled stimulus. To

achieve whole-brain coverage fMRI is typically performed at a low

spatial (e.g., 3×3×3mm3 voxels) and temporal (e.g., volume rep-

etition time of 2 − 3 seconds) resolution. This provides a sufficient
signal-to-noise ratio for robust detection of BOLD contrast by sta-

tistical testing. However, if CS based approaches can be applied to

fMRI it may ultimately enable higher spatial and temporal resolution

functional brain imaging, which potentially provides a new view of

human brain function [5].

The application of CS to MRI was first developed in detail in [6].

The most straightforward application of CS to fMRI images recon-

struction would be to perform CS on each slice of data independently

(simple-CS). For time sequences, batch-CS [7] improves simple-CS
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Fig. 1. Slow support change plots for a simulated brain fMRI

sequence (details are given in Sec 4). Nt refers to the 99% energy
support of the two-level Daubechies-4 2D discrete wavelet transform

(DWT) of the image at time t. |Nt| ≈ 0.05m. We the plot support
changes, additions and deletions, with respect to the previous frame

by jointly reconstructing the entire sequence by treating it as a 3D

sparse signal. Because it uses sparsity also along the time axis, it

is able to achieve accurate reconstructions using much fewer mea-

surements than simple-CS. But the reconstruction can only be per-

formed on the entire batch of data after all sampling is completed.

Also, for an N -frame acquisition, its computational complexity is
roughly N2 times that of simple-CS, while its memory requirement

is N times that of simple-CS. In recent work, [8, 9] proposed Kt-
FOCUSS, which uses the fact that a sequence of MR image data is

sparse in the y − f domain where f denotes temporal frequency.
The key idea is to reconstruct kY − t “frames” using FOCUSS[2]
where kY denotes the phase encoding direction (y-axis of the 2D
discrete Fourier transform (DFT) plane). Kt-FOCUSS is still a batch

method, which means it is still (a) non-causal, i.e. it needs to wait

to acquire the entireN frame sequence before doing the reconstruc-
tion (or one needs to re-run it in a batch fashion again at each time

which is slow), and (b) its memory requirement is stillN times that
of simple-CS. But its reconstruction is fast because it is done on

one kY − t “frame” at a time and because often it only runs a a
few iterations of FOCUSS starting from previous “frame” as initial

guess. The same memory and non-causality issues also remain with

Kt-FOCUSS with motion compensation (MC) [8]. Moreover, as we

demonstrate in our experiments, for the fMRI based BOLD contrast

detection application that we study here, its performance is, in fact,

slightly worse than our proposed recursive approach (modified-CS-

residual) because of its assumption of Fourier sparsity along the time

axis – it tries to recover the sparsest sum of sinusoids to represent the

time sequence for a given pixel.

In recent work, we studied the problem of recursively recon-

structing a time sequence of (approximately) sparse signals from

highly undersampled measurements and proposed two sets of ap-

proaches – LS-CS and KF-CS [10] and later modified-CS and
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modified-CS-residual [11, 12]. By “recursive”, we mean that we

use only the previous reconstruction and the current measurements’

vector to recover the current signal. As a result, these are (a)

causal approaches, i.e. they can recover the current frame as soon

as its MR data gets acquired; and (b) they have the same storage

(memory) and computational complexity as that of simple-CS (and

hence much lower than that of batch methods), but they can achieve

significantly lower reconstruction errors than simple-CS when the

available number of measurements is too few for simple-CS.

In all the above works, we have done experiments only on ei-

ther fully simulated data or simulated MRI data, i.e. real medical

image sequences, but random-sampled MRI is simulated by taking

the 2D discrete Fourier transform (DFT) of the image and randomly

sampling it. Moroever, only the mean squared error (MSE) has been

used as the performance evaluation metric. But we know that when

using actual MR scanner data, (a) there are multiple sources of noise

and modeling error so that the resulting 2D-DFT of the image is no

longer conjugate symmetric (its inverse DFT is not fully real); and

(b) randomly sampling the 2D-DFT plane is not a practical scanning

approach. In practice, one can only random sample in one direction

e.g. one can only random sample rows or columns of the 2D-DFT

plane. (c) Moreover, it is well known to the image processing and

medical imaging communities that MSE over the entire image is not

a useful performance metric since it does not capture errors in indi-

vidual pixels very well. But often errors in even a few pixels can be

quite problematic, e.g. they can indicate incorrect active regions.

In this work, we perform a detailed experimental evaluation of

modified-CS-residual for

1. a real functional MRI application (that of detecting the active

region in the brain as a stimulus is provided to the subject);
2. with actual MR scanner data that is acquired in a practically

sensible fashion (randomly sample the ky axis); and
3. using practically relevant performance metrics – activation

maps and receiver operating characteristic (ROC) curves.

Modified-CS relies on a key assumption that the sparsity pattern

(support change in the sparsity basis) changes slowly with time for

most practical image sequences. We demonstrate this for brain fMRI

sequences in Fig. 1. Notice that the maximum support change is less

than 7% of the support size in most cases and in the worst case it is
less than 10%. Denote the support estimate from the previous time
by T . The key idea of modified-CS is to find the solution that is
sparsest outside of T while satisfying the data constraint.
Some other related approaches include Dynamic-LASSO [13]

which is a causal but batch approach (with very high computational

and storage cost) and it assumes that the sparsity pattern of the im-

age sequence does not change with time; or [14] which recovers the

difference image by doing CS on the measurement differences(CS-

diff). Both CS-diff and our earlier work on LS-CS and KF-CS

have already been demonstrated to have worse performance than

modified-CS [11, 12]. Approaches related to modified-CS for a

static problem but with partial support knowledge include [15, 16].

The paper is organized as follows. We formulate our problem in

the next section. Then modified-CS-residual is developed in Sec 3.

Experimental results are discussed in Sec 4. Conclusions and future

work are given in Sec. 5.

2. PROBLEM DEFINITION

2.1. Notation

AT denotes the sub-matrix containing the columns ofAwith indices
belonging to T . For a vector, the notation (β)T (or βT ) refers to a

sub-vector that contains the elements with indices in T . The set
operations, ∪,∩ stand for set union and intersection, respectively,

and T1 \T2 := T1 ∩T c
2 denotes set difference. We use T

c to denote

the complement of T with respect to [1, ...,m], i.e. T c := {i /∈
T, i ∈ [1, ...,m]}. For a set T , |T | denotes its size (cardinality). But
for a scalar, β, |β| denotes its magnitude.
Let Nt denote the current set of nonzero coefficients (signifi-

cantly nonzero coefficients in case of compressible sequences) of a

signal xt. Nt consists of three parts: Nt , T ∪ (∆)t \ (∆e)t where
(∆)t and T are disjoint and (∆e)t ⊆ T . T is the known part of sup-
port while (∆e)t is the error in the known part of support and (∆)t
is the unknown part. x̂t denotes the estimate of xt and N̂t denotes

the estimate of Nt.

2.2. Problem Formulation

We formulate the problem for a single slice of fMRI acquired over

time. Let (It)m1×m1
denote the image at time t and let m := m2

1

be its dimension. The full sampling measurement model is

Yfull,t = St + Zt (1)

where Yfull,t is the measured k-space data at time t. St is the ideal

k-space data and Zt is the measurement noise, which is modeled as

a complex Gaussian noise. The image reconstructed from the full

Fourier samples, It, can be rewritten as

It = F ′Yfull,tF
′ = Itrue,t + ηt (2)

where F is the DFT matrix and Itrue,t is the ideal image recon-
structed from noise-free k-space data. ηt = F ′ZtF

′ is the degrading

noise in image domain, which is complex and zero mean Gaussian

with variance σ2
η . We further model the complex image It as follows.

Each pixel is made up of the baseline MR signal, the functional sig-

nal of interest, nuissance signals[17], and the degrading noise signal.

Then we model a slice in an fMRI time-sequence as [18].

It(i, j) = Ib(i, j) + νt(i, j) + α(i, j) · bt(i, j) + ηt(i, j) (3)

Here, i, j are the pixel indices with i, j ∈ {1, . . . ,m}. Ib is the
baseline MR signal which does not change over time. bt(i, j) de-
notes the unit-amplitude BOLD signal shape in pixel (i, j), the ex-
act form of which depends on the hemodynamic response function

(HDR) corresponding to the pixel. α(i, j) is the non-negative am-
plitude of the BOLD signal in pixel (i, j) that will be equal to zero
in inactive pixels. νt is the nuissance signal, which are modeled
only for completeness since we aim to faithfully reconstruct It from
highly undersampled data. From these definitions, the contrast-to-

noise ratio (CNR) of the BOLD signal in each pixel can be expressed

as CNR(i, j) = α(i,j)
ση
. MR images, especially MR brain images

are known to be compressible in the wavelet transform domain[6].

Hence, we set up the measurement model of CS as follows. Let Xt

denote the 2D discrete wavelet transform (DWT) of the image repre-

sentation from ideal k-space, i.e. Xt := WItrue,tW
′, whereW is

the DWT matrix. Then Yfull,t = FW ′XtWF + Zt. We capture a

smaller number, n < m, of Fourier coefficients of the images. Since
we only sample in kY direction, this can be modeled by applying an
n
m1

×m1 sampling mask,M (which contains a single 1 at a different
location in each row and all other entries are zero) toYfull,t to obtain

the measurements Yt,i.e. Yt = MYfull,t = M(FW ′XtWF+Zt).
The above can also be transformed to a 1D problem by using Kro-

necker product, denoted by
⊗
. Let yfull,t := vec(Yfull,t), xt :=

vec(Xt) and zt := vec(Zt). Here, vec(Xt) denotes the vector-
ization of the matrix Xt formed by stacking the columns of Xt

into a single column vector. Then yfull,t = F1DW ′

1Dxt + zt
where F1D = F

⊗
F , W ′

1D = W ′
⊗

W ′. An n × m mask
M1D = Idm1

⊗
M is applied to yfull,t to undersample the Fourier

coefficients to obtain yt where Idm1
is anm1 ×m1 identity matrix.

The above can be rewritten as
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Fig. 2. Comparing modified-CS-residual, Kt-FOCUSS with differ-

ent iterations and ME/MC, BPDN, CS-residual,and Batch CS with

full sampling. At t = 1, n = 100%m measurements are used. For
t > 1, n = 0.3m measurements are used.

yt = Axt + zt, where A := HΦ, (4)
where H := M1DF1D and Φ := W ′

1D . For our algorithm, we

requireA be satisfying S = (|T |+ 2|∆|) RIP property[3].
Our final goal is to detect the active pixels’ region from the re-

constructed sequence, i.e. detect the region where bt(i, j) > 0.

3. MODIFIED-CS-RESIDUAL

BPDN[1] is the most commonly used method in noisy CS. Modified-

BPDN[19] tries to find the signal sparsest outside of the set T while
satisfying the data constraint. For signal sequences with slow chang-

ing support, we can use T = N̂t−1. When the measurements are

few(smaller than what CS needs), modified-BPDN is known to have

much smaller reconstruction error than that of CS(as long as |∆| and
|∆e| are small) [19].
Furthermore, by using this fact that signal/image also changes

slowly over time, we can apply modified-BPDN on the observation

residual computed using the previous signal estimate (or using the

first signal estimate), i.e. we can solve
argmin

β
‖yt −Axt,temp −Aβ‖22 + γ‖βT c‖1 (5)

with x̂t,temp = x̂t−1 or x̂t,temp = x̂1. The reconstructed signal x̂t

is then given by
x̂t = β̂ + x̂t,temp (6)

We refer the above as modified-CS-residual. If n is small and γ is
not large enough, modified-BPDN will not have a unique minimizer.

Modified-CS-residual in (5) ensures that the chosen minimizer is the

one closest to x̂t,temp. Assuming that x̂t,temp is a good initial es-

timate of xt, this would be the correct one. In our experiments, we

used x̂t,temp = x̂1, the baseline signal at the first frame. The entire

algorithm is summarized in Algorithm 1.

Algorithm 1Modified-CS-residual

Initialization: Do inverse DFT for x1 and set N̂1 = {k : |(x̂1)k| ≥
τ}. For t > 0, do,

1. Modified-CS-residual

(a) Set x̂t,temp = x̂1.
(b) Do Modified-CS-residual. Compute β̂ =

argminβ ‖yt −Ax̂t,temp −Aβ‖22 + γ‖(β)N̂c
t−1

‖1.

(c) Compute the support. Set x̂t = x̂t,temp + β̂ and

compute N̂t = {k : |(x̂t)k| ≥ τ}.

2. Output N̂t and x̂t. Increment t and go to step 1.

4. EXPERIMENTAL RESULTS

In this section, we show experiments on real fMRI sequences. We

evaluate the performance of detection using ‘activation map’, ‘Re-

ceiver operating characteristic(ROC)’ and ’time course’. Two-level

Daubechies-4 2D discrete wavelet transform(DWT) is used as the

sparsifying basis. Nt refers to the 99% energy support of the
wavelet coefficients of each frame. Variable density undersampling

scheme(which samples from a distribution that has more weight on

the low frequencies) [6] is used in our experiments. The sampling

mask, M , is varying for each t. In our experiments, the recon-
struction of the whole sequences takes 4 seconds for all BPDN,
modified-CS-residual, CS-residual, Kt-FOCUSS with 2 iterations.

4.1. Real Brain Sequence(Simulated Activation)

To quantify detection performance using ROC curves, we need to

know the ground truth for active regions. Hence in the first ex-

periment, we captured a rest brain sequence (brain fMRI when no

stimulus was provided to the subject) using a real MR scanner, but

we added the activation later in software. Rest fMRI (TR/TE =
2500/24.3 ms, 90 degree flip angle, 3 mm slick thickness, 22 cm
FOV, 64×64matrix, 90 volumes) was performed using a 3T whole-
body MR scanner and a gradient-echo echo-planar imaging(EPI) ac-

quisition sequence. We added synthetic BOLD contrast at an average

CNR of 4 to pixels corresponding to motor activation on one slice.
The 64× 64 slice image has 23 active pixels. The BOLD signal was
created by convolving a bi-Gamma HDR model (6-s onset delay,
4-s FWHM) with binary-valued function representing a block stim-
ulus (30 s active, 30 s rest; start/end in rest condition). 10 separate
observations were generated by resampling with the wavestrapping

technique[20] the original rest fMRI data and adding activation to

the appropriate pixels to compute descriptive statistics and compute

meaningful performance curves.

We compare modified-CS-residual, Kt-FOCUSS, BPDN, batch-

CS, CS-residual with IDFT using full sampling. CS-residual, an im-

proved version of CS-diff, refers to doing BPDN on the observation

residual computed using the first reconstructed frame. Fig. 2 shows

the ROC curves of all methods. From the figure, it is clear that

modified-CS-residual has the best performance since the its ROC

curve is strictly higher than those of other methods and closest to

full sampling. We do not show N-RMSE plot since it can not show

the detection performance. But modified-CS-residual has similar N-

RMSE as those of Kt-FOCUSS and CS-residual and they are much

smaller than other methods. For Kt-FOCUSS, increasing the number

of iterations will not help improve the detection performance even if

it can reduce N-RMSE. With more iterations, the temporal DC com-

ponent of Kt-FOCUSS reconstruction becomes better while many

other nonzero frequency components are eliminated. Hence, the re-

constructed signal is more ’flat’ with more iterations which worsens

the detection for active pixels but reduces N-RMSE. Similarly, Kt-

FOCUSS with ME/MC also has smaller N-RMSE but worse detec-

tion performance. CS-residual does not use the slow support change,

therefore it has worse detection than modified-CS-residual.

Time courses for one active pixel are shown in Fig. 3. It is

also observed that modified-CS-residual does best to track the time

course of true(fully sampled) signal, thus providing good reconstruc-

tion and detection.
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(a) Full sampling (b) Modified-CS-residual (c) Kt-FOCUSS (d) BPDN

Fig. 4. Comparing activation maps for modified-CS-residual, Kt-FOCUSS, and BPDN with full sampling for each reconstruction. We can

see modified-CS-residual has the closest detected regions to full sampling. Modified-CS-residual only has 1 missing active pixel and 5 false

ones while Kt-FOCUSS has 4 missing and 11 false ones. BPDN has 7 missing active pixels and 2 false ones.

4.2. Real Brain Sequence(Real Activation)

For real data sequences, we cannot use ROC curves to compare the

performances of different methods since no ground truth is avail-

able. Our comparison is based on how the detected activation can

approximate the activation of IDFT using full Fourier samples. Ac-

tivation maps for a given threshold in t-test are used to study the

detected activation. Different from the simulated sequence, the ac-

tivations of the real data are not so ideal. For active brain imaging,

we used the same experimental setup as the one in Sec. 4.1 except

using n = 0.33m measurements for t > 1. The activation maps are
shown in Fig. 4 for the reconstructions using modified-CS-residual,

Kt-FOCUSS and BPDN compared with full sampling when thresh-

old for t-test is set the same for all algorithms. The Bonferroni-

corrected threshold is chosen as 5 computed from the dataset. We
easily observe that modified-CS-residual has most active pixels de-

tected and few false detection while both Kt-FOCUSS and BPDN

has many missing detection.

5. CONCLUSIONS AND FUTUREWORK

We studied the problem of recursively and causally reconstructing a

sequence of fMRI sequences from a reduced number of Fourier mea-

surements. We demonstrated improved reconstruction and activation

pattern detection performance of our proposed solution, modified-

CS-residual on the real fMRI sequences, compared to existing work.

In future, we want to do joint real-time detection and reconstruction

to further improve performance. Also, higher spatial and temporal

resolution sequences will be experimented.
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