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ABSTRACT

We consider the problem of reconstructing time sequences of spa-
tially sparsesignals (with unknown and time-varying sparsity pat-
terns) from alimited numberof linear “incoherent” measurements,
in real-time. The signals are sparse in some transform domain re-
ferred to as the sparsity basis. For a single spatial signal, the solu-
tion is provided by Compressed Sensing (CS). The question that we
address is, for a sequence of sparse signals, can we do better than
CS, if (a) the sparsity pattern of the signal’s transform coefficients’
vector changes slowly over time, and (b) a simple prior model on
the temporal dynamics of its current non-zero elements is available.
The overall idea of our solution is to use CS to estimate the sup-
port set of the initial signal’s transform vector. At future times, run
a reduced order Kalman filter with the currently estimated support
andestimate new additions to the support set by applying CS to the
Kalman innovations or filtering error (whenever it is “large”).

Index Terms/Keywords: compressed sensing, Kalman filter-
ing, compressive sampling, sequential MMSE estimation

1. INTRODUCTION

We consider the problem of reconstructing time sequences of spa-
tially sparsesignals (with unknown and time-varying sparsity pat-
terns) from alimited numberof linear “incoherent” measurements,
in real-time. The signals are sparse in some transform domain re-
ferred to as the “sparsity basis” [1]. A common example of such a
problem is dynamic MRI or CT to image deforming human organs
or to image brain neural activation patterns (in response to stimuli)
using fMRI. The ability to perform real-time MRI capture and recon-
struction can make interventional MR practical [2]. Human organ
images are usually piecewise smooth and thus the wavelet transform
is a valid sparsity basis [1, 3]. Due to strong temporal dependencies,
the sparsity pattern usually changesslowlyover time. MRI captures
a small (sub-Nyquist) number of Fourier transform coefficients of
the image, which are known to be “incoherent” with respect to the
wavelet transform [1, 3]. Other example problems include sequen-
tially estimating optical flow of a single deforming object (sparse in
Fourier domain) from a set of randomly spaced optical flow measure-
ments (e.g. those at high intensity variation points [4]), or real-time
video reconstruction using the single-pixel camera [5].

The solution to the static version of the above problem is pro-
vided by Compressed Sensing (CS) [1, 6, 7]. The noise-free obser-
vations case [1] is exact, with high probability (w.h.p.), while the
noisy case [7] has a small error w.h.p.. But existing solutions for
the dynamic problem [5, 8] treat the entire time sequence as a sin-
gle spatiotemporal signal and perform CS to reconstruct it. This is a
batch solution (need to wait to get the entire observation sequence)
and has very high complexity. An alternative would be to apply CS
at each time separately, which is online and low-complexity, but will
require many more measurements to achieve low error. The question
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that we address is:can we do better than performing CS at each time
separately, if (a) the sparsity pattern (support set) of the transform
coefficients’ vector changes slowly, i.e. every time, none or only a
few elements of the support change, and (b) a prior model on the
temporal dynamics of its current non-zero elements is available.

Our solution is motivated by reformulating the above problem
as causal minimum mean squared error (MMSE) estimation with a
slow time-varying set of dominant basis directions (or equivalently
the support of the transform vector). If the support is known, the
MMSE solution is given by the Kalman filter (KF) [9] for this sup-
port. But what happens if the support is unknown and time-varying?
The initial support can be estimated using CS [7]. If at a given time,
there is an addition to the support set, but we run the KF for the old
model, there will be a model mismatch and the innovation (and fil-
tering) error will increase. Whenever it does,the change in support
can be estimated by running CS on the innovation or the filtering
error, followed by thresholding. A Kalman update step is run using
the new support set. If some coefficients become and remain nearly
zero (or nearly constant), they can be removed from the support set.

If, for a moment, we assume that CS [7] gives the correct esti-
mate of the support at all times, then the above approach will give
the MMSE estimate of the signal at all times. The reason it is very
likely that CS [7] gives the correct estimate is because we use it to
fit a very sparse “model change” signal to the filtering error. Also
note that a full Kalman filter [9], that does not use the fact that the
signal is sparse, is meaningless here, because the number of observa-
tions available is smaller than the signal dimension, and thus many
elements of the signal transform will be unobservable. Unless all
unobservable modes are stable, the error will blow up. Other re-
cent work that also attempts to use prior knowledge with CS, but to
reconstruct only a single signal is [10, 11, 12].

2. THE MODEL AND PROBLEM FORMULATION

Let (zt)m×1 denote the spatial signal of interest at timet and
(yt)n×1, with n < m, denote its observation vector att. The signal,
zt, is sparse in a given sparsity basis (e.g. wavelet) with orthonor-
mal basis matrix,Φm×m, i.e. xt , Φ′zt is a sparse vector (only
St << m elements ofxt are non-zero). Here′ denotes transpose.
The observations are “incoherent” w.r.t. the sparsity basis of the
signal, i.e. yt = Hzt + wt = HΦxt + wt, whereHn×m is
such that the correlation between the columns ofA , HΦ is small
enough to ensure that, for anyS ≤ St, anyS-column sub-matrix of
A is “approximately orthonormal” (its nonzero singular values are
between

√
1− δ to

√
1 + δ for δ < 1) [7]. wt is i.i.d. Gaussian

measurement noise. Thus the measurement model is:

yt = Axt + wt, A , HΦ, wt ∼ N (0, σ2
obsI) (1)

We refer toxt as the state att. Our goal is to get the “best” causal
estimate ofxt (or equivalently of the signal,zt = Φxt) at eacht.

Let Tt denote the the support set ofxt, i.e. the set of its non-
zero coordinates and letSt = size(Tt). In other words,Tt =



[i1, i2, . . . iSt ] whereik are the non-zero coordinates ofxt. For any
setT , let (v)T denote thesize(T ) length sub-vector containing the
elements ofv corresponding to the indices in the setT . For another
set,γ, we also use the notationTγ which treatsT as a vector and
selects the elements ofT corresponding to the indices in the setγ.
For a matrixA, AT denotes the sub-matrix obtained by extracting
the columns ofA corresponding to the indices inT . We use the no-
tation (Q)T1,T2

to denote the sub-matrix ofQ containing rows and
columns corresponding to the entries inT1 andT2 respectively. The
set operations∪, ∩, and\ have the usual meanings (noteT1 \ T2

denotes elements ofT1 not inT2). We use′ to denote transpose.T c

denotes the complement ofT w.r.t. [1 : m], i.e. T c , [1 : m] \ T .
Also ||v||p is thelp norm of the vectorv, i.e. ||v||p , (

∑

i |vi|p)1/p.
Assumption 1. We assume slow changes in sparsity patterns,

i.e. the maximum size of the change in the support set at any time
is smaller (usually much smaller) thanSt at anyt, i.e. Sdiff,max ,
maxt[size(Tt \ Tt−1) + size(Tt−1 \ Tt)] < mint St.

Assumption 2. We also assume thatA satisfiesδ2Smax +
δ3Smax < 1 whereδS is the RIP constant defined in equation 1.3
of [7] andSmax , maxt St. It should be possible to apply the pro-
posed algorithm even under a slightly weaker assumption that only
requiresδ2Smax < 1 (required to ensure anySmax or less column
sub-matrix ofA is full rank and hence the state is observable) and
δ2Sdiff,max

+ δ3Sdiffmax
< 1. This is part of ongoing work.

System Model forxt. For the currently non-zero coefficients of
xt, we assume a spatially i.i.d. Gaussian random walk model, with
noise varianceσ2

sys. At the first time instant at which(xt)i becomes
non-zero, it is assumed to be generated from a zero mean Gaussian
with varianceσ2

init. Thus, we have the model:x0 = 0,

(xt)i = (xt−1)i + (νt)i, (νt)i ∼ N (0, σ2
sys), if i ∈ Tt, i ∈ Tt−1

(xt)i = (xt−1)i + (νt)i, (νt)i ∼ N (0, σ2
init) if i ∈ Tt, i /∈ Tt−1

(xt)i = (xt−1)i if i /∈ Tt (2)

The above model can be compactly written as:x0 = 0,

xt = xt−1 + νt, νt ∼ N (0, Qt),

(Qt)Tt∩Tt−1,Tt∩Tt−1
= σ2

sysI

(Qt)Tt\Tt−1,Tt\Tt−1
= σ2

initI

(Qt)T c
t ,T c

t
= 0 (3)

wherethe setTt is unknown∀t. If Tt were known at eacht, i.e.
the system model was completely defined, the MMSE estimate of
xt from y1, y2, . . . yt would be given by a reduced order KF defined
for (xt)Tt . But, as explained in Sec. 1, in most practical problems,
Tt is in fact unknown and time-varying. Often, it may be possible
to get a rough prior estimate ofT1 by thresholding the eigenvalues
of the covariance ofx1 (possible to do if multiple realizations of
x1 are available to estimate its covariance). But without multiple
i.i.d. realizations of the entire{xt}, which are impossible to obtain
in most cases, it is not possible to get a-priori estimates ofTt for all
t. But note that, it is possible to estimateσ2

sys, σ
2
init for the model

of (3) using just one “training” realization of{xt} (which is usually
easy to get) by setting the near-zero elements to zero in eachxt and
using the rest to obtain an ML estimate.

Assuming known values ofσ2
sys, σ

2
init, our goal here is to get

the best estimates ofTt andxt at eacht usingy1, . . . yt. Specifically,

1. At each time,t, get the best estimate of the support set,Tt,
i.e. get an estimatêTt with smallest possible[size(T̂t \Tt)+

size(T̂t \ Tt)] usingy1, y2 . . . yt.

2. Assuming the estimates ofT1, . . . Tt are perfect (have zero
error), get the MMSE estimate ofxt usingy1, y2 . . . yt.

3. KALMAN FILTERED COMPRESSED SENSING (KF-CS)

We explain Kalman Filtered Compressed Sensing (KF-CS) below.
We misuse notation to also denote the estimated nonzero set byTt.

Running the KF.Assume, for now, that the support set att = 1,
T1, is known. Consider the situation where the first change in the
support occurs at at = ta, i.e. for t < ta, Tt = T1, and that
the change is an addition to the support. This means that fort <
ta, we need to just run a regular KF, which assumes the following
reduced order measurement and system models:yt = AT (xt)T +
wt, (xt)T = (xt−1)T + (νt)T , with T = T1. The KF prediction
and update steps for this model are [9]:x̂0 = 0, P0 = 0,

x̂t|t−1 = x̂t−1

(Pt|t−1)T,T = (Pt−1)T,T + σ2
sysI (4)

Kt,T , (Pt|t−1)T,T A′
T Σ−1

ie,t, Σie,t , AT (Pt|t−1)T,T A′
T + σ2

obsI

(x̂t)T = (x̂t|t−1)T + Kt,T [yt −Ax̂t|t−1]

(x̂t)T c = (x̂t|t−1)T c = (x̂t−1)T c

(Pt)T,T = [I −Kt,T AT ](Pt|t−1)T,T (5)

Detecting If Addition to Support Set Occurred.The Kalman
innovation error is̃yt , yt − Ax̂t|t−1. For t < ta, ỹt = [A(xt −
x̂t|t−1) + wt] ∼ N (0, Σie,t) [9]. At t = ta, a new set,∆, gets
added to the support ofxt, i.e. yt = AT (xt)T + A∆(xt)∆ + wt,
where the set∆ is unknown. Since the old model is used for the KF
prediction,att = ta, ỹt will have non-zero mean,A∆(xt)∆, i.e.

ỹt = A∆(xt)∆ + w̃t = AT c(xt)T c + w̃t, where

w̃t , [AT (xt − x̂t|t−1)T + wt] ∼ N (0, Σie,t) (6)

where∆ ⊆ T c is the undetected nonzero set at the current time.
Thus, the problem of detecting if a new set has been added or not gets
transformed into the problem of detecting if the Gaussian distributed
ỹt has non-zero or zero mean. Note thatA∆(xt)∆ = AT c(xt)T c

and thus the generalized Likelihood Ratio Test (G-LRT) for this
problem simplifies to detecting if the weighted innovation error
norm,IEN , ỹ′

tΣ
−1
ie,tỹt ≷ threshold. Alternatively, one can apply

G-LRT to the filtering error,̃yt,f , yt −Ax̂t. ỹt,f can be written:

ỹt,f = A∆(xt)∆ + AT (xt − x̂t)T + wt

= [I −AT Kt,T ]A∆(xt)∆ + w̃t,f , w̃t,f , [I −AT K]w̃t

w̃t,f ∼ N (0, Σfe,t), Σfe,t , [I −AT Kt,T ]Σie,t[I −AT Kt,T ]′(7)

The filtering error covariance,Σfe,t < Σie,t. Thus, on aver-
age, in ỹt,f , the noise,w̃t,f , is smaller than that iñyt (since
the change,(xt − xt−1)T , has been estimated and subtracted
out), but the new component,A∆(xt)∆, is also partially sup-
pressed. The suppression is small becauseAT Kt,T A∆(xt)∆ =
AT (P−1

t|t−1σ
2
obs + A′

T AT )−1A′
T A∆(xt)∆ (follows by rewriting

Kt,T using the matrix inversion lemma) andA′
T A∆(xt)∆ is small

(because of restricted orthogonality [7, eq. 1.5]). Assuming the
suppression is small enough, usingỹt,f will result in lower misses
for a given false alarm rate. Thus we use G-LRT onỹt,f .

Estimating the New Additions (using CS).If the filtering error
norm,FEN , ỹ′

t,fΣ−1
fe,tỹt,f , is “high”, there is a need to estimate

the new additions’ set,∆. This can be done by applying the Dantzig
selector (DS) [7] tõyt,f followed by thresholding the output of the
DS (as is also done in the Gauss-Dantzig selector), i.e. we compute

β̂t = arg min
β
||β||1, s.t.||A′

T c(ỹt,f −AT cβ)||∞ ≤ λmσobs

∆̂ = (T c)nz, where nz , {i : β̂2
t,i > αa}, (8)



Algorithm 1 Kalman Filtered Compressive Sensing (KF-CS)

Initialization: Setx̂0 = 0, P0 = 0, T0= empty (if unknown) or equal to the known/partially known support. Fort > 0, do,

1. SetT ← Tt−1.

2. KF prediction and update. Run (4) and (5) using the currentT . Compute the filtering error,̃yt,f , yt −Ax̂t.

3. Addition (using CS). ComputeFEN , ỹ′
t,fΣ−1

fe,tỹt,f , and check if it is greater than its threshold. If it is,

(a) Run CS on the filtering error followed by thresholding, i.e. computê∆ using (8) [or use (9)].

(b) The new estimated support isTnew = T ∪ ∆̂.

(c) SetT ← Tnew. Set(Pt|t−1)∆̂,∆̂ = σ2
initI. Run the KF update given in (5) for the currentT .

Performance can be improved by iterating the above four steps untilsize(∆̂) = 0 or FEN less than its threshold.

4. Deletion. Compute the set̂∆D = {i ∈ T :
∑t

τ=t−k+1(x̂τ )2i < kαd}. The new estimated support set isTnew = T \ ∆̂D.

(a) SetT ← Tnew. Set(x̂t)∆D
= 0, (Pt|t−1)∆̂D,[1:m] = 0, (Pt|t−1)[1:m],∆̂D

= 0. Run the KF update given in (5).

5. AssignTt ← T . Output Tt, x̂t and the signal estimate,̂zt = Φx̂t. Incrementt and go to step 1.

λm ,
√

2 log m andαa is the zeroing threshold for addition. Thus,
the new estimated support set isTnew = T ∪ ∆̂. We initialize the
prediction covariance alonĝ∆ as(Pt|t−1)∆̂,∆̂ = σ2

initI. Since it
typically takes a few time instants before a new addition gets de-
tected, it is useful to setσ2

init to a higher value compared toσ2
sys.

Note that the above ignores the fact that the “noise” inỹt,f , w̃t,f ,
is colored and that the “signal” to be estimated is partially suppressed
(explained earlier). Since the suppression is small, the algorithm still
works in practice, but the error bound results for the DS cannot be
applied. Alternatively, as we explain in ongoing work [13], one can
rewrite ỹt,f = Aβt + wt whereβt , [(xt − x̂t)T , (xt)T c ] is a
“sparse-compressible” signal with a “large” nonzero part,(xt)∆, a
“small” or “compressible” nonzero part,(xt − x̂t)T and the zero
part, (xt)(T∪∆)c . Then, DS can be applied to estimate the “large”
nonzero part as follows (this will correctly detect elements whose
value is above the filtering error level):

β̂t = arg min
β
||β||1, s.t. ||A′(ỹt,f −Aβ)||∞ ≤ λmσobs

∆̂ = {i ∈ T c : β̂2
t,i > αa} (9)

As we discuss in [13], the above can be analyzed by adapting The-
orem 1.2 and Theorem 1.3 of [7]. If the sparsity pattern changes
slowly enough and the filtering error is small enough (slow time
varying system), it should be possible to show that performingCS
on the filtering error,ỹt,f , to only detect new additionsis more ac-
curate than performing regular CS at eacht onyt to detect the entire
vectorxt (without using knowledge of the previous support set).

KF Update. We run the KF update given in (5) withT = Tnew.
This can be interpreted as a Bayesian version of Gauss-Dantzig [7].

Iterating CS and KF-update.Often, it may happen that not all
the elements of the true∆ get estimated in one run of the CS step.
To address this, CS and KF update can be iterated untilFEN goes
below a threshold or until̂∆ is empty. But there is also a risk of
adding too many wrong coefficients.

Deleting Near-Zero Coefficients.Over time, some coefficients
may become and remain zero. Alternatively, some coefficients may
wrongly get added in the addition step, due to CS error. In both
cases, the coefficients need to be removed from the support setTt.
One possible way to do this would be to check if(x̂t)

2
i < αd or

to average its value over the last few time instants. When a coeffi-
cient, i, is removed, we need to modifyTt, set(x̂t)i = 0 and set

(Pt|t−1)i,[1:m] = 0 and(Pt|t−1)[1:m],i = 0. As we explain in [13],
to prevent too many deletion errors, deletion should be done only
when the KF has stabilized (Tt has not changed for long enough).

Deleting Constant Coefficients. If a coefficient, i, becomes
constant (this may happen in certain applications), one can keep im-
proving the estimate of its constant value by changing the prediction
step for it to(Pt|t−1)i,i = (Pt−1)i,i. Either one can keep doing this
forever (the error in its estimate will go to zero witht) or one can
assume that the estimation error has become negligibly small after a
finite time and then remove the coefficient index fromTt. It is not
clear what is the correct thing to do in this case.

Initialization. Initially, the support set,T1 may be roughly
known (estimated by thresholding the eigenvalues of the covariance
of x1, which is computable if its multiple realizations are available)
or unknown. We initialize KF-CS by settinĝx0 = 0, P0 = 0 andT0

= roughly known support orT0 = empty (if support is completely
unknown). In the latter case, automatically att = 1, theIEN (or
FEN ) will be large, and thus CS will run to estimateT1.

The entire KF-CS algorithm is summarized in Algorithm 1.

KF-CS Error Analysis. In ongoing work [13], we are work-
ing on finding sufficient conditions under which KF-CS error will
converge to that of the genie-aided KF (KF with known nonzero set
at eacht). This can be used to show KF-CS error stability. The
key idea is to analyze the effect of missed and false additions (or
false and missed deletions). The extra error due to a missed element,
(xt)i , cannot be larger than a constant times the CS error at the cur-
rent time (which itself is upper bounded by a small value w.h.p. [7])
plusαa (due to thresholding). Also, eventually, when the magnitude
of (xt)i becomes large enough (exceeds CS error plus threshold), it
will get detected by CS at that time w.h.p.. Thus, w.h.p., the detec-
tion delay will be finite.

We can prevent too many extra coordinates from getting wrongly
estimated by having a rough idea of the maximum sparsity ofxt and
using thresholding to only select that many, or a few more, high-
est magnitude non-zero elements. The deletion scheme is currently
being improved. Note that if some true element gets missed by
CS (or gets wrongly deleted) because its value was too small, it
will, w.h.p., get detected by CS at a future time. Also, as long as
rank(AT ) > size(T ) for the currently estimatedT (which may
contain some extra coordinates), the estimation error will increase
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Fig. 1. MSE plots of KF-CS (labeled CS-KF by mistake) with initial nonzero set,T1, unknown and known cases, compared against regular
CS in the first 3 figures and against the Full 256-dim KF in the last figure (itsMSE is so large that we cannot plot it in the same scale as
the others). The benchmark (MMSE estimate with knownT1, T5) is the genie-aided KF. The simulated signal’s energy att is E[||xt||22] =
S1σ

2
init + (

∑t
τ=2 Sτ )σ2

sys).

beyond MMSE, but will not blow up.

4. SIMULATION RESULTS

We simulated a time sequence of sparsem=256 length signals,xt,
with maximum sparsitySmax. Three sets of simulations were run
with Smax= 8, 16 and 25. TheA matrix was simulated as in [7] by
generatingn×m i.i.d. Gaussian entries (withn = 72) and normal-
izing each column of the resulting matrix. Such a matrix has been
shown to satisfy the UUP at a levelC log m [7]. The observation
noise variance,σ2

obs = ((1/3)
√

Smax/n)2 (this is taken from [7]).
The prior model onxt was (3) withσ2

init = 9 andσ2
sys = 1. T1

(support set ofx1) was obtained by generatingSmax − 2 unique in-
dices uniformly randomly from[1 : m]. We simulated an increase
in the support att = 5, i.e. Tt = T1, ∀t < 5, while att = 5, we
added two more elements to the support set. Thus,Tt = T5, ∀t ≥ 5
had sizeSmax. Only addition to the support was simulated.

We used the proposed KF-CS algorithm (Algorithm 1), without
the deletion step, to compute the causal estimatex̂t of xt at eacht.
The resulting mean squared error (MSE) at eacht, Ex,y[||xt−x̂t||22],
was computed by averaging over 100 Monte Carlo simulations of the
above model. The same matrix,A, was used in all the simulations,
but we averaged over the joint pdf ofx, y, i.e. we generatedT1, T5,
(νt)Tt , , wt, t = 1, . . . 10 randomly in each simulation. Our sim-
ulation results are shown in Fig. 1(KF-CS is labeled as CS-KF in
plots by mistake). Our benchmark was the genie-aided KF, i.e. an
Smax-order KF with knownT1 andT5, which generates the MMSE
estimate ofxt. We simulated two types of KF-CS methods, one with
knownT1, but unknownT5 and the other with unknownT1 andT5.
Both performed almost equally well forSmax = 8, but asSmax was
increased much beyond the UUP level ofA, the performance of the
unknownT1 case degraded more (the CS assumption did not hold).
We also show comparison with regular CS at eacht, which does not
use the fact thatTt changes slowly (and does not assume knownT1

either). This had much higher MSE than KF-CS. The MSE become
worse for largerSmax. We also implemented the full KF for the
256-dim state vector. This used (3) withQt = σ2

sysI256×256, i.e.
it assumed no knowledge of the sparsity. Since we had only a 72-
length observation vector, the full system is not observable. Since
all non-zero modes are unstable, its error blows up.

5. CONCLUSIONS AND FUTURE DIRECTIONS

To the best of our knowledge, this is the first work on extending
the CS idea tocausallyestimate a time sequence of spatially sparse
signals. We do this by using CS to estimate the signal support at the

initial time instant, followed by running a KF for the reduced order
model, until the innovation or filtering error increases. When it does,
we estimate the “change in support” by running CS on the filtering
error. This has much lower error since the “change” is much sparser
than the actual signal. Open questions to be addressed in future are
(a) the analysis of the stability of KF-CS, (b) comparison of KF-CS
error with that of regular CS, (c) studying how and when to delete
coefficients, (d) KF-CS for compressible signal sequences.
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