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Recursive and Causal Reconstruction of Sparse
Signal Sequences

Namrata Vaswani, ECE Dept, Iowa State University, Ames, IA

This work involves the design and analysis of recursive algorithms for causally reconstructing a time sequence
of (approximately) sparse signals from a greatly reduced number of linear projection measurements [1], [2], [3],
[4], [5], [6], [7]. By “recursive”, we mean use only the previous estimate and the current measurements to get the
current estimate. The signals are sparse in some transform domain referred to as the sparsity basis and their sparsity
patterns (support set of the sparsity basis coefficients) canchange with time. The most important example of the
above problem occurs in dynamic magnetic resonance imaging(MRI) for real-time medical applications such as
interventional radiology, MR image guided surgery, or functional MRI to track brain activation changes. MRI is
a technique for cross-sectional imaging that sequentiallycaptures the 2D Fourier projections of the cross-section
to be reconstructed. Cross-sectional images of the brain, heart, larynx or other human organ images are usually
piecewise smooth, e.g. see the first row of Fig. 1(b) or 1(c), andthus approximately sparse in the wavelet domain.
In a time sequence, the sparsity pattern changes with time, but slowly.Slow sparsity pattern change is empirically
verified for medical image sequences in Fig. 1(a) and in [2] and for video in [7].

Since MR data acquisition is sequential, the ability to accurately reconstruct with fewer measurements directly
translates to reduced scan times. Shorter scan times along with online (causal) and fast (recursive) reconstruction
allow the possibility of real-time imaging of fast changingphysiological phenomena.

Since the recent introduction of compressive sensing (CS) [8], [9], the static sparse reconstruction problem has
been thoroughly studied. But most existing algorithms for the dynamic problem just use CS to jointly reconstruct the
entire time sequence in one go [10], [11], [12]. This is a batchsolution with very high complexity. The alternative
- doing CS at each time separately (simple CS) - is online and fast but requires many more measurements. To the
best of our knowledge,our work [1] was the first to address the problem of causally and recursively reconstructing
sparse signal sequences using fewer measurementsthan those needed for simple CS. Thecomputational complexity
of our proposed algorithms is only as much as that of simple CS, and this is much lower than that of batch CS.

We summarize our contributions in the next subsection and after that we discuss the related work.
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(a) Verifying slow support change
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(b) Cardiac sequence and its recon.
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(c) Larynx (vocal tract) sequence and its recon.

Fig. 1. In Fig. 1(a),Nt refers to the 99% energy support of the 2D discrete wavelet transform of the cardiac sequence of Fig.
1(b) and of the larynx sequence (as a person speaks a vowel) ofFig. 1(c). Its size,|Nt|, varied between 4121-4183 (≈ 0.07m)
for the larynx sequence and between 1108-1127 (≈ 0.06m) for cardiac, i.e. both are wavelet sparse. Herem is the image size
(number of pixels). We plot the number of additions (top) andthe number of removals (bottom) as a fraction of|Nt|. Notice
that all support change sizes are less than 2% of the support size. In Figs. 1(b) and 1(c), we compare the reconstruction quality
from only 16% MRI measurements att > 0 (and 50% att = 0) using simple compressive sensing (CS) with that using our
proposed approach (modified-CS). Fig. 1(b) is for a sparsified cardiac sequence: modified-CS achieved exact reconstruction
while clearly CS did not. Fig. 1(c) is for an actual larynx sequence: modified-CS error was less than 2%, CS error was 15-20%.



A. Our Contributions

All of our work described below uses one or both of the following easily verifiable observations.
1) The sparsity patterns of natural signal/image sequences usually change “slowly” over time [see Fig. 1(a)].
2) In most cases, the values of the nonzero coefficients also change gradually over time.
When using only fact 1 above,the recursive sparse reconstruction problem can be reformulated as one of sparse

reconstruction with partially “known” support. The support estimate from the previous time serves as the “known”
part. We can further improve the proposed algorithm by also using fact 2.

• The key idea ofour first approach (LS-CS-residual or LS-CS)is to replace CS on the current observation by
CS on the least squares (LS) observation residual computed using the “known” part of the support [1], [2].
The LS residual measures a signal that has much fewer large components compared to the original signal (it
is what can be called a “sparse-compressible” signal). As a result, when fewer measurements are available,
the LS-CS reconstruction error is much lower than that of simple CS.

– By also using fact 2, we can replace the LS residual by theKalman filtering residual (KF-CS)[1]. This
improves the reconstruction particularly when the number of measurements is too few even for LS-CS.

• Even though LS-CS and KF-CS improve reconstruction accuracy over simple CS, but they cannot be used
for “exact” reconstruction from fewer noise-free measurements. This led toour second and more powerful
approach - modified-CS[3], [4]. Denote the “known” part of the support byT . Modified-CS tries to find the
signal that is sparsest outside ofT and that satisfies the data constraint. IfT has small error (few extras and
misses), modified-CS can achieveexactreconstruction from very few measurements, e.g. see Figs. 1(b), 1(c).

– By also using fact 2 (gradual change of nonzero coefficient values), one can designregularized modified-CS
which also constrains the change of the nonzero coefficient values alongT [4].

• We have been able to showvery promising proof-of-concept applications of the aboveideas in high fidelity
real-time dynamic MR imaging of various human organs[7], [4]. See Fig. 1 for some examples, and also see
the PI’s webpage,http://www.ece.iastate.edu/∼namrata/research/SequentialCS.html.

Under the practically valid assumption of slowly changing support (fact 1), we have also been able to prove all
of the following.

• Modified-CS achieves exact reconstruction under much weaker sufficientconditions(i.e. using much fewer
noise-free measurements) than those needed to provide the same guarantee for simple CS [4].

• For both LS-CS and modified-CS (noisy), under fairly mild assumptions (bounded noise, high enough SNR,
and weaker requirements on the number of measurements than what is needed for bounding simple CS error),

– the error bounds are much smaller than those for simple CS [2], [13], and
– the support change errors, and hence the reconstruction errors, are “stable”, i.e. they remain bounded

by small time-invariant values at all times [2], [5].
• Since the above analysis only compares sufficient conditions or upper bounds, all of the above conclusions

have been backed up by exhaustive simulation comparisons [2], [4]. We have also compared the above four
approaches with each other under different conditions and discussed which is better when and why [6].

It is important to mention thatthe proof of stability is one of the most challenging partsof our work since (i) it
requires carefully bounding the “detection delay” (the delay within which a set of newly added coefficients to the
support get detected) and (ii) it requires a deletion schemethat successfully deletes the falsely added and removed
coefficients from the support estimate either at every time orevery-so-often. To the best of our knowledge, this is
the first stability resultfor any recursive and causal sparse reconstruction approach. Proving stability of KF-CS or
reg-modified-CS is even more difficult (because of dependence on past reconstructed values) and is being studied
in ongoing work.Stability is critical for any recursive algorithm since it ensures that the error does not blow up
over time. For example, for LS-CS, it ensures that the extras in the support estimate get deleted either at each
time or every-so-often and the undetected support size doesnot keep increasing over time. Without the former,
eventually the estimated support size will exceed the available number of measurements, thus making LS estimation
impossible, while without the latter, the effective noise seen by the LS estimator will keep increasing.

The work discussed above is being supported by a 2009 NSF grant to the PI, CCF-0917015 (Recursive Re-
construction of Sparse Signal Sequences). The motivation for this work (particularly for KF-CS [1]) came from
trying to answer the question of how to detect and estimate “effective dimension” and “effective subspace” change



on-the-fly while tracking signal sequences and this was supported by a 2007 NSF grant to the PI, ECCS-0725849
(Change Detection in Nonlinear Systems and Applications in Shape Analysis).

B. Related Work
Our first paper on the topic was [1]. There has been some recent work on recursive sparse reconstruction in

[14] but in it the authors mostly focus on the time-invariantsparsity pattern case. The related problem of sparse
reconstruction with partial knowledge of the support was simultaneously addressed in our work [3] and in [15].
Recently (in Feb 2010), we learnt about the older work of von Borries et al [16] which also suggests an approach
similar to modified-CS.

We would like to point out that our goals are quite different from (although have sometimes been confused with)
(a) work that uses the previous estimate and homotopy to speed up the current optimization, but not to reduce the
number of measurements required, e.g. [17], and also from (b) work that recursively improves the reconstruction
of a single signal from sequentially arriving measurements, e.g. [18].
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