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Recursive Dynamic CS: Recursive Recovery of
Sparse Signal Sequences from Compressive

Measurements: A Review
Namrata Vaswani and Jinchun Zhan

Abstract—In this article, we review the literature on recursive
algorithms for reconstructing a time sequence of sparse signals
from a greatly reduced number of linear projection measure-
ments. The signals are sparse in some transform domain referred
to as the sparsity basis, and their sparsity pattern (support
set of the sparsity basis coefficients’ vector) can change with
time. We also summarize the theoretical results (guarantees for
exact recovery and accurate recovery at a given time and for
stable recovery over time) that exist for some of the proposed
algorithms. An important application where this problem occurs
is dynamic magnetic resonance imaging (MRI) for real-time
medical applications such as interventional radiology and MRI-
guided surgery, or in functional MRI to track brain activation
changes.

I. INTRODUCTION

In this article, we review the literature on the design and
analysis of recursive algorithms for causally reconstructing a
time sequence of sparse (or approximately sparse) signals from
a greatly reduced number of linear projection measurements.
The signals are sparse in some transform domain referred to
as the sparsity basis, and their sparsity pattern (support set of
the sparsity basis coefficients’ vector) can change with time.
By “recursive”, we mean use only signal estimate from the
previous time and the current measurements’ vector to get the
current signal’s estimate. A key application where this problem
occurs is dynamic magnetic resonance imaging (MRI) for real-
time medical applications such as interventional radiology and
MRI-guided surgery [1], or in functional MRI to track brain
activation changes. We show an example of a vocal tract
(larynx) MR image sequence in Fig. 1. Notice that the images
are piecewise smooth and hence wavelet sparse. As shown in
Fig 2, their sparsity pattern in the wavelet transform domain
changes with time, but the changes are slow.

Other applications where real-time imaging is needed, and
hence recursive recovery approaches would be useful, include
real-time single-pixel video imaging [2], [3], real-time video
compression/decompression, real-time sensor network based
sensing of time-varying fields [4], or real-time extraction
of the foreground image sequence (sparse image) from a
slow changing background image sequence (well modeled as
lying in a slow-changing low-dimensional subspace of the full
space [5], [6]) using recursive projected compressive sensing
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(ReProCS) [7], [8]. For other potential applications, see [9],
[10]. We explain these applications in Section III-C.

The sparse recovery problem has been studied for a long
time. In the signal processing literature, the works of Mallat
and Zhang [11] (matching pursuit), Chen and Donoho (basis
pursuit) [12], Feng and Bresler [13], [14] (spectrum blind
recovery of multi-band signals), Gorodnistky and Rao [15],
[16] (a reweighted minimum 2-norm algorithm for sparse
recovery) and Wipf and Rao [17] (sparse Bayesian learning
for sparse recovery) were among the first works on this topic.
The papers by Candes, Romberg, Tao and by Donoho [18],
[19], [20] introduced the compressed sensing or compressive
sensing (CS) problem. The idea of CS is to compressively
sense signals and images that are sparse in some known
domain and then use sparse recovery techniques to recover
them. The most important contribution of [18], [19], [20] was
that they provided practically meaningful conditions for exact
sparse recovery using basis pursuit. In the last decade since
these papers appeared, this problem has received a lot of
attention. Very often the terms “sparse recovery” and “CS”
are used interchangeably and we also do this in this article.

Consider the dynamic CS problem, i.e. the problem of
recovering a time sequence of sparse signals. Most of the
initial solutions for this problem consisted of batch algorithms.
These can be split into two categories depending on what
assumption they use on the time sequence. The first category is
batch algorithms that solve the multiple measurements’ vectors
(MMV) problem and these use the assumption that the support
set of the sparse signals does not change with time [21], [22],
[23], [24]. The second category is batch algorithms that treat
the entire time sequence as a single sparse spatiotemporal
signal by assuming Fourier sparsity along the time axis [3],
[25], [26]. However, in many situations neither assumption is
valid: the MMV assumption of constant support over time is
not valid in dynamic MRI (see Fig. 2); the Fourier sparsity
along time assumption is not valid for brain functional MRI
data when studying brain activations in response to stimuli
[27]. Moreover even when these are valid assumptions, batch
algorithms are offline, slower and their memory requirement
increases linearly with the sequence length.

The alternative – solving the CS problem at each time sep-
arately (henceforth referred to as simple-CS) – is online, fast
and low on memory, but it needs many more measurements
for accurate recovery. For dynamic MRI or any of the other
projection imaging applications, this means a proportionally
higher scan time. On the other hand, the computational and
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Original sequence

Fig. 1. We show a dynamic MRI sequence of the vocal tract (larynx)
that was acquired when the person was speaking a vowel.
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(a) slow support changes (adds)
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(b) slow support changes (removals)

Fig. 2. In these figures, Nt refers to the 99%-energy support of the
2D discrete wavelet transform (two-level Daubechies-4 2D DWT) of
the larynx sequence shown in Fig. 1 and of a cardiac sequence. The
99%-energy support size, |Nt|, varied between 6-7% of the image
size in both cases. We plot the number of additions (top) and the
number of removals (bottom) as a fraction of the support size. Notice
that all support change sizes are less than 2% of the support size.

storage complexity of most of the recursive algorithms that
we will discuss below is only as much as that of simple-CS
solutions, but their reconstruction performance is much better.

A. Paper Organization

The rest of this article is organized as follows. We sum-
marize the notation used in the entire paper and provide a
short overview of some of the approaches for solving the
static sparse recovery or compressive sensing (CS) problem
in Section II. Next, in Section III, we define the recursive
recovery problem formulation, discuss its applications and
explain why new approaches are needed to solve it. We split
the discussion of the proposed solutions into two sections.
In Section IV, we describe algorithms that only use slow
support change. In Section V, we discuss algorithms that also
use slow signal value change. Sections VI and VII describe
the theoretical results. Section VI summarizes the key results
for exact reconstruction in the noise-free case. Section VII
gives error bounds in the noisy case as well as key results for
error stability over time (obtaining time-invariant and small
bounds on the error). In Section VIII, we either provide
links for the code to implement an algorithm, or we give
the stepwise algorithm and explain how to set its parameters
in practice. Numerical experiments comparing the various
proposed approaches are shown in Section IX.

In Section X, we provide a detailed discussion of related
problems and their solutions and how some of those can
be used in conjunction with the work described here. Many
open questions for future work are also mentioned here. We
conclude the paper in Section XI.

II. NOTATION AND BACKGROUND

A. Notation

For a set T , we use T c to denote the complement of T
w.r.t. [1,m] := [1, 2, . . .m], i.e. T c := {i ∈ [1,m] : i /∈ T }.
The notation |T | denotes the size (cardinality) of the set T .
The set operation \ denotes set set difference, i.e. for two sets
T1, T2, T1 \ T2 := T1 ∩T c2 . We use ∅ to denote the empty set.

For a vector, v, and a set, T , vT denotes the |T | length
sub-vector containing the elements of v corresponding to the
indices in the set T . Also, ‖v‖k denotes the `k norm of a
vector v. When k = 0, ‖v‖0 counts the number of nonzero
elements in the vector v. If just ‖v‖ is used, it refers to ‖v‖2.

For a matrix M , ‖M‖k denotes its induced k-norm, while
just ‖M‖ refers to ‖M‖2. M ′ denotes the transpose of M
and M† denotes its Moore-Penrose pseudo-inverse. For a tall
matrix, M , M† := (M ′M)−1M ′. For a fat matrix (a matrix
with more columns than rows), A, AT denotes the sub-matrix
obtained by extracting the columns of A corresponding to the
indices in T . We use I to denote the identity matrix.

B. Sparse Recovery or Compressive Sensing (CS)

The goal of sparse recovery or “CS” is to reconstruct an
m-length sparse signal, x, with support N , from an n-length
measurement vector, y := Ax or from y := Ax + w, with
‖w‖2 ≤ ε (noisy case) when A has more columns than rows
(underdetermined system), i.e. n < m. Consider the noise-
free case. Let s = |N |. It is easy to show that this problem is
solved if we can find the sparsest vector satisfying y = Aβ,
i.e. if we can solve

min
β
‖β‖0 subject to y = Aβ (1)

and if any set of 2s columns of A are linearly independent
[19]. However doing this is impractical since it requires a
combinatorial search. The complexity of solving (1) is O(ms),
i.e. it is exponential in the support size. In the last two
decades, many practical (polynomial complexity) approaches
have been developed. Most of the classical approaches can be
split as follows (a) convex relaxation approaches, (b) greedy
algorithms, (c) iterative thresholding methods, and (d) sparse
Bayesian learning (SBL) based methods. We explain the key
ideas of these approaches below. We should mention that,
besides these, there are many more solution approaches which
are not reviewed here.

The convex relaxation approaches are also referred to as `1
minimization and these replace the `0 norm in (1) by the `1
norm which is the closest norm to `0 that is convex. Thus, in
the noise-free case, one solves

min
β
‖β‖1 subject to y = Aβ (2)

The above program is referred to as basis pursuit (BP) [12].
Since this was the program analyzed in the first two CS papers,
some later works just use the term “CS” when referring to it.
In the noisy case, the constraint is replaced by ‖y−Aβ‖2 ≤ ε
where ε is the bound on the `2 norm of the noise, i.e.,

min
β
‖β‖1 subject to ‖y −Aβ‖2 ≤ ε (3)
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This is referred to as BP-noisy. In practical problems where
the noise bound may not be known, one can solve an uncon-
strained version of this problem by including the data term
as what is often called a “soft constraint” (the Lagrangian
version); the resulting program is also faster to solve:

min
β
γ‖β‖1 + 0.5‖y −Aβ‖22 (4)

The above is referred to as BP denoising (BPDN) [12].
Another class of solutions for the CS problem consists of

greedy algorithms. These get an estimate of the support of
x, and of x, in a greedy fashion. This is done by finding
one, or a set of, indices “contributing the maximum energy”
to the measurement residual from the previous iteration. We
summarize below the simplest greedy algorithm - orthogonal
matching pursuit (OMP) to explain this idea. The first known
greedy algorithm is Matching Pursuit [11] and this was a
precursor to OMP [28]. OMP assumes that the columns of
A have unit norm. As we explain below in Remark 2.1, when
this is not true, there is a simple fix. OMP proceeds as follows.
Let x̂k denote the estimate of x and let N̂ k denote the estimate
of its support N at the kth iteration. Also let rk denote the
measurement residual at iteration k. Initialize with N̂ 0 = ∅
and r0 = y, i.e. initialize the measurement residual with the
measurement itself. For each k ≥ 1 do

1) Compute the index i for which Ai has maximum corre-
lation with the previous residual and add it to the support
estimate, i.e. compute î = arg maxi |A′irk−1| and update
N̂ k ← N̂ k−1 ∪ {̂i}.

2) Compute x̂k as the LS estimate of x on N̂ k and use
to compute the new measurement residual, i.e. x̂k =
IN̂kAN̂k

†y and rk = y −Ax̂k.
3) Stop when k equals the support size of x or when ‖rk‖2

is small enough. Output N̂ k, x̂k.
Remark 2.1 (unit norm columns of A): Any matrix can be

converted into a matrix with unit `2-norm columns by right
multiplying it with a diagonal matrix D that contains ‖ai‖−1

2

as its entries. Here ai is the i-th column of A. Thus, for any
matrix A, Anormalized = AD. Whenever normalized columns
of A are needed, one can rewrite y = Ax as y = ADD−1x =
Anormalizedx̃ and first recover x̃ from y and then obtain x = Dx̃.

A third solution approach is called Iterative Hard Thresh-
olding or IHT [29], [30]. This is an iterative algorithm that
proceeds by hard thresholding the current “estimate” of x to
s largest elements. Let Hs(a) denote the hard thresholding
operator which zeroes out all but the s largest elements of the
vector a. Let x̂k denote the estimate of x at the kth iteration.
Then IHT proceeds as follows.

x̂0 = 0

x̂k+1 =Hs(x̂
k +A′(y −Ax̂k)) (5)

Another commonly used approach to solving the sparse re-
covery problem is sparse Bayesian learning (SBL) [31], [17].
SBL was first developed for sparse recovery in Wipf and Rao
[17]. In SBL, one models the sparse vector x as consisting
of independent Gaussian components with zero mean and
variances γi for the i-th component. The observation noise

is assumed to be i.i.d. Gaussian with variance σ2. It then
develops an expectation maximization (EM) algorithm to
estimate the hyper-parameters {σ2, γ1, γ2, . . . γm} from the
observation vector y using evidence maximization (type-II
maximum likelihood). Since x’s are sparse, it is shown that the
estimates of a lot of the γi’s will be zero or nearly zero (and
can be zeroed out). Once the hyper-parameters are estimated,
SBL computes the MAP estimate of x (which is a simple
closed form expression under the assumed joint Gaussian
model).

C. Restricted Isometry Property and Null Space Property

In this section we describe properties introduced in recent
work that are either sufficient or necessary and sufficient to
ensure exact sparse recovery in the noise-free case.

The Restricted Isometry Property (RIP) which was intro-
duced in [19] is defined as follows.

Definition 2.2: A matrix A satisfies the RIP of order s if
its restricted isometry constant (RIC) δs(A) < 1 [19]. The
restricted isometry constant (RIC), δs(A), for a matrix A, is
the smallest real number satisfying

(1− δs)‖c‖2 ≤ ‖AT c‖2 ≤ (1 + δs)‖c‖2 (6)

for all subsets T ⊆ [1,m] of cardinality |T | ≤ s and all real
vectors c of length |T | [19].

It is easy to see that (1 − δs) ≤ ‖AT ′AT ‖ ≤ (1 + δs),
‖(AT ′AT )−1‖ ≤ 1/(1− δs) and ‖AT †‖ ≤ 1/

√
(1− δs).

Definition 2.3: The restricted orthogonality constant (ROC),
θs,s̃, for a matrix A, is the smallest real number satisfying

|c1′AT1

′AT2
c2| ≤ θs,s̃ ‖c1‖ ‖c2‖ (7)

for all disjoint sets T1, T2 ⊆ [1,m] with |T1| ≤ s, |T2| ≤ s̃,
s+ s̃ ≤ m, and for all vectors c1, c2 of length |T1|, |T2| [19].

It is not hard to show that ‖AT1

′AT2‖ ≤ θs,s̃ [32] and that
θs,s̃ ≤ δs+s̃ [19].

The following result was proved in [33].
Theorem 2.4 (Exact recovery and error bound for BP and

BP-noisy): In the noise-free case, i.e. when y := Ax, if
δs(A) <

√
2 − 1, the solution of BP, (2), achieves exact

recovery.
Consider the noisy case, i.e., y := Ax+ w with ‖w‖2 ≤ ε

Denote the solution of BP-noisy, (3), by x̂. If δs(A) < 0.207,
then

‖x− x̂‖2 ≤ C1(s)ε ≤ 7.50ε where C1(k) :=
4
√

1 + δk
1− 2δk

With high probability (whp), random Gaussian matrices and
various other random matrix ensembles satisfy the RIP of
order s whenever the number of measurements n is of the
order of s logm and m is large enough [19].

Null space property (NSP) is another property used to prove
results for exact sparse recovery [34], [35]. NSP ensures that
every vector v in the null space of A is not too sparse.

Definition 2.5: A matrix A is said to satisfy the null space
property (NSP) of order s if for any vector v in the null space
of A,

‖vS‖1 < 0.5‖v‖1, for all sets S with |S| ≤ s
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NSP is known to be a necessary and sufficient condition for
exact recovery of s-sparse vectors [34], [35].

III. THE PROBLEM, APPLICATIONS AND MOTIVATION

We describe the problem setting in Sec III-A. In Sec III-B
we explain why new techniques are needed to solve this
problem. Applications are described in Sec III-C.

A. Problem Definition

The goal of the work reviewed in this article is to de-
sign recursive algorithms for causally reconstructing a time
sequence of sparse signals from a greatly reduced number
of measurements at each time. To be more specific, we
would like to develop approaches that provably require fewer
measurements for exact or accurate recovery compared to
simple-CS solutions. This problem was first introduced in [36],
[32]. In this paper, we use “simple-CS” to refer to the problem
of recovering each sparse signal in a time sequence separately
from its measurements’ vector.

Let t denote the discrete time index. We would like to
recover the sparse vector sequence {xt} from undersampled
and possibly noisy measurements {yt} satisfying

yt := Atxt + wt, ‖wt‖2 ≤ ε (8)

where At := HtΦ is an n×m matrix with n < m (fat matrix).
Here Ht is the measurement matrix and Φ is an orthonormal
matrix for the sparsity basis or it can be a dictionary matrix.
In the above formulation, zt := Φxt is actually the signal (or
image) whereas xt is its representation in its sparsity basis.

We use Nt to denote the support set of xt, i.e.

Nt := {i : (xt)i 6= 0}.

When we say xt is sparse, it means that |Nt| � m.
The goal is to “recursively” reconstruct xt from

y0, y1, . . . yt, i.e. use only x̂t−1 and yt for reconstructing xt.
In the rest of this article, we often refer to this problem as the
“recursive recovery” problem.

In order to solve this problem using fewer measurements
than those needed for simple-CS techniques, one can use the
practically valid assumption of slow support (sparsity pattern)
change [36], [32], [37], i.e.,

|Nt \ Nt−1| ≈ |Nt−1 \ Nt| � |Nt|. (9)

Notice from Fig. 2 that this is valid for dynamic MRI se-
quences.

A second assumption that can also be exploited in cases
where the signal value estimates are reliable enough (or it is
at least known how reliable the signal values are), is that of
slow signal value change, i.e.

‖(xt − xt−1)Nt−1∪Nt‖2 � ‖(xt)Nt−1∪Nt‖2. (10)

This is, of course, is a commonly used assumption in almost
all past work on tracking algorithms as well as in work on
adaptive filtering algorithms.

B. Motivation: why are new techniques needed?

One question that comes to mind when thinking about how
to solve the recursive recovery problem is why is a new set of
approaches needed and why can we not use adaptive filtering
ideas applied to simple-CS solutions? This was also a question
raised by an anonymous reviewer.

The reason is as follows. Adaptive filtering relies on slow
signal value change which is the only thing one can use for
dense signal sequences. This can definitely be done for sparse
and approximately sparse (compressible) signal sequences as
well, and does often result in good experimental results. How-
ever sparse signal sequences have more structure that can often
be exploited to (i) get better algorithms and (ii) prove stronger
results about them. For example, as we explain next, adaptive
filtering based recursive recovery techniques do not allow for
exact recovery using fewer measurements than what simple-
CS solutions need. Also, even when adaptive filtering based
techniques work well enough, one cannot obtain recovery error
bounds for them under weak enough assumptions without
exploiting an assumption specific to the current problem, that
of sparsity and slow sparsity pattern change.

Adaptive filtering ideas can be used to adapt simple-CS
solutions in one of the following fashions. BP and BP-noisy
can be replaced by the following

β̂= arg min
β

[‖β‖1 s.t. ‖yt −Ax̂t−1 −Aβ‖2 ≤ ε]

x̂t = x̂t−1 + β̂ (11)

with setting ε = 0 in the noise-free case. The above was
referred as CS-residual in [38] (where the authors first ex-
plained why this could be significantly improved by using the
slow support change assumption). However, this is a misnomer
(that is used because BP is often referred to as “CS”), and one
should actually refer to the above as BP-residual. Henceforth,
we refer to it as CS-residual(BP-residual).

Next consider IHT. It can be adapted in one of two possible
ways. The first is similar to the above: replace y by yt−Ax̂t−1

and x by βt := (xt − x̂t−1) in (5). Once βt is recovered,
recover xt by adding x̂t−1 to it. An alternative and simpler
approach is to adapt IHT as follows.

x̂0
t = x̂t−1

x̂kt =Hs(x̂
k−1
t +A′(yt −Ax̂k−1

t )). (12)

We refer to the above as IHT-residual.
Both the above solutions are using the assumption that

the difference xt − xt−1 is small. More generally, in some
applications, xt − xt−1 can be replaced by the prediction
error vector, (xt− f(xt−1)) where f(.) is a known prediction
function. However, notice that if xt and xt−1 (or f(xt−1)) are
k-sparse, then the prediction error vector will also be at least
k-sparse unless the prediction error is exactly zero along one or
more coordinates. There are very few practical situations, e.g.,
quantized signal sequences [39] and a very good prediction
scheme, where one can hope to get perfect prediction along
a few dimensions. In most other cases, the prediction error
vector will have support size k or larger. In all the results
known so far, the sufficient conditions for exact recovery (or,
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equivalently, the number of measurements needed to guarantee
exact recovery) in a sparse recovery problem depend only
on the support size of the sparse vector, e.g., see [19], [33],
[29], [30]. Thus, when using either CS-residual(BP-residual)
or IHT-residual, this number will be as much or more than
what simple-CS solutions (e.g., BP or IHT) need. A similar
thing is also observed in Monte Carlo based computations of
the probability of exact recovery, e.g., see Fig. 3(a). Notice
that both BP and CS-residual(BP-residual) need the same n
for exact recovery with (Monte Carlo) probability one. On the
other hand, solutions that exploit slow support change such
as modified-CS(modified-BP) and weighted-`1 need a much
smaller n.

C. Applications

As explained earlier an important application where re-
cursive recovery with a reduced number of measurements is
desirable is in real-time dynamic MR image reconstruction
from a highly reduced set of measurements. Since MR data is
acquired one Fourier projection at a time, the ability to accu-
rately reconstruct using fewer measurements directly translates
into reduced scan times. Shorter scan times along with online
(causal) and fast (recursive) reconstruction can enable real-
time imaging of fast changing physiological phenomena, thus
making many interventional MRI applications such as MRI-
guided surgery practically feasible [1]. Cross-sectional images
of the brain, heart, larynx or other human organ images
are piecewise smooth, and thus approximately sparse in the
wavelet domain. In a time sequence, their sparsity pattern
changes with time, but quite slowly [36].

In undersampled dynamic MRI, Ht is the partial Fourier
matrix (consists of a randomly selected set of rows of the 2D
discrete Fourier transform (DFT) matrix). If all images are
rearranged as 1D vectors (for ease of understanding and for
ease of using standard convex optimization toolboxes such as
CVX), the measurement matrix

Ht = Mt(Fm1
⊗ Fm2

)

where Fm is the m-point discrete Fourier transform (DFT)
matrix, ⊗ denotes Kronecker product and Mt is a random
row selection matrix (if Ot contains the set of indices of the
observed discrete frequencies at time t, then Mt = IOt

′).
Let z be an m = m1m2 length vector that contains an
m1 × m2 image arranged as a vector (column-wise). Then
(Fm1

⊗ Fm2
)z returns a vector that contains the 2D DFT of

this image. Medical images are often well modeled as being
wavelet sparse and hence Φ is the inverse 2D discrete wavelet
transform (DWT) matrix. If Wm is the inverse DWT matrix
corresponding to a chosen 1D wavelet, e.g. Haar, then

Φ = Wm1
⊗Wm2

.

Thus Φ−1z = Φ′z returns the 2D-DWT of the image. In
undersampled dynamic MRI, the measurement vector yt is
the observed Fourier coefficients of the vectorized image of
interest, zt, and the vector xt is the 2D DWT of zt. Thus
yt = Atxt + wt where At = HtΦ with Ht and Φ as defined

above. Slow support change of the wavelet coefficients vector,
xt, of medical image sequences is verified in Fig. 2.

In practice for large-sized images the matrix Ht as ex-
pressed above becomes too big to store in memory. Hence
computing the 2D-DFT as Fm1XFm2

′ where X is the image
(matrix) is much more efficient. The same is true for DWT and
its inverse. Moreover, in most cases, for large sized images,
one needs algorithms that implement DFT or DWT directly
without having to store the measurement matrix in memory.
The only thing stored in memory is the set of indices of the
observed entries, Ot. The algorithms do not compute Fmx and
F ′mz as matrix multiplications, but instead do this using a fast
DFT (FFT) and inverse FFT algorithm. The same is done for
the DWT and its inverse operations.

In single-pixel camera based video imaging, zt is again
the vectorized image of interest which can be modeled as
being wavelet sparse, i.e. Φ is as above. In this case, the
measurements are random-Gaussian or Rademacher, i.e. each
element of Ht is either an independent and identically dis-
tributed (i.i.d.) Gaussian with zero mean and unit variance or
is i.i.d. ±1 with equal probability of 1 or −1.

In real-time extraction of the foreground image sequence
(sparse image) from a slow changing background image se-
quence (well modeled as lying in a low-dimensional space
[5]) using recursive projected compressive sensing (ReProCS)
[7], [40], [6], zt = xt is the foreground image sequence. The
foreground images are sparse since they usually contains one
or a few moving objects. Slow support change is often valid for
them (assuming objects are not moving too fast compared to
the camera frame rate), e.g., see [40, Fig 1c]. For this problem,
Φ = I (identity matrix) and At = Ht = I− P̂t−1P̂t−1

′ where
P̂t−1 is a tall matrix with orthonormal columns that span the
estimated principal subspace of the background images. We
describe this algorithm in detail in Section X-B1.

In the first two applications above, the image is only
compressible (approximately sparse). Whenever we say “slow
support change”, we are referring to the changes in the b%-
energy-support (the largest set containing at most b% of the
total signal energy). In the third application, the foreground
image sequence to be recovered is actually an exactly sparse
image. Due to correlated motion over time, very often the
support sets do indeed change slowly over time.

IV. EXPLOITING SLOW SUPPORT CHANGE: SPARSE
RECOVERY WITH PARTIAL SUPPORT KNOWLEDGE

Recall that when defining the recursive recovery problem,
we introduced two assumptions that are often valid in practice
- slow support change and slow nonzero signal value change.
In problems where the signal value estimate from the previous
time instant is not reliable (or, more importantly, if it is not
known how reliable it is), it should not be used.

In this section, we describe solutions to the recursive
recovery problem that only exploit the slow support change
assumption, i.e. (9). Under this assumption this problem can
be reformulated as one of sparse recovery using partial
support knowledge. We can use the support estimate obtained
from the previous time instant, N̂t−1, as the “partial support
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knowledge”. If the support does not change slowly enough,
but the change is still highly correlated, one can predict the
support by using the correlation model information applied to
the previous support estimate [8] (as explained in Sec IV-G).
We give the reformulated problem in Sec IV-A followed by
the proposed solutions for it. Support estimation is discussed
in Sec IV-F. Finally, in Sec IV-G, we summarize the resulting
algorithms for the original recursive recovery problem.

A. Reformulated problem: Sparse recovery using partial sup-
port knowledge

The goal is to recover a sparse vector, x, with support setN ,
either from noise-free undersampled measurements, y := Ax,
or from noisy measurements, y := Ax+ w, when partial and
possibly erroneous support knowledge, T , is available. This
problem was introduced in [41], [37].

The true support N can be rewritten as

N = T ∪∆ \∆e where ∆ := N \ T , ∆e := T \ N

Let
s := |N |, k := |T |, u := |∆|, e := |∆e|

It is easy to see that

s = k + u− e

The set ∆ contains the misses in the support knowledge and
the set ∆e is the extras in it. We say the support knowledge
is accurate if u� s and e� s.

This problem is also of independent interest, since in many
static sparse recovery applications, partial support knowledge
is often available. For example, when using wavelet sparsity
for an image with very little black background (most of its
pixel are nonzero), most of its wavelet scaling coefficients will
also be nonzero. Thus, the set of indices of the wavelet scaling
coefficients could serve as accurate partial support knowledge.

B. Least Squares CS-residual (LS-CS) or LS-BP

The Least Squares CS-residual (LS-CS), or more precisely
the LS BP-residual (LS-BP), algorithm [42], [32] can be
interpreted as the first solution for the above problem. It starts
with computing an initial LS estimate of x, x̂init, by assuming
that its support set is equal to T . Using this, it solves the CS-
residual(BP-residual) problem followed by adding its solution
to x̂init:

x̂init = IT (AT
′AT )−1AT

′yt (13)
x̂= x̂init + [arg min

b
‖b‖1 s.t. ‖y −Ax̂init −Ab‖2 ≤ ε] (14)

This is followed by support estimation and computing a final
LS estimate on the estimated support as described in Sec
IV-F. The dynamic LS-CS(LS-BP) algorithm is summarized
in Algorithm 1.

Notice that the signal residual, β := x− x̂init satisfies

β= IT (AT
′AT )−1AT

′(A∆x∆ + w) + I∆x∆

When A satisfies the RIP or order at least |T | + |∆|,
‖AT ′A∆‖2 ≤ θ|T |,|∆| is small. If the noise w is also small,

Algorithm 1 Dynamic LS-CS
Parameters: ε, αadd, αdel
BP-noisy. At t = 0, compute x̂0 as the solution of
minb ‖b‖1 s.t. ‖y − Ab‖2 ≤ ε and compute its support by
thresholding: N̂0 = {i : |(x̂0)i| > α}.
For t > 0 do

1) Set T = N̂t−1

2) `1-min with partial support knowledge. Solve (14) with
x̂init given by (13).

3) Support Estimation via Add-LS-Del.

Tadd =T ∪ {i ∈ T c : |(x̂t)i| > αadd}
(x̂add)Tadd =ATadd

†yt, (x̂add)T cadd
= 0

N̂t =Tadd \ {i ∈ T : |(x̂add)i| ≤ αdel} (15)

4) Final LS Estimate.

x̂t,final = IN̂tAN̂t
†yt (16)

clearly βT := IT ′β will be small and hence β will be
approximately supported on ∆. Under slow support change,
|∆| � |N | and this is why one expects LS-CS to have smaller
reconstruction error than BP-noisy when fewer measurements
are available [32].

However, notice that the support size of β is |T | + |∆| ≥
|N |. Since the number of measurements required for exact
recovery is governed by the exact support size, LS-CS is
not able to achieve exact recovery using fewer noiseless
measurements than those needed by BP-noisy.

C. Modified-CS(modified-BP)

The search for a solution that achieves exact reconstruction
using fewer measurements led to the modified-CS idea [41],
[37]. To understand the approach, suppose first that ∆e is
empty, i.e. N = T ∪ ∆. Then the sparse recovery problem
becomes one of trying to find the vector b that is sparsest
outside the set T among all vectors that satisfy the data
constraint. In the noise-free case, this can be written as

min
b
‖bT c‖0 s.t. y = Ab

The above is referred to as the modified-`0 problem [41], [37].
The above also works if ∆e is not empty. It is easy to show
that it can exactly recover x in the noise-free case if every set
of |T | + 2|∆| = s + 2u = s + u + e = |N | + |∆e| + |∆|
columns of A are linearly independent [37, Proposition 1]. In
comparison, the original `0 program, (1), requires every set
of 2s columns of A to be linearly independent [19]. This is a
much stronger requirement when u ≈ e� s.

Like simple `0, the modified-`0 program also has exponen-
tial complexity, and hence we can again replace it by the `1
program, i.e. solve

arg min
b
‖bT c‖1 s.t. y = Ab (17)

The above was referred to as modified-CS in [41], [37]
where it was first introduced. However, to keep a uniform
nomenclature, it should be called modified-BP. In the rest of
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this paper, we call it modified-CS(modified-BP). Once again,
the above program works, and can provably achieve exact
recovery, even when ∆e is not empty. In early 2010, we learnt
about an idea similar to modified-CS(modified-BP) that was
briefly mentioned in the work of von Borries et al [43], [44].

It has been shown [41], [37] that if δ|T |+2|∆| ≤ 1/5
then modified-CS(modified-BP) achieves exact recovery in the
noise-free case. We summarize this and other results for exact
recovery in Sec VI. For noisy measurements, one can relax
the data constraint as

min
b
‖bT c‖1 s.t. ‖y −Ab‖2 ≤ ε (18)

This is referred to as modified-CS-noisy(modified-BP-noisy).
Alternatively, as in BPDN, one can add the data term as a
soft constraint to get an unconstrained problem (which is less
expensive to solve):

min
b
γ‖bT c‖1 + 0.5‖y −Ab‖22 (19)

We refer to this as modified-BPDN [45], [38]. The complete
stepwise algorithm for modified-CS-noisy(modified-BP-noisy)
is given in Algorithm 2, while that for mod-BPDN is given in
Algorithm 5.

1) Reinterpreting Modified-CS(modified-BP) [46]: The fol-
lowing interesting interpretation of modified-CS(modified-BP)
is given by Bandeira et al [46]. Assume that AT is full rank
(this is a necessary condition in any case). Let PT ,⊥ denote a
projection onto the space perpendicular to AT , i.e. let

PT ,⊥ := (I −AT (AT
′AT )−1A′T ).

Let ỹ := PT ,⊥y, Ã := PT ,⊥AT c and x̃ := xT c . Then
Modified-CS(modified-BP) can be interpreted as finding a |∆|-
sparse vector x̃ := xT c of length m−|T | from ỹ := Ãx̃. One
can then recover xT as the (unique) solution of AT xT =
y − AT cxT c . More precisely let x̂modcs denote the solution
of modified-CS(modified-BP), i.e. (17). Then,

(x̂modcs)T c = arg min
b
‖b‖1 s.t. (PT ,⊥y) = (PT ,⊥AT c)b,

(x̂modcs)T = (AT )†(y −AT c(x̂modcs)T c)

This interpretation can then be used to define a partial NSP
or a partial RIC, e.g., the partial RIC is defined as follows.

Definition 4.1: We refer to δku as the partial RIC for a matrix
A if, for any T with |T | ≤ k, AT is full column rank and δku
is the order u RIC of the matrix (PT ,⊥AT c).

With this, any of the results for BP or BP-noisy can be
directly applied to get a result for modified-CS(modified-BP).
While the above is a very nice interpretation of modified-
CS(modified-BP), the exact recovery conditions obtained this
way are not too different from those obtained directly.

2) Truncated basis pursuit: The modified-CS(modified-BP)
program has been used in the parallel work of Wang and
Yin [47] for a different purpose. They call it truncated basis
pursuit and use it iteratively to improve the recovery error
for regular sparse recovery. In the zeroth iteration, they solve
the BP program and estimate the estimated signal’s support by
thresholding. This is then used to solve modified-CS(modified-
BP) in the second iteration and the process is repeated with a
specific support threshold setting scheme.

D. Weighted-`1

The weighted-`1 program studied in the work of Khajehne-
jad et al [48], [49] (that appeared in parallel with modified-CS
[41], [37]) and the later work of Friedlander et al [50] can be
interpreted as a generalization of the modified-CS(modified-
BP) idea. Their idea is to partition {1, 2, . . .m} into sets
T1, T2, . . . Tq and to assume that the percentage of nonzero
entries in each set is known. They then use this knowledge to
weight the `1 norm along each of these sets differently. The
performance guarantees are obtained for the two set partition
case, i.e. q = 2. Using our notation, the two set partition can
be labeled T , T c. In this case, weighted-`1 solves

min
b
‖bT c‖1 + τ‖bT ‖1 s.t. y = Ab (20)

In situations where it is known that the support of the true sig-
nal x contains the known part T , modified-CS(modified-BP),
i.e. τ = 0 in the above, is the best thing to solve. However,
in general, the known part T also contains some extra entries,
∆e. As long as |∆e| is small, modified-CS(modified-BP) still
yields significant advantage over BP and cannot be improved
much further by weighted-`1. Weighted-`1 is most useful when
the set ∆e is large. We discuss the exact recovery conditions
for weighted-`1 in Sec VI.

In the noisy case, one either solves weighted-`1-noisy:

min
b
‖bT c‖1 + τ‖bT ‖1 s.t. ‖y −Ab‖2 ≤ ε (21)

or the unconstrained version, weighted-`1-BPDN:

min
b
γ‖bT c‖1 + γτ‖bT ‖1 + 0.5‖y −Ab‖22 (22)

The complete stepwise algorithm for weighted-`1-noisy is
given in Algorithm 3, while that for weighted-`1-BPDN is
given in Algorithm 6.

E. Modified Greedy Algorithms and Modified-IHT

The modified-CS(modified-BP) idea can also be used to
modify other approaches for sparse recovery. This has been
done in recent work by Stankovic et al and Carillo et al
[51], [52] with encouraging results. They have developed and
evaluated OMP with partially known support (OMP-PKS)
[51], Compressive Sampling Matching Pursuit (CoSaMP)-
PKS and IHT-PKS [52]. The greedy algorithms (OMP and
CoSaMP) are modified as follows. Instead of starting with an
initial empty support set, one starts with T as being the initial
support set. For OMP this can be a problem unless T ⊆ N
and hence OMP only solves this special case. For CoSaMP,
this is not a problem because there is a step where support
entries are deleted too.

IHT is modified as follows. Let k = |T |. Then we iterate
as

x̂0 = 0

x̂k+1 = (x̂k)T +Hs−k((x̂k +A′(y −Ax̂k))T c)

The above is referred to as IHT-PKS. The authors also bound
its error by modifying the result for IHT.
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F. Support Estimation: thresholding and add-LS-del

In order to use any of the approaches described above for
recursive recovery, we need to use the support estimate from
the previous time as the set T . Thus, we need to estimate the
support of the sparse vector at each time. The simplest way
to do this is by thresholding, i.e. we compute

N̂ = {i : |(x̂)i| > α}

where α ≥ 0 is the zeroing threshold. In case of exact
reconstruction, i.e. if x̂ = x, we can use α = 0. In other
situations, we need a nonzero value. In case of very accurate
reconstruction, we can set α to be a little smaller than the
magnitude of the smallest nonzero element of x (assuming its
rough estimate is available) [37]. This will ensure close to zero
misses and few false additions. In general, α should depend on
both the noise level and the magnitude of the smallest nonzero
element of x.

For compressible signals, one should do the above but with
“support” replaced by the b%-energy support. For a given
number of measurements, b can be chosen to be the largest
value so that all elements of the b%-energy support can be
exactly reconstructed [37].

In all of LS-CS(LS-BP), modified-CS(modified-BP) and
weighted-`1, it can be argued that the estimate x̂ is a biased
estimate of x: it is biased towards zero along ∆ and away
from zero along T [32], [53] and as a result the threshold α
is either too low and does not delete all extras (subset of T )
or is too high and does not detect all misses. A partial solution
to this issue is provided by the Add-LS-Del approach:

Tadd = T ∪ {i : |(x̂)i| > αadd} (23)
x̂add = ITaddATadd

†y (24)
N̂ =Tadd \ {i : |(x̂add)i| ≤ αdel} (25)

The addition step threshold, αadd, needs to be just large enough
to ensure that the matrix used for LS estimation, ATadd is well-
conditioned. If αadd is chosen properly and if the number of
measurements, n, is large enough, the LS estimate on Tadd will
have smaller error, and will be less biased, than x̂. As a result,
deletion will be more accurate when done using this estimate.
This also means that one can use a larger deletion threshold,
αdel, which will ensure deletion of more extras.A similar issue
for noisy CS, and a possible solution (Gauss-Dantzig selector),
was first discussed in [54].

Support estimation is usually followed by LS estimation
on the final support estimate, in order to get a solution with
reduced bias (Gauss-Dantzig selector idea) [54].

G. Dynamic modified-CS(modified-BP), weighted-`1, LS-CS

For recursive recovery, the simplest way to use the above
algorithms is to use them with T = N̂t−1 where N̂t−1 is the
estimated support of x̂t−1. We summarize the complete dy-
namic LS-CS algorithm in Algorithm 1, the dynamic modified-
CS(modified-BP) algorithm in Algorithm 2 and the dynamic
weighted `1 algorithm in Algorithm 3. All of these are stated
for the noisy case problem. By setting ε = 0 and the support
threshold α = 0, we get the corresponding algorithm for the
noise-free case.

Algorithm 2 Dynamic Modified-CS(modified-BP)-noisy
Parameters: ε, α
BP-noisy. At t = 0, compute x̂0 as the solution of
minb ‖b‖1 s.t. ‖y − Ab‖2 ≤ ε and compute its support by
thresholding: N̂0 = {i : |(x̂0)i| > α}.
For t > 0 do

1) Set T = N̂t−1

2) Modified-CS(modified-BP)-noisy. Compute x̂t as the
solution of

min
b
‖bT c‖1 s.t. ‖y −Ab‖2 ≤ ε

3) Support Estimation - Simple Thresholding.

N̂t = {i : |(x̂t)i| > α} (26)

Parameter setting in practice: Set α = 0.25xmin (or some
appropriate fraction) where xmin is an estimate of the smallest
nonzero entry of xt. One can get this estimate from training
data or one can use the minimum nonzero entry of x̂t−1 to
set α at time t. Set ε using a short initial noise-only training
sequence or approximate it by ‖yt−1−At−1x̂t−1‖2. Also see
Section VIII.
Note: For compressible signal sequences, the above algorithm
is the best. For exactly sparse signal sequences, it is better
to replace the support estimation step by the Add-LS-Del
procedure and the final LS step from Algorithm 1. See
discussion in Section VIII on setting its parameters.

Algorithm 3 Dynamic Weighted-`1-noisy
Parameters: τ , ε, α
BP-noisy. At t = 0, compute x̂0 as the solution of
minb ‖b‖1 s.t. ‖y − Ab‖2 ≤ ε and compute its support by
thresholding: N̂0 = {i : |(x̂0)i| > α}.
For t > 0 do

1) Set T = N̂t−1

2) Weighted `1. Compute x̂t as the solution of

min
b
‖bT c‖1 + τ‖bT ‖1 s.t. ‖y −Ab‖2 ≤ ε

3) Support Estimation - Simple Thresholding.

N̂t = {i : |(x̂t)i| > α}

Parameter setting in practice: Set α and ε as in Algorithm
2. Set τ as the ratio of the fraction of the number of extras
to the size of T (estimate this number from training data or
from the previous two estimates of xt). Also see Section VIII.

Recent work [8] has introduced solutions for the more
general case where the support change may not be slow, but
is still highly correlated over time. Assume that the form
of the correlation model is known and linear. Then one can
obtain the support prediction, T , by “applying the correlation
model” to N̂t−1. For example, in case of video, if the sparse
foreground image consists of a single moving object which
moves according to a constant velocity model, one can obtain
T by “moving” N̂t−1 by an amount equal to the estimate
of the object’s predicted velocity at the current time. Using



9

this in dynamic modified-CS(modified-BP) (Algorithm 2), one
gets N̂t. The centroid of the indices in N̂t can serve as an
“observation” of the object’s current location and this can be
fed into a simple Kalman filter, or any adaptive filter, to track
the object’s location and velocity over time.

V. EXPLOITING SLOW SUPPORT AND SLOW SIGNAL VALUE
CHANGE

So far we talked about the problem in which only reliable
support knowledge is available. In many applications, reliable
partial signal value knowledge is also available. In many
recursive recovery problems, often the signal values change
very slowly over time and in these cases, using the signal value
knowledge should significantly improve recovery performance.
We state the reformulated static problem in Section V-A. Next
we describe the regularized modified-CS(modified-BP) and
the modified-CS-residual (modified-BP-residual) solutions in
Section V-B. After this we explain other algorithms that were
directly designed for the problem of recursive recovery of
sparse signal sequences, when both slow support change and
slow signal value change are used.

A. Reformulated problem: Sparse recovery with partial sup-
port and signal value knowledge

The goal is to recover a sparse vector x, with support
set N , either from noise-free undersampled measurements,
y := Ax, or from noisy measurements, y := Ax + w,
when partial erroneous support knowledge, T , is available
and partial erroneous signal value knowledge on T , µ̂T , is
available. The true support N can be written as

N = T ∪∆ \∆e where ∆ := N \ T , ∆e := T \ N

and the true signal x can be written as

(x)N∪T = (µ̂)N∪T + e

(x)N c = 0, (µ̂)T c = 0 (27)

The error e in the prior signal estimate is assumed to be small,
i.e. ‖e‖ � ‖x‖.

B. Regularized modified-CS(modified-BP) and modified-CS-
residual(modified-BP-residual)

Regularized modified-CS(modified-BP) adds the slow signal
value change constraint to modified-CS(modified-BP) and
solves the following [39]:

min
b
‖bT c‖1 s.t. ‖y −Ab‖2 ≤ ε, and ‖bT − µ̂T ‖∞ ≤ ρ (28)

We obtained exact recovery conditions for the above in [39].
The slow signal value change can be imposed either as a bound
on the max norm (as above) or as a bound on the 2-norm. In
practice, the following Lagrangian version (constraints added
as weighted costs to get an unconstrained problem) is fastest
and most commonly used:

min
b
γ‖bT c‖1 + 0.5‖y −Ab‖22 + 0.5λ‖bT − µ̂T ‖22 (29)

We refer to the above as regularized-modified-BPDN. This
was analyzed in detail in [38] where we obtained computable
bounds on its recovery error.

A second approach to using slow signal value knowledge
is to use an approach similar to CS-residual(BP-residual), but
with BP-noisy replaced by modified-CS-noisy(modified-BP-
noisy). Once again the following unconstrained version is most
useful:

x̂ = µ̂+ [arg min
b
γ‖bT c‖1 + 0.5‖y −Aµ̂−Ab‖22] (30)

We refer to the above as modified-CS-residual(modified-BP-
residual) [55].

For recursive reconstruction, one uses T = N̂t−1. For µ̂,
one can either use µ̂ = x̂t−1, or, in certain applications, e.g.,
functional MRI reconstruction [27], where the signal values
do not change much w.r.t. the first frame, using µ̂ = x̂0 is
a better idea. Alternatively, as we explain next, especially in
situations where the support does not change at each time, but
only every so often, one could obtain µ̂ by a Kalman filter on
the sub-vector of xt that is supported on T = N̂t−1.

C. Kalman filtered CS (KF-CS) and Kalman filtered Modified-
CS(modified-BP) or KMoCS

Kalman Filtered CS-residual (KF-CS) was introduced in the
context of recursive reconstruction in [36] and in fact this was
the first work that studied the recursive recovery problem.
With the modified-CS approach and results now known, a
much better idea than KF-CS is Kalman Filtered Modified-
CS-residual (KMoCS). This can be understood as modified-
CS-residual(modified-BP-residual) but with µ̂ obtained as a
Kalman filtered estimate on the previous support T = N̂t−1.
For the KF step, one needs to assume a model on signal value
change. In the absence of specific information, a Gaussian ran-
dom walk model with equal change variance in all directions
is the best option [36]:

(x0)N0
∼N (0, σ2

sys,0),

(xt)Nt = (xt−1)Nt + νt, νt ∼ N (0, σ2
sysI)

(xt)N ct = 0 (31)

HereN (a,Σ) denotes a Gaussian distribution with mean a and
covariance matrix Σ. Assume for a moment that the support
does not change with time, i.e. Nt = N0, and N0 is known
or perfectly estimated using BP-noisy followed by support
estimation. With the above model on xt and the observation
model given in (8), if the observation noise wt is Gaussian,
then the Kalman filter provides the causal minimum mean
squared error (MMSE) solution, i.e. it returns x̂t|t which solves

arg min
˜̂xt|t:(˜̂xt|t)Nc0 =0

Ext|y1,y2,...yt [‖xt − ˜̂xt|t(y1, y2, . . . yt)‖22]

(notice that the above is solving for x̂t|t supported on N0).
Here Ex|y[q] denotes the expected value of q conditioned on
y. However, our problem is significantly more difficult because
the support set Nt changes with time and is unknown. To solve
this problem, KMoCS is a practical heuristic that combines the
modified-CS-residual(modified-BP-residual) idea for tracking
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the support with an adaption of the regular KF algorithm to the
case where the set of entries of xt that form the state vector
for the KF change with time: the KF state vector at time t is
(xt)Nt at time t. Unlike the regular KF for a fixed dimensional
linear Gaussian state space model, KF-CS or KMoCS do not
enjoy any optimality properties. However, one expects KMoCS
to outperform modified-CS(modified-BP) when accurate prior
knowledge of the signal values is available and we see this in
simulations. We summarize KMoCS in Algorithm 7.

An open question is how to analyze KF-CS or KMoCS
and get a meaningful performance guarantee? This is a hard
problem because the KF state vector is (xt)Nt at time t and
Nt changes with time. In fact, even if we suppose that the
sets Nt are given, there are no known results for the resulting
“genie-aided KF”.

D. Pseudo-measurement based CS-KF (PM-CS-KF)

In work that appeared soon after the KF-CS paper [36],
Carmi, Gurfil and Kanevski [56] introduced the pseudo-
measurement based CS-KF (PM-CS-KF) algorithm. It uses an
indirect method called the pseudo-measurement (PM) tech-
nique [57] to include the sparsity constraint while trying to
minimize the estimation error in the KF update step. To be
precise, it uses PM to approximately solve the following

min
x̂k|k

Exk|y1,y2,...yk [‖xk − x̂k|k‖22] s.t. ‖x̂k|k‖1 ≤ ε

The idea of PM is to replace the constraint ‖x̂k|k‖1 ≤ ε by a
linear equation of the form

H̃xk − ε = 0

where H̃ = diag (sgn((xk)1), sgn((xk)2), . . . sgn((xk)m)) and
ε serves as measurement noise. It then uses an extended
KF approach iterated multiple times to enforce the sparisty
constraint. The covariance of the pseudo noise ε, Rε is a tuning
parameter.

The complete algorithm is summarized in [56, Algorithm 1].
We do not copy this here because it is not clear if the journal
allows copying an algorithm from another author’s work. Its
code is available at http://www2.ece.ohio-state.edu/∼schniter/
DCS/index.html.

E. Dynamic CS via approximate message passing (DCS-AMP)

Another approximate Bayesian approach was developed in
very interesting recent work by Ziniel and Schniter [58], [59].
They introduced the dynamic CS via approximate message
passing (DCS-AMP) algorithm by developing the recently
introduced AMP approach of Donoho et al [60] for the
dynamic CS problem. The authors model the dynamics of the
sparse vectors over time using a stationary Bernoulli Gaussian
prior as follows: for all i = 1, 2, . . .m,

(xt)i = (st)i(θt)i

where (st)i is a binary random variable that forms a stationary
Markov chain over time and (θt)i follows a stationary first
order autoregressive model with nonzero mean. Independence
is assumed across the various indices i. Suppose, at any time

t, Pr((st)i = 1) = λ and Pr((st)i = 1|(st−1)i = 0) = p10.
Using stationarity, this tells us that Pr((st)i = 0|(st−1)i =
1) := p01 = λp10

1−λ . Also,

(θt)i = (1− α)((θt−1)i − ζ) + α(vt)i

with 0 ≤ α ≤ 1. The choice of α controls how slowly or
quickly the signal values change over time. The choice of p10

controls the likelihood of new support addition(s).
Exact computation of the minimum mean squared error

(MMSE) estimate of xt cannot be done under the above
model. On one end, one can try to use sequential Monte
Carlo techniques (particle filtering) to approximate the MMSE
estimate as in [61], [62]. But these can get computationally
expensive for high dimensional problems and it is never clear
what number of particles is sufficient to get an accurate
enough estimate. The AMP approach developed in [59] is also
approximate but is extremely fast and hence is useful.

The complete DCS-AMP algorithm is available in [59, Table
II]. We do not copy this here because it is not clear if the
journal allows copying an algorithm from another author’s
work. Its code is available at http://www2.ece.ohio-state.edu/
∼schniter/DCS/index.html.

F. Hierarchical Bayesian KF

In recent work by Dai et al [63], the Hierarchical Bayesian
KF (hKF) algorithm was introduced that developed a recursive
KF-based algorithm to solve the dynamic CS problem in the
sparse Bayesian learning (SBL) [31], [17] framework. In it,
the authors assume a random walk state transition model on
the xt’s similar to (31) but with the difference that the vector
νt is zero mean independent Gaussian with variance γi along
index i. Then they used the SBL approach (developed an EM
algorithm) to obtain a type-II maximum likelihood estimate
of the hyper-parameters γi’s from the observations. The final
estimate of xt was computed as the KF estimate by using
the estimated hyper-parameters (simple closed form estimate
because of the joint-Gaussian assumption). It is not very clear
how support change is handled in this algorithm. Their code
is not available online; a draft version of the code provided
by the authors did not work in many of our experiments and
hence we do not report results using it.

G. Dynamic Homotopy for Streaming signals

In recent work [64], Asif and Romberg have designed a fast
homotopy to solve a large class of dynamic CS problems. In
particular they design fast homotopies to solve the following
two problems:

min
x
‖Wtx‖1 + 0.5‖Atx− yt‖22

and

min
x
‖Wtx‖1 + 0.5‖Atx− yt‖22 + 0.5‖Ftxt−1 − x‖22

for arbitrary matrices Wt and Ft. They show experiments with
letting Wt be a reweighting matrix to solve the reweighted-`1
problem. Their code is available at http://users.ece.gatech.edu/
∼sasif/homotopy.

http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://users.ece.gatech.edu/~sasif/homotopy
http://users.ece.gatech.edu/~sasif/homotopy
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VI. THEORETICAL RESULTS: EXACT RECOVERY

In this section, we summarize the exact recovery conditions
for modified-CS(modified-BP) and weighted-`1. We first give
two RIP based results in Section VI-A below. Next, in Section
VI-B, we give results that compute the “weak thresholds” on
the number of measurements needed for high probability exact
recovery similar to those obtained by Donoho [65] for BP.

A. RIP based results for modified-CS(modified-BP) and
weighted-`1

Recall that, in the noise-free case, the problem is to recover
a sparse vector, x, with support, N = T ∪ ∆ \ ∆e, where
∆ = N \ T and ∆e = T \ N , from y := Ax using partial
support knowledge T . Let

s := |N |, k := |T |, u := |∆|, e := |∆e|

Clearly,
s = k + u− e

The first result for modified-CS(modified-BP) proved in
[41], [37] is as follows.

Theorem 6.1 (RIP-based Modified-CS(modified-BP) exact
recovery): [37, Theorem 1] Consider recovering x with support
N from y := Ax by solving Modified-CS(modified-BP), i.e.
(17). x is the unique minimizer of (17) if

1) δk+u < 1 and δ2u + δk + θ2
k,2u < 1 and

2) ak(2u, u) + ak(u, u) < 1 where ak(i, ǐ) :=
θǐ,i+

θ
ǐ,k

θi,k

1−δk

1−δi−
θ2
i,k

1−δk
Both the above conditions hold if

2δ2u + δ3u + δk + δ2
k+u + 2δ2

k+2u < 1.

This, in turn holds if

δk+2u ≤ 0.2

(recall that k = |T | and u = |∆|). The conditions can also be
rewritten in terms of s, e, u by substituting k = s+ e− u.

Compare this result with that for BP which requires [33],
[66], [54]

δ2s <
√

2− 1 or δ2s + δ3s < 1.

To compare the conditions numerically, we can use u = e =
0.02s which is typical for time series applications (see Fig.
2). Using δcr ≤ cδ2r [67, Corollary 3.4], it can be show that
modified-CS(modified-BP) only requires δ2u < 0.004. On the
other hand, BP requires δ2u < 0.008 which is clearly stronger.

Later work by Friedlander et al [50] proved an im-
proved result for weighted-`1, and hence also for modified-
CS(modified-BP) which is a special case of weighted-`1.

Theorem 6.2 (RIP-based weighted-`1 exact recovery [50]):
Consider recovering x with support N from y := Ax by
solving weighted-`1, i.e. (20). Let α = |T ∩N |

|T | = (s−u)
(s+e−u) and

ρ = |T |
|N | = (s+e−u)

s . Let Z denote the set of integers. Pick an
a ∈ 1

sZ that is such that a > max(1, (1− α)ρ). Weighted-`1
achieves exact recovery if

δas+
a

γ2
δ(a+1)s <

a

γ2
− 1 for γ = τ + (1− τ)

√
1 + ρ− 2αρ

Modified-CS(modified-BP) achieves exact recovery if the
above holds with τ = 0.

Exact recovery conditions for regularized modified-
CS(modified-BP) for noise-free measurements, i.e. for (28)
with ε = 0 were obtained in [39, Theorem 1]. These are
weaker than those for modified-CS(modified-BP) if xi− µ̂i =
±ρ for some i ∈ T (some of the constraints ‖bT − µ̂T ‖∞ ≤ ρ
are active for the true signal, x) and some elements of this
active set satisfy the condition given in [39, Theorem 1]. One
set of practical applications where xi− µ̂i = ±ρ with nonzero
probability is when dealing with quantized signals and their
estimates.

B. Weak thresholds for high probability exact recovery for
weighted-`1 and modified-CS(modified-BP)

In very interesting work, Khajehnejad et al. [49] obtained
“weak thresholds” on the minimum number of measurements,
n, (as a fraction of m) that are sufficient for exact recovery
with overwhelming probability (the probability of not getting
exact recovery decays to zero as the signal length m increases).
The weak threshold was first defined by Donoho in [65].
Khajehnejad et al. [49] proved the following result.

Theorem 6.3 (weighted-`1 weak threshold [49]): Consider
recovering x with support N from y := Ax by solving
weighted-`1, i.e. (20). Let ω := 1/τ , γ1 := |T |

m and γ2 :=
|T c|
m = 1− γ1. Also let p1, p2 be the sparsity fractions on the

sets T and T c, i.e. let p1 := |T |−|∆e|
|T | and p2 := |∆|

|T c| . Then
there exists a critical threshold

δc = δc(γ1, γ2, p1, p2, ω)

such that for all n
m > δc, the probability that a sparse vector

x is not recovered decays to zero exponentially with m. The
expression for δc is complicated and is available at the bottom
of page 189 of [49]. It is such that it can be numerically
calculated.

The above result provides an approach for picking the best
τ out of a discrete set of possible values. To do this, for each
τ from the set, one can compute the weak threshold δc and
then pick the τ that needs the smallest weak threshold. The
weak threshold for this τ also specifies the required number
of measurements, n, needed.

When no prior knowledge is available, γ1 = 0, γ2 = 1, p1 =
0 and p2 = s/m. In this case, if BP, (2), is solved, ω = 1 and
so the required weak threshold is given by δc(0, 1, 0, sm , 1).

The modified-CS(modified-BP) program is a special case of
weighted-`1 with τ = 0. Thus one can get a simple corollary
for it.

Corollary 6.4 (Modified-CS(modified-BP) weak threshold
[49]): Consider recovering x from y := Ax by solving
modified-CS(modified-BP), i.e. (17). Assume all notation from
Theorem 6.3. The weak threshold for modified-CS(modified-
BP) is given by δc(γ1, γ2, p1, p2,∞). In the special case when
T ⊆ N , p1 = 1. In this case, the weak threshold satisfies

δc(γ1, γ2, 1, p2,∞) = γ1 + γ2δc(0, 1, 0, p2, 1).

As explained in [49], when T ⊆ N , the above has a nice
physical interpretation. In this case, the number of measure-
ments n needed by modified-CS(modified-BP) is equal to |T |
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plus the number of measurements needed for recovering the
remaining |∆| entries from T c using BP.

C. Recursive reconstruction: error stability over time

In the noise-free case, once an exact recovery result is
obtained, its extension to the recursive recovery problem is
trivial. For example a simple corollary of Theorem 6.1 is the
following.

Corollary 6.5 (dynamic modified-CS(modified-BP) exact
recovery): Consider recovering xt with support Nt from
yt := Atxt using dynamic modified-CS(modified-BP), i.e.
Algorithm 2 with ε = 0 and α = 0. Let ut := |Nt \ Nt−1|
and let et = |Nt−1 \ Nt| denote the number of additions to
and the number of removals from the support set at time t.
Also let st = |Nt| denote the support size. If δ2s0(A0) ≤ 0.2
and if, for all times t > 0, δst+ut+et(At) ≤ 0.2, then x̂t = xt
(exact recovery is achieved) at all times t.

VII. THEORETICAL RESULTS: NOISY CASE ERROR
BOUNDS AND STABILITY OVER TIME

When the measurements are noisy, one can only bound the
recovery error. These results can be obtained by adapting of
the existing tools used to get error bounds for BP, BP-noisy
or BPDN. We summarize these in Sections VII-A and VII-B.
The result given in Section VII-B is particulary useful since
it is a computable bound and it holds always. As we will
explain, it can be used to design a useful heuristic to choose
the parameters for the mod-BPDN and reg-mod-BPDN convex
programs.

Next, in Section VII-C, we provide results for error stability
over time in the recursive recovery problem. In the noise-
free case, such a result followed as a direct extension of
the exact recovery result at a given time. In the noisy case,
obtaining such a result is significantly harder because the
recovery error is directly proportional to the size of the misses,
∆t := Nt \ N̂t−1, and extras, ∆e,t := N̂t−1 \Nt, with respect
to the previous support estimate. We need to find sufficient
conditions to ensure that these sets’ sizes are bounded by a
time-invariant value in order to get a stability result.

A. Error bounds for modified-CS(modified-BP)-noisy and
weighted-`1

When measurements are noisy, one cannot get exact recov-
ery, but can only bound the reconstruction error. The first such
result was proved for LS-CS in [32, Lemma 1].

By adapting the approach of [33], the error of modified-
CS(modified-BP) can be bounded as a function of |T | = |N |+
|∆e| − |∆| and |∆| [68], [69], [53].

Theorem 7.1 (modified-CS(modified-BP) error bound): [53,
Lemma 2.7] Let x be a sparse vector with support N and
let y := Ax + w with ‖w‖2 ≤ ε. Let x̂ be the solution of
modified-CS(modified-BP)-noisy given in (18). If δ|T |+3|∆| =

δ|N |+|∆e|+2|∆| < (
√

2− 1)/2, then

‖x−x̂‖ ≤ C1(|T |+3|∆|)ε ≤ 7.50ε where C1(k) :=
4
√

1 + δk
1− 2δk

.

A similar result for a compressible (approximately sparse)
signal and weighted-`1 was proved in [50].

Theorem 7.2 (weighted-`1 error bound): [50] Consider
recovering a compressible vector x from y := Ax + w with
‖w‖ ≤ ε. Let x̂ be the solution of weighted-`1-noisy, (21).
Let xs denote the best s term approximation for x and let
N = support(xs). Also, let α = |T ∩N |

|T | = (s−u)
(s+e−u) and

ρ = |T |
|N | = (s+e−u)

s . Let Z be the set of integers and pick
an a ∈ 1

sZ that is such that a > max(1, (1− α)ρ). If

δas+
a

γ2
δ(a+1)s <

a

γ2
− 1 for γ = τ + (1− τ)

√
1 + ρ− 2αρ

then

‖x̂−x‖2 ≤ C ′0ε+C ′1s
−1/2(τ‖x−xs‖1 +(1−τ)‖x(N∪T )c‖1)

where C ′0 = C ′0(τ, s, a, δ(a+1)s, δas) and C ′1 =
C ′1(τ, s, a, δ(a+1)s, δas) are constants specified in Remark 3.2
of [50].
When x is s-sparse, the above simplifies to ‖x̂− x‖2 ≤ C ′0ε.
The result for modified-CS(modified-BP) follows by setting
τ = 0 in the above expressions.

B. Computable error bounds for reg-mod-BPDN and mod-
BPDN

In [70], Tropp introduced the Exact Recovery Coefficient
(ERC) and used it to obtain a computable error bound for
BPDN that holds under a sufficient condition that is also
computable. By modifying this approach, one can get a similar
result for reg-mod-BPDN and hence also for mod-BPDN
(which is a special case). With some extra work, one can obtain
a computable bound that holds always (does not require any
sufficient conditions) [38]. A direct corollary of it then gives
a similar result for mod-BPDN. We state this result below.
Since the bound is computable and holds without sufficient
conditions and, from simulations, is also fairly tight [see [38,
Fig 4]], it provides a good heuristic for setting γ for mod-
BPDN and γ and λ for reg-mod-BPDN.

Let IT ,T denote the identity matrix on the row, column
indices T , T and let 0T ,S be a zero matrix on on the row,
column indices T , S.

Theorem 7.3: Let x be a sparse vector with support N and
let y := Ax + w with ‖w‖ ≤ ε. Let x̂ be the solution of
reg-mod-BPDN, i.e. (29). Assume that the columns of A have
unit 2-norm (when they do not have unit norm, we can use
Remark 2.1). If γ = γ∗T ,λ(∆̃∗(kmin)), then it has a unique
minimizer, x̂ which satisfies

‖x− x̂‖2 ≤ g(∆̃∗(kmin)).

Here

γ∗T ,λ(∆̃) :=
maxcor(∆̃)

ERCT ,λ(∆̃)

[
λf2(∆̃)‖xT − µ̂T ‖2 + f3(∆̃)‖w‖2

+f4(∆̃)‖x∆\∆̃‖2
]

+
‖w‖∞

ERCT ,λ(∆̃)
, (32)

g(∆̃) := g1(∆̃)‖xT − µ̂T ‖2 + g2(∆̃)‖w‖2 + g3(∆̃)‖x∆\∆̃‖2
+g4(∆̃), and (33)

∆̃∗(k) := arg min
∆̃⊆∆,|∆̃|=k

‖x∆\∆̃‖2 (34)
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is the subset of ∆ that contains the k largest magnitude entries
of x and

kmin := arg min
k
Bk where

Bk :=

g(∆̃∗(k)) if ERCT ,λ(∆̃∗(k)) > 0 and
QT ,λ(∆̃∗(k)) is invertible

∞ otherwise

In the above expressions,

maxcor(∆̃) := max
i/∈(T∪∆̃)c

‖Ai′AT ∪∆̃‖2,

QT ,λ(S) :=AT ∪S
′AT ∪S + λ

[
IT ,T 0T ,S
0S,T 0S,S

]
ERCT ,λ(S) := 1− max

ω/∈T∪S
‖PT ,λ(S)AS

′MT ,λAω‖1,

PT ,λ(S) := (AS
′MT ,λAS)−1

MT ,λ := I −AT (AT
′AT + λIT ,T )−1AT

′

and

g1(∆̃) :=λf2(∆̃)(

√
|∆̃|f1(∆̃)maxcor(∆̃)

ERCT ,λ(∆̃)
+ 1),

g2(∆̃) :=

√
|∆̃|f1(∆̃)f3(∆̃)maxcor(∆̃)

ERCT ,λ(∆̃)
+ f3(∆̃),

g3(∆̃) :=

√
|∆̃|f1(∆̃)f4(∆̃)maxcor(∆̃)

ERCT ,λ(∆̃)
+ f4(∆̃),

g4(∆̃) :=

√
|∆̃|‖A(T∪∆̃)c‖∞‖w‖∞f1(∆̃)

ERCT ,λ(∆̃)

f1(∆̃) :=

√
‖(AT ′AT + λIT )−1AT

′A∆̃PT ,λ(∆̃)‖22 + ‖PT ,λ(∆̃)‖22,

f2(∆̃) := ‖QT ,λ(∆̃)−1‖2
f3(∆̃) := ‖QT ,λ(∆̃)−1AT ∪∆̃

′‖2,

f4(∆̃) :=
√
‖QT ,λ(∆̃)−1AT ∪∆̃

′A∆̃\∆̃‖22 + 1.

The result for modified-BPDN follows by setting λ = 0 in the
above expressions.

Remark 7.4 (Choosing λ, γ using Theorem 7.3): Notice
that arg min∆̃⊆∆,|∆̃|=k ‖x∆\∆̃‖2 in (34) is computable in
polynomial time by just sorting the entries of x∆ in decreasing
order of magnitude and retaining the indices of its largest k
entries. Hence everything in the above result is computable in
polynomial time if x, T and a bound on ‖w‖∞ are available.
Thus if training data is available, the above theorem can
be used to compute good choices of γ and λ. In a time
series problem, all that one needs is a bound on ‖w‖∞
and two consecutive xt’s; call them x1 and x2. If these are
not exactly sparse, we first sparsify them. We let T be the
support set of sparsified x1 and we let N be the support
set of sparsified x2. We can then compute ∆,∆e and all
the quantities defined above. These can be used to get an
expression for the reconstruction error bound g(∆̃∗(kmin)) as
a function of λ. Notice that kmin itself is also a function
of λ. A good value of λ can be obtained by picking the
one that maximizes this upper bound from a discrete set of

choices. This value can be substituted into the expression for
γ∗T ,λ(∆̃∗(kmin) given in (32) to get a good value of γ.
If true values of xt for t = 1, 2 are not available, one can
use enough measurements and recover xt for t = 1, 2 using
BPDN, (4), with γ selected using the heuristic suggested in
[64]: γ = max{10−2‖A′1[y1 y2]‖∞, σobs

√
m} (here σ2

obs is the
variance of any entry of wt).

C. Error stability over time

In this section, we summarize the error stability results. We
first obtained such a result for LS-CS in [32, Theorem 2]. We
state here two results from [53] that improve upon this result
in various ways: (i) they analyze modified-CS(modified-BP)
and hence hold under weaker RIP conditions; (ii) they allow
support change at each time (not just every so often as in
[32]); and (iii) the first result below does not assume anything
about how signal values change while the second one assumes
a realistic signal change model.

Both these results are obtained by finding conditions to
ensure that (i) the number of small (and hence undetectable)
entries is not too large at any time, this ensures small number
of misses; and (ii) the same is true for the number of extras.
In the second result below, to ensure the former, we assume a
signal model that ensures that all new additions to the support
set are either detected immediately or are detected within a
finite delay of getting added. To ensure the latter, we set the
support threshold large enough so that |N̂t \ Nt| = 0.

Theorem 7.5 (Modified-CS(modified-BP) error stability: no
signal model): [53, Theorem 3.2] Consider recovering xt’s
from yt satisfies (8) using Algorithm 2. Assume that the
support size of xt is bounded by s and that there are at most
sa additions and at most sa removals at all times. If

1) (support estimation threshold) α = 7.50ε,
2) (number of measurements) δs+6sa(At) ≤ 0.207,
3) (number of small magnitude entries) |{i ∈ Nt : |(xt)i| ≤

α+ 7.50ε}| ≤ sa
4) (initial time) at t = 0, n0 is large enough to ensure that
|∆̃t| = 0, |∆̃e,t| = 0.

then for all t,
• |∆t| ≤ 2sa, |∆e,t| ≤ sa, |Tt| ≤ s,
• ‖xt − x̂t‖ ≤ 7.50ε,
• |Nt \ N̂t| ≤ sa, |N̂t \ Nt| = 0, |T̃t| ≤ s

The above result is the most general, but it does not give
us practical models on signal change that would ensure the
required upper bound on the number of small magnitude
entries. Next we give one realistic model on signal change
that would ensure this followed by a stability result for it.

Model 7.6 (Model on signal change over time (parameter
`)): Assume the following model on signal change

1) At t = 0, |N0| = s0.
2) At time t, sa,t elements are added to the support set.

Denote this set by At. A new element j gets added to
the support at an initial magnitude aj,t and its magnitude
increases for at least the next dmin time instants. At time
τ (for t < τ ≤ t + dmin), the magnitude of element j
increases by rj,τ .
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Note: aj,t is nonzero only if element j got added at time
t, for all other times, we set it to zero.

3) For a given scalar `, define the “large set” as

Lt(`) := {j /∈ ∪tτ=t−dmin+1Aτ : |(xt)j | ≥ `}.

Elements in Lt−1(`) either remain in Lt(`) (while in-
creasing or decreasing or remaining constant) or decrease
enough to leave Lt(`). At time t, we assume that sd,t
elements out of Lt−1(`) decrease enough to leave it. All
these elements continue to keep decreasing and become
zero (removed from support) within at most b time units.

4) At all times t, 0 ≤ sa,t ≤ sa, 0 ≤ sd,t ≤
min{sa, |Lt−1(`)|}, and the support size, st := |Nt| ≤ s
for constants s and sa such that s+ sa ≤ m.

Notice that an element j could get added, then removed and
added again later. Let

addtimesj := {t : aj,t 6= 0}

denote the set of time instants at which the index j got added
to the support. Clearly, addtimesj = ∅ if j never got added.
Let

amin := min
j:addtimesj 6=∅

min
t∈addtimesj ,t>0

aj,t

denote the minimum of aj,t over all elements j that got added
at t > 0. We are excluding coefficients that never got added
and those that got added at t = 0. Let

rmin(d) := min
j:addtimesj 6=∅

min
t∈addtimesj ,t>0

min
τ∈[t+1,t+d]

rj,τ

denote the minimum, over all elements j that got added at
t > 0, of the minimum of rj,τ over the first d time instants
after j got added.

Theorem 7.7 (Modified-CS(modified-BP) error stability):
[53] Consider recovering xt’s from yt satisfies (8) using
Algorithm 2. Assume that Model 7.6 on xt holds with

` = amin + dminrmin(dmin)

where amin, rmin and the set addtimesj are defined above. If
there exists a d0 ≤ dmin such that the following hold:

1) (algorithm parameters) α = 7.50ε,
2) (number of measurements) δs+3(b+d0+1)sa(At) ≤ 0.207,
3) (initial magnitude and magnitude increase rate)

min{`, min
j:addtimesj 6=∅

min
t∈addtimesj

(aj,t +

t+d0∑
τ=t+1

rj,τ )}

> α+ 7.50ε,

4) at t = 0, n0 is large enough to ensure that |∆̃0| ≤ bsa +
d0sa, |∆̃e,0| = 0,

then, for all t,
• |∆t| ≤ bsa + d0sa + sa, |∆e,t| ≤ sa, |Tt| ≤ s,
• ‖xt − x̂t‖ ≤ 7.50ε,
• |Nt \ N̂t| ≤ bsa + d0sa, |N̂t \ Nt| = 0, |T̃t| ≤ s

As long as the number of new additions or removals, sa � s
(slow support change), the above result shows that the worst
case number of misses or extras is also small compared to
the support size. This makes it a meaningful result. The
reconstruction error bound is also small compared to the signal

energy as long as the signal-to-noise ratio is high enough (ε2 is
small compared to ‖xt‖2). Notice that both the above results
need a bound on the RIC of At of order s + ksa where k
is a constant. On the other hand, BP-noisy needs the same
bound on the RIC of At of order 2s (see Theorem 2.4). This
is stronger when sa � s (slow support change).

VIII. PARAMETER SETTING AND CODE LINKS

We describe approaches for setting the parameters for algo-
rithms for which code is not available online as yet. The PM-
CS-KF code is at http://www2.ece.ohio-state.edu/∼schniter/
DCS/index.html. The DCS-AMP code is at http://www2.
ece.ohio-state.edu/∼schniter/DCS/index.html. The streaming
l1-homotopy code is at http://users.ece.gatech.edu/∼sasif/
homotopy. The CS-MUSIC [71] code is at http://bispl.weebly.
com/compressive-music.html and the Temporal SBL (T-SBL)
[72] code is at http://dsp.ucsd.edu/∼zhilin/TMSBL.html.

We will post code or link to the code for all algorithms that
are compared here at http://www.ece.iastate.edu/∼namrata/
RecReconReview.html.

Consider dynamic modified-CS(modified-BP) (Algorithm
2). It has two parameters α and ε. When setting these pa-
rameters automatically, they can change with time. Define the
minimum nonzero value at time t, xmin,t = minj∈Nt |(xt)j |.
This can be estimated either as the minimum nonzero entry of
the sparsified training data (if it is available) or as x̂min,t =
minj∈T̃t−1

|(x̂t−1)j | or by taking an average over past few time
instants of this quantity. In cases where this quantity varies a
lot and cannot be estimated very reliably, it can occasionally
result in a large support size. If it is under-estimated, it may
result in the estimated support size becoming too large and
this will cause the matrix AT to become ill-conditioned. To
prevent this, one should also include a maximum support
size constraint while estimating the support. The noise bound
parameter, ε is often either assumed known or it can be
estimated using a short initial noise-only training sequence.
In cases where it is not known, one can approximate it by
‖yt−1 −At−1x̂t−1‖2 (assuming accurate recovery at t− 1).

Consider dynamic reg-mod-BPDN (Algorithm 4) and its
special case, dynamic mod-BPDN (Algorithm 5). Algorithm
4 has three parameters α, γ and λ. We set γ and λ using
Theorem 7.3. To do this one needs a short training sequence
of xt’s; at least two xt’s are needed. This is obtained in one
of two ways - either an actual training sequence is available;
or one uses more measurements for the first two frames
and solves BPDN for these two frames. The γ needed for
BPDN for the first two frames is computed using the heuris-
tic from [64]: set γ = max{10−2‖AT1 [y1 y2]‖∞, σobs

√
m}.

The estimated xt’s are then used as training sequence. We
then sparsify the training sequence to 99.9% (or some ap-
propriate percent) energy; let T equal the support set of
sparsified x1 and let N denote the support set of sparsified
x2; and proceed as explained in Remark 7.4, i.e. select
the λ that maximizes g(∆̃∗(kmin)) defined in Theorem 7.3
out of a discrete set of values, in our experiments this set
was {0.5, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}; use the
selected λ in (32) given in Theorem 7.3 to get the value

http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://users.ece.gatech.edu/~sasif/homotopy
http://users.ece.gatech.edu/~sasif/homotopy
http://bispl.weebly.com/compressive-music.html
http://bispl.weebly.com/compressive-music.html
http://dsp.ucsd.edu/~zhilin/TMSBL.html
http://www.ece.iastate.edu/~namrata/RecReconReview.html
http://www.ece.iastate.edu/~namrata/RecReconReview.html
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Algorithm 4 Dynamic Regularized Modified-BPDN (reg-mod-
BPDN) [38]
Parameters: α, γ, λ
At t = 0: Solve BPDN with sufficient measurements, i.e.
compute x̂0 as the solution of minb γ‖b‖1 + 0.5‖y0 −A0b‖22.
For each t > 0 do

1) Set T = N̂t−1

2) Reg-Mod-BPDN Compute x̂t as the solution of

min
b
γ‖bT c‖1 + 0.5‖y −Ab‖22 + 0.5λ‖bT − µ̂T ‖22

3) Support Estimation - Simple Thresholding:

N̂t = {i : |(x̂t)i| > α} (35)

Parameter setting: Set γ and λ using Theorem 7.3. To do this
one needs a short training sequence of xt’s; at least two xt’s
are needed. This is obtained in one of two ways - either an ac-
tual training sequence is available; or one uses more measure-
ments for the first two frames and solves BPDN, (4), for these
two frames with γ = max{10−2‖A′1[y1 y2]‖∞, σobs

√
m} [64].

(a) Sparsify the training sequence to 99.9% energy. (b) Let T
equal the support set of sparsified x1 and let N denote the
support set of sparsified x2. (c) Select the λ that maximizes
g(∆̃∗(kmin)) given in Theorem 7.3 by choosing values from
a discrete set. In our experiments, we select it out of the set
{0.5, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}. (d) Use this λ
and use γ given by (32) with this choice of λ. For more details,
see Remark 7.4. (e) Set α = 0.25xmin. Here xmin is the
minimum nonzero entry of the sparsified training sequence.
Also see Sec. VIII.

Algorithm 5 Dynamic Modified-BPDN [38]
Parameters: α, γ
Implement Algorithm 4 with λ = 0.
Parameter setting: Obtain the training sequence as explained
in Algorithm 4 and sparsify it to 99.9% energy. Set α as
explained there. Set γ using (32) given in Theorem 7.3
computed with λ = 0.0001. For the reasoning, see Sec. VIII.

of γ. We set α = 0.25xmin as explained above. Consider
dynamic mod-BPDN (Algorithm 5). Mod-BPDN is reg-mod-
BPDN with λ = 0. So ideally this is what should be used when
computing γ using the expression given in (32) of Theorem
7.3. However, notice that this expression requires inverting
certain matrices which can sometimes be ill-conditioned if we
set λ = 0. Hence, we instead use λ = 0.0001 when computing
γ using (32). The sparsified training sequence needed is
obtained as explained earlier. We again set α = 0.25xmin.

Consider dynamic weighted-`1 (Algorithm 6). It has three
parameters α, γ and τ . We can set α and γ as explained above.
As explained in [50], we set τ equal to the ratio of the number
of extras to the number of entries in the support knowledge
T , i.e. we set τ = |∆e|/|T |. Either this ratio is computed
using the training data or it can be estimated from the support
estimates for the previous two time instants.

Finally, consider KMoCS. We set γ and α as explained
above for mod-BPDN . We set σ2

sys by maximum likelihood

Algorithm 6 Dynamic Weighted-`1 [49]
Parameters: α, γ, τ
Implement Algorithm 4 with the reg-mod-BPDN convex pro-
gram replaced by

min
b
γ‖bT c‖1 + γτ‖bT ‖1 + 0.5‖y −Ab‖22

Parameter setting: Set γ and α as explained in Algorithm 5.
Set τ equal to the ratio of the number of extras to the number
of entries in the support knowledge T , i.e. τ = |∆e|/|T |.
Compute this ratio from the sparsified training data. Also see
Sec. VIII.

Algorithm 7 KMoCS or Kalman Filtered Modified-
CS-residual(modified-BP-residual): use of Modified-CS-
residual(modified-BP-residual) in the KF-CS algorithm of
[36]
Parameters: σ2

sys, σ
2
obs, α, γ

At t = 0: Solve BPDN with sufficient measurements, i.e.
compute x̂0 as the solution of minb γ‖b‖1 + 0.5‖y0 −A0b‖22.
Denote the solution by x̂0. Estimate its support, T = N̂0 by
thresholding. Initialize P0 = σ2

sysIT IT
′.

For each t > 0 do
1) Set T = N̂t−1

2) Modified-CS-residual(modified-BP-residual):

x̂t,mod = x̂t−1+[arg min
b
γ‖bT c‖1+‖yt−Ax̂t−1−Ab‖2]

3) Support Estimation - Simple Thresholding:

N̂t = {i : |(x̂t,mod)i| > α} (36)

4) Kalman Filter:

Q̂t =σ2
sysIN̂tIN̂t

′

Kt = (Pt−1 + Q̂t)
(
A(Pt−1 + Q̂t)A

′ + σ2
obsI

)−1

Pt = (I −KtA)(Pt−1 + Q̂t)

x̂t = (I −KtA)x̂t−1 +Ktyt (37)

Parameter setting: Either a training sequence is available or
obtain it as explained in Algorithm 4. Sparsify it to 99.9%
energy. Set γ and α as explained in Algorithm 5. Set σ2

sys
by maximum likelihood estimation on the sparsified training
data. Either assume σ2

obs is known or set it by computing the
average of ‖yt−1−At−1x̂t−1‖22 over the last few time instants
and dividing by n. In our experiments, we assumed the former.
Also see Sec. VIII.

estimation on the sparsified training data. The observation
noise variance σ2

obs is usually assumed known. In cases where
it is not, one can approximate it by computing the average
of ‖yt−1 − At−1x̂t−1‖22 over the last few time instants and
dividing by n.

Lastly consider the add-LS-del support estimation approach.
This is most useful for exactly sparse signal sequences. This
needs two thresholds αadd, αdel. We can set αadd,t using the
following heuristic. It is not hard to see (see [53, Lemma
2.8]) that (xt − x̂t,add)Tadd,t = (ATadd,t

′ATadd,t)
−1[ATadd,t

′wt +
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ATadd,t
′A∆add,t(xt)∆add,t ]. To ensure that the RHS is bounded,

we need ATadd,t to be well conditioned. To ensure this we
pick αadd,t as the smallest number such that σmin(ATadd,t) ≥
0.4. If one could set αdel equal to the lower bound on
xmin,t−‖(xt−x̂t,add)Tadd,t‖∞, there will be zero misses. Using
this idea, we let αdel,t be an estimate of the lower bound of
this quantity. As explained in [53, Section VII-A], this leads to
αdel,t = 0.7x̂min,t−‖A†Tadd,t

(yt−Ax̂t,modcs)‖∞. An alternative
approach that has been successful for a large class of video
sequences is explained in [40, Algorithm 1].

IX. NUMERICAL EXPERIMENTS

We report three experiments. The first studies the noise-free
case and compares algorithms that only exploit slow support
change of the sparse signal sequence. As explained earlier,
this problem can be reformulated as one of sparse recovery
with partial support knowledge. In the noise-free case, once
the static problem is solved, so is the dynamic one. So we
only simulate the static problem. In the second experiment,
we study the noisy case and the dynamic (recursive recovery)
problem for a simulated sparse signal sequence and random
Gaussian measurements. In the third experiment, we study
the same problem but for a real image sequence (a sub-
image sequence of the larynx sequence shown in Fig. 1)
and simulated MRI measurements. In the second and third
experiment, we compare all types of algorithms - those that
exploit none, one or both of slow support change and slow
signal value change assumptions.

A. Sparse recovery with partial support knowledge: phase
transition plots for comparing n needed for exact recovery

We compare BPDN and CS-residual(BP-residual) with all
the approaches that only use partial support knowledge –
LS-CS, modified-CS(modified-BP) and weighted-`1 – using
phase transition plots. CS-residual(BP-residual) is an approach
that uses signal value knowledge but not support knowledge.
The reason for including it in the comparisons here is to
demonstrate what we explained in Section III-B. The number
of measurements needed for exact recovery will not reduce
if we use signal value knowledge, without explicitly using
support knowledge.

For a given choice of the support size, s, the number of
misses in the support knowledge, u, and the number of extras,
e, we vary the number of measurements, n, and use Monte
Carlo to estimate the probability of exact recovery of the
various approaches. We generated the true support N of size s
uniformly at random from [1, 2, ...m]. The nonzero entries of
x were generated from a Gaussian N (0, σ2

x) distribution. The
support knowledge T was generated as T = N∪∆e\∆ where
∆e is generated as a set of size e uniformly at random from
N c and ∆ was generated as a set of size of u uniformly at
random from N . We generated the observation vector y = Ax
where A is an n × m random Gaussian matrix. Since CS-
residual(BP-residual) uses signal value knowledge, for it, we
generate a “signal value knowledge” µ̂ as follows. Generate
µ̂N∪T = xN∪T + eN∪T with e ∼ N (0, σ2

eI), and set
µ̂(N∪T )c = 0.

Modified-CS(modified-BP) solved (17) which has no pa-
rameters. For weighted-`1, we solved (20) with τ = e/s as
suggested in [50]. For CS-residual(BP-residual), we computed
x̂ = µ̂ + [arg minb ‖b‖1 s.t. y − Aµ̂ = Ab], where µ̂ was
generated as above. For LS-CS, we did the same thing but µ̂
was now IT A

†
T y (LS estimate on T ). All convex programs

were solved using CVX.
In our experiment, we used m = 200, s = 0.1m, u = 0.1s,

σ2
x = 5 and three values of e: e = 0 (Fig. 3(a)) and e = u

(Fig. 3(b)) and e = 4u (Fig. 3(c)). The phase transition plot
varies n and plots the Monte Carlo estimate of the probability
of exact recovery. For CS-residual(BP-residual), we generated
two types of prior signal knowledge, the good prior case with
σ2
e = 0.0001σ2

x and the bad prior case with σ2
e = σ2

x. We label
them as CSres(BPres)-good-prior and CSres(BPres)–bad-prior.
The probability of exact recovery was computed by generating
100 realizations of the data and counting the number of times
x was exactly recovered by a given approach. We say that
x is exactly recovered if ‖x−x̂‖‖x‖ < 10−6 (precision used by
CVX). We show three cases, e = 0, e = u and e = 4u in
Fig. 3. In all cases we observe the following. (1) BP and CS-
residual(BP-residual) need the same number of measurements
to achieve exact recovery with (Monte Carlo) probability
one. This is true even when very good prior knowledge is
provided to CS-residual(BP-residual). (2) LS-CS needs more
measurements for exact recovery than either of BP or CS-
residual(BP-residual). This is true even in the e = 0 case (and
this is something we are unable to explain). (3) Weighted-
`1 and modified-CS(modified-BP) significantly outperform all
other approaches – they need a significantly smaller n for exact
recovery with (Monte Carlo) probability one. (4) Finally, from
this set of simulations, it is hard to differentiate modified-
CS(modified-BP) and weighted-`1. However, in other works
[50], [38], in the noisy measurements’ case, it has been
observed in other works that when e is larger, weighted-`1
has a smaller recovery error than modified-CS(modified-BP).
We also notice this in Fig. 5.

B. Recursive recovery of a simulated sparse signal sequence
from noisy random-Gaussian measurements

We compare BPDN, CS-residual(BPDN-residual), PM-CS-
KF [56], modified-BPDN, Algorithm 5, weighted-`1, Algo-
rithm 6, streaming `1-homotopy [64], reg-mod-BPDN, Algo-
rithm 4, KMoCS, Algorithm 7, DCS-AMP [58], [59], CS-
MUSIC [71] and Temporal SBL [72]. Among these, BPDN
uses no prior knowledge; CS-residual(BPDN-residual) and
PM-CS-KF use only slow signal value change and spar-
sity; modified-BPDN and weighted-`1 use only slow support
change; and reg-mod-BPDN, KMoCS, DCS-AMP [58], [59]
use both slow support and slow signal value change. CS-
MUSIC [71] and Temporal SBL [72] are two batch algorithms
that solve the MMV problem (assumes the support of xt
does not change with time). Since A is fixed, we are able to
apply these as well. Temporal SBL [72] additionally also uses
temporal correlation among the nonzero entries while solving
the MMV problem. The MMV problem is discussed in detail
in Sec. X-A2 (part of related work and future directions).
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(c) e = 4u

Fig. 3. Phase transition plots. We plot the Monte Carlo estimate of the probability of exact recovery against n (number of measurements).
Notice that in the e = 0 case, weighted-`1 uses τ = e/s = 0 and hence it is the same as modified-CS(modified-BP). All figures used
m = 200, s = 0.1m, u = 0.1s. CS-residual(BP-residual) was compared for two cases: good prior and bad prior.

Notice also that modified-CS(modified-BP), reg-mod-BPDN
and KMoCS are algorithms from our group. The rest are either
baseline (BPDN and CS-residual(BPDN-residual)) or algo-
rithms from other groups (DCS-AMP, PM-CS-KF, weighted-
`1, streaming `1-homotopy, CS-MUSIC, Temporal SBL).

We used the authors’ code for DCS-AMP,
PM-CS-KF, l1-homotopy, Temporal-SBL and CS-
MUSIC. The code links are as follows: l1-homotopy:
http://users.ece.gatech.edu/∼sasif/homotopy, Temporal-
SBL: http://dsp.ucsd.edu/∼zhilin/TMSBL.html, CS-MUSIC:
http://bispl.weebly.com/compressive-music.html, DCS-AMP:
http://www2.ece.ohio-state.edu/∼schniter/DCS/index.html.
Code for PM-CS-KF was obtained by email from the
authors. For the others, we wrote our own MATLAB
code and used CVX to solve the convex programs.
BPDN solved (4) with y = yt, A = At at time t
and γ = max{10−2‖A′[y1 y2 . . . ytmax ]‖∞, σobs

√
m}

[64]. CS-residual(BPDN-residual) solved (4) with
y = yt − Atx̂t−1, A = At at time t and
γ = max{10−2‖A′[y1 y2 . . . ytmax ]‖∞, σobs

√
m}.

For reg-mod-BPDN, mod-BPDN, weighted-`1 and
KMoCS the complete stepwise algorithms are specified.
We will take permission from all authors and post
code for all the algorithms on a single webpage,
http://www.ece.iastate.edu/∼namrata/RecReconReview.html
soon.

We generated a sparse signal sequence using a generative
model that satisfies the assumptions given in Model 7.6. The
specific generative model used is the one specified in [53,
Appendix I] with one change: the magnitude of all entries in
the support (not just the newly added ones) changed over time.
We generated yt = Axt+wt where A was a random Gaussian
matrix of size n1 × m for t = 1, 2 and of size n3 × m for
t ≥ 3 and wt was Gaussian noise with zero mean and variance
σ2
obs,t. The parameters used for Model 7.6 were m = 200,
st = s = 0.1m = 20, sr,t = sd,t = sa,t = sa = 0.04s = 1,
dmin = 2, b = 4, amin = 2, rmin = 5, aj,t varied between
[amin, 3amin], rj,t varied between [rmin, 3rmin]. At the initial
time, all entries in the initial support, N1, had magnitude that
varied between [amin + dminrmin, amin + 3dminrmin]. For the
measurements, we used n1 = 180 for t = 1, 2 in order to
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Fig. 4. NMSE plot for a simulated sparse signal sequence generated
as explained in Section IX-B.

obtain a very accurate recovery of x1 and x2 (these are used
as the “training data” for learning the algorithm parameters
for future time instants). This training data was provided to
all the algorithms. For t > 2, we used n3 = 0.13m = 33 and
σ2
obs,t = 0.0004. Also for t = 1, 2, σ2

obs,1 = 0.00001.
We plot the results in Fig. 4. As can be seen, KMoCS and

reg-mod-BPDN have the smallest and stable normalized root
mean squared error (NRMSE). Mod-BPDN and DCS-AMP
have the next smallest errors. The CS-residual(BP-residual)
error starts out small but becomes unstable pretty quickly.
This is because signal value changes over time are not too
slow in this example. Support changes are slow but then CS-
residual(BP-residual) does not use slow support change.

C. Recursive recovery of a real vocal tract dynamic MRI se-
quence (approximately sparse) from simulated partial Fourier
measurements

We took the 256 x 256 larynx (vocal tract) dynamic MRI
sequence (shown in Fig. 1) and selected a 32 x 32 block of
it that contains most of the significant motion. The indices of
the selected block were (60 : 91, 60 : 91). Thus m = 1024.
This was done to allow us to use CVX to solve all our convex

http://users.ece.gatech.edu/~sasif/homotopy
http://dsp.ucsd.edu/~zhilin/TMSBL.html
http://bispl.weebly.com/compressive-music.html
http://www2.ece.ohio-state.edu/~schniter/DCS/index.html
http://www.ece.iastate.edu/~namrata/RecReconReview.html
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Fig. 5. NMSE plot for recovering a 32 x 32 sub-image sequence
of the larynx MRI sequence from simulated partial Fourier measure-
ments corrupted by Gaussian noise. In this case, m = 1024. We used
n1 = n2 = 0.18m and nt = 0.06m for t > 2. DCS-AMP (fixed
A) is a plot of DCS-AMP with using a time-invariant measurement
matrix A with n = 0.12m rows.

programs. CVX requires that the measurement matrix be small
enough so that it can be saved in the memory. This is why
we needed to pick a smaller sized image sequence. Let zt
denote the image at time t arranged as vector. We simulated
MRI measurements as yt = Htzt + wt where Ht = MtF1024

where Fm is an m-point DFT matrix, Mt consisted of nt rows
selected using a modification of the low-frequency random
undersampling scheme of Lustig et al [73] and wt was zero
mean i.i.d. Gaussian noise with variance σ2

obs = 10. We used
n1 = n2 = 0.18m and nt = 0.06m = 62 for t > 2. To get 6%
measurements, we generated three mask matrices with 50%,
40% and 30% measurements each using the low-frequency
random undersampling scheme, multiplied them, and selected
62 rows out of the resulting matrix uniformly at random.

For all algorithms, the sparsity basis we used was a two-
level Daubechies-4 wavelet. Thus Φ was the inverse wavelet
transform corresponding to this wavelet written as a matrix.

We compare BPDN, `1-homotopy, CS-residual(BPDN-
residual), PM-CS-KF [56], modified-BPDN, Algorithm 5,
weighted-`1, Algorithm 6; and reg-mod-BPDN, Algorithm 4,
KMoCS, Algorithm 7, DCS-AMP [58], [59]. The algorithms
were implemented exactly as explained in the previous sub-
section. The training data (first two images recovered using
simple BPDN) was provided to all algorithms.

The NMSE of the recovered sequence obtained using the
various algorithms is plotted in Fig. 5. As can be seen reg-
mod-BPDN has the smallest NMSE. The NMSE of CS-
residual(BP-residual) and of PM-CS-KF is only a little larger
since, in this case, the signal value change is very gradual.
KMoCS error is large for sometime but becomes small again.
DCS-AMP does not work well in this experiment most likely
because the number of measurements used is too small. We
show another plot for DCS-AMP with 12% measurements and
with A kept fixed (labeled DCS-AMP (fixed-A)). In this plot
it has much smaller error. Mod-BPDN and weighted-`1 fail
because the available number of measurements is too few in

this case (nt = 0.06m where as the 99.9% support set size is
around 0.07m for this sequence).

X. RELATED WORK AND FUTURE DIRECTIONS

We split the discussion in this section into four parts.
We first describe work that uses related signal models and
its implications for the problem discussed here. Next we
discuss more general measurement models beyond the linear
measurements and small noise case studied here, and how
some of the approaches described here can also be used for
these problems. Next, we describe some algorithms that may
seem to be solving the problem studied here but are actually
quite different. Finally, we discuss the problem of compressive
sequential detection, filtering and tracking.

A. Signal Models

1) Structured Sparsity: There has been a lot of recent work
on structured sparsity for a single signal. Dynamic extensions
of these ideas should prove to be useful in applications where
the structure is present and changes slowly. Two common
examples of structured sparsity are block sparsity [74], [75]
and tree structured sparsity (for wavelet coefficients) [76]. A
length m vector is block sparse if it can be partitioned into
length k blocks such that a lot of the blocks are entirely zero.
One way to recover block sparse signals is by solving the `2-
`1 minimization problem [74], [75]. Block sparsity is valid for
many applications, e.g., for the foreground image sequence of
a video consisting of one or a few moving objects, or for the
activation regions in brain fMRI. In both of these cases, it is
also true that the blocks do not change arbitrarily and hence
the block support from the previous time instant should be a
good estimate of the current block support. In this case one,
can again use a modified-CS(modified-BP) type idea applied
to the blocks. Denote the set of known nonzero blocks by T .
Then modified-`2-`1, developed by Stojnic [77], solves

min
b

m/k∑
j=1,j /∈T

√√√√k−1∑
i=1

b2jk+i s.t. y = Ab

The above idea can be easily used for recursive recovery
problems by letting the set T be the block-support estimate
from the previous time instant. Similarly, it should be possible
to develop a dynamic extension of tree-structured CoSaMP
that was developed and analyzed in [76].

2) MMV and dynamic MMV: In the MMV problem [21],
[22], [23], [24], [71], [78], [79], the goal is to recover a set of
sparse signals with a common support but different nonzero
signal values from a set of their measurements (all obtained
using the same measurement matrix). In our notation, we have
yt = Axt for t = 0, 1, 2, . . . t0, and the support set of xt,
Nt = N0 (constant support) [21]. This problem is similar to
the block-sparse signal case and hence one commonly used
solution is the `2-`1 program. Another more recent set of
solutions is inspired by the MUSIC algorithm and are called
CS-MUSIC [71] or iterative-MUSIC [78]. For signals with
time-varying support (the case studied in this article), one can
still use the MMV approaches as long as the size of their
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joint support (union of their supports), N := ∪tNt, is small
enough. This may not be true for the entire sequence, but
will usually be true for short durations. One could design a
modified-MMV algorithm that utilizes the joint support of the
previous duration to solve the current MMV problem better. A
related idea was explored in the recent dynamic MMV work
of Kim et al [80]. Instead of short batches of time signals,
they considered the case where a set of sparse signals have a
common support at a given time and over time this support
changes slowly.

Another related work is that of Zhang and Rao [72]. In
it, the authors develop what they call the temporal SBL (T-
SBL) algorithm. This is a batch (but fast) algorithm that solves
the MMV problem with temporal correlations. It assumes that
the support of xt does not change over time and the signal
values are correlated over time. The various indices of xt
are assumed to be independent. For a given index, i, it is
assumed that [(x1)i, (x2)i, . . . (xtmax

)i]
′ ∼ N (0, γiB). All the

xt’s are strung together to get a long tmaxm length vector
x that is Gaussian with block diagonal covariance matrix
diag(γ1B, γ2B, . . . γmB). T-SBL develops the SBL approach
to estimate the hyper-parameters {σ2, γ1, γ2, . . . γm, B} and
then compute an MAP estimate of the sparse vector sequence.
It is further speeded up by certain approximations introduced
in [72]. The hierarchical KF algorithm explained earlier in Sec
V-F can be interpreted as a recursive solution for a problem
that is very similar to the one solved by T-SBL.

Another related work [81] develops and studies a causal but
batch algorithm for CS for time-varying signals.

3) Sparse Transform Learning and Dictionary Learning:
In certain applications involving natural images, the wavelet
transform provides a good enough sparsifying basis. However,
for many other applications, while the wavelet transform is one
possible sparsifying basis, it can be significantly improved.
There has been a large amount of recent work both on
dictionary learning, e.g., [82], and more recently on sparsifying
transform learning from a given dataset of sparse signals [83].
The advantage of the latter work is that it is much faster
than existing dictionary learning approaches. For dynamic
sparse signals, an open question of interest is how to learn
a sparsifying transform that is optimized for signal sequences
with slow support change?

B. Measurement Models

1) Recursive Recovery in Large but Structured Noise:
The work discussed in this article solves the sparse recovery
problem either in the noise-free case or in the small noise case.
Only in this case, one can show that the reconstruction error
is small compared to the signal energy. In fact, this is true for
almost all work on sparse recovery; one can get reasonable
error bounds only for the small noise case.

However, in some applications, the noise energy can be
much larger than that of the sparse signal. If the noise is large
but has no structure then nothing can be done. But if it does
have structure, that can be exploited. This was first done for
outliers (modeled as sparse vectors) in the work of Wright
and Ma [84]. Their work, and then many later works, showed

exact sparse recovery from large but sparse noise (outliers) as
long as the sparsity bases for the signal and the noise/outlier
are “different” or “incoherent” enough. More recent work on
robust principal components’ analysis (PCA) by Candes et
al [5] and Chandrasekharan et al [85] studied the problem
of separating a low-rank matrix and a sparse matrix from
their sum. A key application where this problem occurs is in
separating video sequences into foreground and background
image sequences. In more recent work [7], [6], [40], [86], the
recursive or online robust PCA problem was solved. This can
be interpreted as a problem of recursive recovery of sparse
signal sequences in large but structured noise (noise that is
dense and lies in a fixed or “slowly changing” low-dimensional
subspace of the full space). As we explain next, one step in
the proposed solution, Recursive Projected CS (ReProCS), is
an example of the problem studied in this article.

ReProCS proceeds as follows. Suppose that yt = xt + `t
where xt is the sparse vector and `t is the large but structured
noise. Given an initial estimate of the subspace of the noise, it
projects yt into the space orthogonal to this subspace. Because
of the slow subspace change assumption, this approximately
nullifies `t and gives projected measurements of xt. The
resulting problem now becomes one of sparse recovery in
small noise (due to `t not being completely nullified). The
denseness assumption on the basis vectors that span the noise
subspace ensures that RIP holds for this problem and xt can
be accurately recovered using BP-noisy. One then recovers
`t by subtraction from yt and updates the subspace estimate
every few frames. The sparse recovery step in ReProCS is
an example of the problem of recursive recovery of sparse
signal sequences from compressive measurements and small
noise. For solving it, BP-noisy can be replaced by any of
the approaches described here. For example, in the video
experiments shown in [40], weighted-`1 was used. An open
question is how to obtain performance guarantees for the
resulting approach?

2) Recursive Recovery from Nonlinear Measurements and
Dynamic Phase Retrieval: The work described in this ar-
ticle focuses on sparse recovery from linear measurements.
However, in many applications such as computer vision, the
measurement (e.g., image) is a nonlinear function of the
sparse signal of interest (e.g., object’s boundary which is
often modeled as being Fourier sparse). Some recent work
that has studied the static version of this “nonlinear CS”
problem includes [87], [88], [89], [90], [91]. These approaches
use an iterative linearization procedure along with adapting
standard iterative sparse recovery techniques such as IHT.
An extension of these techniques for the dynamic case can
potentially be developed using an extended Kalman filter and
adapting modified-IHT. There has been other work on solving
the dynamic CS problem from nonlinear measurements by
using particle filtering based approaches [62], [92], [93], [61].

An important special case of the nonlinear CS problem is
sparse phase retrieval [94], [95], i.e. recover a sparse x from
y := |Ax| Here |.| takes the element-wise magnitude of the
vector (Ax). The sparse phase retrieval problem from Fourier
magnitude measurements (recover x from y := |Fx|) occurs
in applications such as astronomical imaging, optical imaging
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and X-ray crystallography where one can only measure the
magnitude of the Fourier coefficients of the unknown quantity.
One solution approach for this problem (that also comes with
performance guarantees) involves first using a combinatorial
algorithm to estimate the signal’s support, followed by using
a lifting technique to get a convex optimization program
for positive semi-definite matrices [96], [97], [98], [99]. As
explained in [97], the lifting based convex program cannot be
used directly (without the support information) because of the
location ambiguity introduced by the Fourier transform - the
magnitude of the FT of a signal and of its shifted version is the
same. Consider the dynamic sparse phase retrieval problem.
An open question is whether the support and the signal value
estimates from the previous time instant can help regularize
this problem enough to ensure a unique solution when directly
solving the resulting lifting-based convex program? If the
combinatorial support recovery algorithm can be eliminated,
it would make the solution approach a lot faster. A similar
question can also be asked for the other more recent sparse
Fourier phase retrieval solutions such as GESPAR [100].

C. Algorithms

1) “Optimal” algorithm(s): The work done on this topic so
far consists of good algorithms that improve significantly over
simple-CS solutions, and some of them come with provable
guarantees. However, it is not clear if any of these are
“optimal” in any sense. An open question is, can we develop an
“optimal” algorithm or can we show that an algorithm is close
enough to an “optimal” one? The original KF-CS algorithm
[36] was developed with this question in mind; however so far
there has not been any reasonable performance bound for it or
for its improved version, KMoCS. An open question is, can
we show that KMoCS comes within a bounded distance of
the genie-aided causal MMSE solution for this problem (the
causal MMSE solution assuming that the support sets at each
time are known)?

2) Homotopy methods to speed up the reconstruction al-
gorithm: In this article, we reviewed work on algorithms for
recursively recovering a time sequence of sparse signals from a
greatly reduced number of linear projection measurements (the
goal is to be able to use fewer measurements than what simple-
CS algorithms need). In recent work by Asif and Romberg
[101], [102], the authors have studied the problem of using the
recovered signal from the previous time instant and the fact
that signals change slowly over time to speed up the solving
of the BPDN program. Since their algorithm is a homotopy
to solve the BPDN program, it needs the same number of
measurements as BPDN. For the problem studied in this
article, a question of interest is how to design homotopies for
the modified-CS(modified-BP) or the weighted-`1 program?
This question is answered, in part, in [64].

D. Compressive Sequential Signal Detection, Classification,
Estimation and Filtering

In many signal processing applications, the final goal is to
use the recovered signal for detection, classification, estimation
or to filter out a certain component of the signal (e.g. a

band of frequencies or some other subspace). The question
is can we do this directly with compressive measurements
without having to first recover the sparse signal? This has
been studied in some recent works such as the work of
Davenport et al [103]. In fact the approach suggested in
this work for filtering solves the same convex program as
modified-CS(modified-BP) - there the set T is the known
support of the interference. For a time sequence of sparse
signals, a question of interest is how to do the same thing for
compressive sequential detection/classification or sequential
estimation (tracking)? The question to answer would be how
to use the previously reconstructed/detected signal to improve
compressive detection at the current time and how to analyze
the performance of the resulting approach?

E. Other very recent related work

We briefly mention here some very recent related work
that appeared since we started writing this review article.
There has been very recent work by Hegde et al on ap-
proximation tolerant model-based CS [104] which develops
faster but approximate algorithms for model-based CS. An
interesting question is whether something similar can be done
for approximate modified-CS(modified-BP)?

Another related work [105] assumes that the earth-mover’s
distance between the support sets of consecutive signals is
small and uses this to design a recursive dynamic CS algorithm
(instead of just using slow support change – which can be
interpreted as the `0 distance between the support sets).

There is also very recent work on analyzing weighted-`1
and obtaining necessary and sufficient conditions for it to work
[106].

XI. CONCLUSIONS

This article reviewed the literature on recursive recovery
of sparse signal sequences or what can be called “recursive
dynamic CS”. Most of the literature on this topic exploits one
or both of the practically valid assumptions of slow support
change and slow signal value change. While slow signal value
change is commonly used in a lot of previous tracking and
adaptive filtering literature, the slow support change is a new
assumption introduced for solving this problem. As shown in
Fig. 2, this is indeed valid in application such as dynamic MRI.
We summarized both theoretical and experimental results that
demonstrate the advantage of using these assumptions. In the
section above, we also discussed related problems and open
questions for future work.

A key limitation of almost all the work reviewed here is
that the algorithms assume more measurements are available
at the first time instant. This is needed in order to get an
accurate initial signal recovery using simple-CS solutions. In
some applications such as dynamic MRI or functional MRI, it
is possible to use more measurements at the initial time (the
scanner can be configured to allow this). In cases where this is
not possible, a possible option is to solve the MMV problem
described above for a small initial batch of time instants with
the common support given by the union of the supports for
all the time instants in this batch.
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