Stability of Modified-CS over Time
for recursive causal sparse reconstruction

Namrata Vaswani

Department of Electrical and Computer Engineering
Iowa State University
http://www.ece.iastate.edu/~namrata
Causally & recursively recons. a time seq. of sparse signals
with slowly changing sparsity patterns
from as few linear measurements at each time as possible

“recursive”: use current measurements & previous reconstruction to get current reconstruction

Potential applications
real-time dynamic MRI, e.g. for interventional radiology apps
single-pixel video imaging with a real-time video display, ...
Recursive Causal Sparse Reconstruction

- **Causally & recursively** reconstr. a time seq. of sparse signals
- with slowly changing sparsity patterns
- from **as few** linear measurements at each time as possible
 - “recursive”: use current measurements & previous reconstruction to get current reconstruction

Potential applications
- real-time dynamic MRI, e.g. for interventional radiology apps
- single-pixel video imaging with a real-time video display, ...
- need: (a) fast acquisition (fewer measurements); (b) process w/o buffering (causal); (c) fast reconstruction (recursive)

Most existing work:
- is either for static sparse reconstruction or is offline & batch,
 - e.g. [Wakin et al (video)], [Gamper et al, Jan’08 (MRI)], [Jung et al’09 (MRI)]
Notation

[Candes, Romberg, Tao’05]

- **Notation:**
 - $T^c = [1, 2, \ldots, m] \setminus T$: complement of set T
 - $\|A\|$: induced 2-norm of matrix A
 - A_T: sub-matrix containing columns of A with indices in set T
 - A': denotes the transpose of matrix A

- **RIP constant, δ_S:** smallest real number s.t. all eigenvalues of $A_T' A_T$ lie b/w $1 \pm \delta_S$ whenever $|T| \leq S$ [Candes, Romberg, Tao’05]
 - $\delta_S < 1 \iff A$ satisfies the S-RIP

- **ROP constant, θ_{S_1, S_2}:** smallest real number s.t. for disjoint sets, T_1, T_2 with $|T_1| \leq S_1, |T_2| \leq S_2$,
 - $|c_1' A_{T_1}' A_{T_2} c_2| \leq \theta_{S_1, S_2} \|c_1\|_2 \|c_2\|_2$ [Candes, Romberg, Tao’05]
 - easy to see: $\|A_{T_1}' A_{T_2}\| \leq \theta |T_1|, |T_2|$
Sparse reconstruction

- Reconstruct a sparse signal x, with support N, from $y := Ax$,
 - when $n = \text{length}(y) < m = \text{length}(x)$

- Solved if we can find the sparsest vector satisfying $y = Ax$
 - unique solution if $\delta_{2|N|} < 1$
 - exponential complexity

- Practical approaches (polynomial complexity in m)
 - greedy methods, e.g. MP, OMP,..., CoSaMP [Mallat,Zhang’93], [Pati et al’93],...[Needell,Tropp’08]
 - convex relaxation approaches, e.g. BP, BPDN,..., DS, [Chen,Donoho’95], ..., [Candes,Tao’06],...

- Compressed Sensing (CS) literature [Candes,Romberg,Tao’05], [Donoho’05]
 - provides exact reconstruction conditions and error bounds for the practical approaches
Sparse recon. w/ partly known support [Vaswani, Lu, ISIT’09, IEEE Trans. SP’10]

- Recon a sparse signal, x, with support, N, from $y := Ax$
 - given partial but partly erroneous support “knowledge”: T
Sparse recon. w/ partly known support [Vaswani, Lu, ISIT’09, IEEE Trans. SP’10]

- Recon a sparse signal, x, with support, N, from $y := Ax$
 - given partial but partly erroneous support “knowledge”: T

- Rewrite $N := \text{support}(x)$ as
 $$N = T \cup \Delta \setminus \Delta_e$$
 - T: support “knowledge”
 - $\Delta := N \setminus T$: misses in T (unknown)
 - $\Delta_e := T \setminus N_t$: extras in T (unknown)
Recon a sparse signal, x, with support, N, from $y := Ax$

- given partial but partly erroneous support “knowledge”: T

Rewrite $N := \text{support}(x)$ as

$$N = T \cup \Delta \setminus \Delta_e$$

- T: support “knowledge”
- $\Delta := N \setminus T$: misses in T (unknown)
- $\Delta_e := T \setminus N_t$: extras in T (unknown)

If Δ_e empty: find the signal that is sparsest outside of T

$$\min_{\beta} \| (\beta)_{T^c} \|_0 \text{ s.t. } y = A\beta$$

- if $|\Delta|$ small compared to $|N|$: easier problem
Sparse recon. w/ partly known support [Vaswani,Lu, ISIT’09, IEEE Trans. SP’10]

- Recon a sparse signal, x, with support, N, from $y := Ax$
 - given partial but partly erroneous support “knowledge”: T

- Rewrite $N := \text{support}(x)$ as

 $$N = T \cup \Delta \setminus \Delta_e$$

 - T: support “knowledge”
 - $\Delta := N \setminus T$: misses in T (unknown)
 - $\Delta_e := T \setminus N_t$: extras in T (unknown)

- If Δ_e empty: find the signal that is sparsest outside of T

 $$\min_{\beta} \| (\beta)_{T^c} \|_0 \text{ s.t. } y = A\beta$$

 - if $|\Delta|$ small compared to $|N|$: easier problem

- Same thing also works if Δ_e not empty but small
 - exact recon if $\delta |N| + |\Delta_e| + |\Delta| < 1$
\begin{itemize}
 \item **Modified-CS** [Vaswani, Lu, ISIT’09, IEEE Trans. SP, Sept’10]
 \end{itemize}

\[
\min_{\beta} \| (\beta)_{\mathcal{C}} \|_1 \quad \text{s.t.} \quad y = A\beta
\]

\begin{itemize}
 \item we obtained exact reconstruction conditions
 \item exact reconstruction is possible using fewer measurements than CS
 \begin{itemize}
 \item when misses and extras in \(T \) small
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item Other related and parallel work:
 \begin{itemize}
 \item [von Borries et al, TSP’09, CAMSAP’07]: no exact recon conditions or expts.
 \item [Khajenejad et al, ISIT’09]: probabilistic prior on support
 \end{itemize}
\end{itemize}
Problem formulation

- **Measure**

 \[y_t = Ax_t + w_t, \quad \|w_t\|_2 \leq \varepsilon \]

 - \(A = H\Phi \), \(H \): measurement matrix, \(\Phi \): sparsity basis matrix
 - \(y_t \): measurements \((n \times 1)\)
 - \(x_t \): sparsity basis coefficients \((m \times 1), m > n\)
 - \(N_t \): support of \(x_t \) (set of indices of nonzero elements of \(x_t \))

- **Goal:** recursively reconstruct \(x_t \) from \(y_0, y_1, \ldots, y_t \),

 - i.e. use only \(\hat{x}_{t-1} \) and \(y_t \) for reconstructing \(x_t \)
Problem formulation

- **Measure**
 \[y_t = A x_t + w_t, \quad \|w_t\|_2 \leq \epsilon \]
 - \(A = H \Phi, H: \) measurement matrix, \(\Phi: \) sparsity basis matrix
 - \(y_t: \) measurements \((n \times 1)\)
 - \(x_t: \) sparsity basis coefficients \((m \times 1), m > n\)
 - \(N_t: \) support of \(x_t \) (set of indices of nonzero elements of \(x_t \))

- **Goal:** recursively reconstruct \(x_t \) from \(y_0, y_1, \ldots y_t \),
 - i.e. use only \(\hat{x}_{t-1} \) and \(y_t \) for reconstructing \(x_t \)

- **Key Assumption:**
 - support of \(x_t, N_t, \) changes slowly over time:
 \[|N_t \setminus N_{t-1}| \approx |N_{t-1} \setminus N_t| \ll |N_t| \]
 - empirically verified for dynamic MRI sequences [Lu, Vaswani, ICIP’09]
At $t = 0$: simple CS or modified-CS using prior support knowledge

For $t > 0$,

1. **Modified-CS.** Set $T = \hat{N}_{t-1}$ and compute

 $$\hat{x}_{t, \text{modcs}} = \arg \min_{\beta} \| (\beta)^T c \|_1 \text{ s.t. } \| y_t - A\beta \|_2 \leq \epsilon$$
At $t = 0$: simple CS or modified-CS using prior support knowledge

For $t > 0$,

1. **Modified-CS.** Set $T = \hat{N}_{t-1}$ and compute
 \[
 \hat{x}_{t, \text{modcs}} = \arg \min_{\beta} \| (\beta)_T c \|_1 \text{ s.t. } \| y_t - A\beta \|_2 \leq \epsilon
 \]

2. **Estimate Support.** Compute \tilde{T} as
 \[
 \tilde{T} = \{ i \in [1, m] : |(\hat{x}_{t, \text{modcs}})_i| > \alpha \}
 \]

3. Output $\hat{x}_{t, \text{modcs}}$. Set $\hat{N}_t = \tilde{T}$. Feedback \hat{N}_t.
Modified-CS for time sequences and noisy measurements

At $t = 0$: simple CS or modified-CS using prior support knowledge

For $t > 0$,

1. **Modified-CS.** Set $T = \hat{N}_{t-1}$ and compute

 \[
 \hat{x}_{t,\text{modcs}} = \arg\min_{\beta} \| (\beta)_{T^c} \|_1 \text{ s.t. } \| y_t - A\beta \|_2 \leq \epsilon
 \]

2. **Estimate Support.** Compute \tilde{T} as

 \[
 \tilde{T} = \{ i \in [1, m] : |(\hat{x}_{t,\text{modcs}})_i| > \alpha \}
 \]

3. Output $\hat{x}_{t,\text{modcs}}$. Set $\hat{N}_t = \tilde{T}$. Feedback \hat{N}_t.

support errors (initial): $\Delta_t := N_t \setminus T_t$, $\Delta_{e,t} := T_t \setminus N_t$,

support errors (final): $\tilde{\Delta}_t := N_t \setminus \tilde{T}_t$, $\tilde{\Delta}_{e,t} := \tilde{T}_t \setminus N_t$
Key Question: “Stability”

- Easy to bound the reconstruction error at a given time, t
 - result depends on the support errors’ sizes $|\Delta_t|$, $|\Delta_{e,t}|$
 - may increase over time
Key Question: “Stability”

- Easy to bound the reconstruction error at a given time, t
 - result depends on the support errors’ sizes $|\Delta t|$, $|\Delta_{e,t}|$
 - may increase over time

- **Key Question:** is it “stable”?
 1. Can we obtain conditions under which time-invariant bounds on $|\Delta t|$, $|\Delta_{e,t}|$ hold?
 - direct corollary: time-invariant bound on the recon error
Key Question: “Stability”

- Easy to bound the reconstruction error at a given time, t
 - result depends on the support errors’ sizes $|\Delta_t|$, $|\Delta_{e,t}|$
 - may increase over time

- Key Question: is it “stable”?

 1. Can we obtain conditions under which time-invariant bounds on $|\Delta_t|$, $|\Delta_{e,t}|$ hold?
 - direct corollary: time-invariant bound on the recon error

 2. When are these conditions weaker than those for CS?
Key Question: “Stability”

- Easy to bound the reconstruction error at a given time, t
 - result depends on the support errors’ sizes $|\Delta_t|$, $|\Delta_{e,t}|$
 - may increase over time

- **Key Question:** is it “stable”?
 1. Can we obtain conditions under which time-invariant bounds on $|\Delta_t|$, $|\Delta_{e,t}|$ hold?
 - direct corollary: time-invariant bound on the recon error
 2. When are these conditions weaker than those for CS?
 3. When are the bounds small compared to support size?
Existing/parallel work

- Recursive reconstruction of sparse signal sequences
 - simple-CS (CS for each time separately): needs larger n
 - [Cevher et al’08] CS on observ differences (CS-diff): unstable
 - [Angelosant, Giannakis, DSP’09]: assume support does not change w/ time

- Except our LS-CS work, none of these show error stability over time
Existing/parallel work

- Recursive reconstruction of sparse signal sequences
 - simple-CS (CS for each time separately): needs larger n
 - [Cevher et al’08] CS on observ differences (CS-diff): unstable
 - [Angelosant, Giannakis, DSP’09]: assume support does not change w/ time

- **Except our LS-CS work, none of these show error stability over time**

- Our goals very different from:
 - homotopy methods: speed up optimization but not reduce n
 - reconstruct **one signal** recursively from seq. arriving meas’s
 - multiple measurements vector (MMV) problem
LS-CS stability result [Vaswani, IEEE Trans. SP, Aug’10]

- is for a signal model with support changes “every-so-often”.
- If the delay b/w support change times is large enough; new coeff.’s increase at least at a certain rate; and \(n \) large enough;
- then “stability” holds.
LS-CS stability result [Vaswani, IEEE Trans. SP, Aug'10]

- is for a signal model with support changes “every-so-often”.
- If the delay b/w support change times is large enough; new coeff.’s increase at least at a certain rate; and n large enough;
- then “stability” holds.

But, often, e.g. in dynamic MRI, support changes occur at every time
Measurement and Signal Model

\[y_t = Ax_t + w_t, \quad \| w_t \|_2 \leq \epsilon \]

- Why bounded noise?
 - Gaussian noise: error bounds at \(t \) hold with “large” probability
\[y_t = Ax_t + w_t, \quad \|w_t\|_2 \leq \epsilon \]

- **Why bounded noise?**
 - Gaussian noise: error bounds at \(t \) hold with “large” probability
 - for stability, need the bounds to hold for all \(0 \leq t < \infty \)
 - will hold w.p. zero
\[y_t = Ax_t + w_t, \quad \|w_t\|_2 \leq \epsilon \]

- **Why bounded noise?**
 - Gaussian noise: error bounds at \(t \) hold with “large” probability
 - for stability, need the bounds to hold for all \(0 \leq t < \infty \)
 - will hold w.p. zero

- **Signal model (model on \(x_t \))**
 - \(S_a \) additions and \(S_a \) removals from support at each time
 - Support size constant at \(S_0 \)
\[y_t = Ax_t + w_t, \quad \|w_t\|_2 \leq \epsilon \]

- **Why bounded noise?**
 - Gaussian noise: error bounds at \(t \) hold with “large” probability
 - for stability, need the bounds to hold for all \(0 \leq t < \infty \)
 - will hold w.p. zero

- **Signal model (model on \(x_t \))**
 - \(S_a \) additions and \(S_a \) removals from support **at each time**
 - Support size constant at \(S_0 \)
 - At all \(t \), there are \(2S_a \) coeff’s each with mag. \(r, 2r, \ldots (d-1)r \)
 - and \(S_0 - (2d-2)S_a \) elements with mag \(M := dr \)
$y_t = Ax_t + w_t, \quad \|w_t\|_2 \leq \epsilon$

Why bounded noise? -
- Gaussian noise: error bounds at t hold with “large” probability
- for stability, need the bounds to hold for all $0 \leq t < \infty$
 - will hold w.p. zero

Signal model (model on x_t)
- S_a additions and S_a removals from support **at each time**
- Support size constant at S_0
- At all t, there are $2S_a$ coeff’s each with mag. $r, 2r, \ldots (d - 1)r$
 - and $S_0 - (2d - 2)S_a$ elements with mag $M := dr$
- At all t, S_a out of $2S_a$ elements at mag. jr increase to $(j + 1)r$
 - and the other S_a decrease to $(j - 1)r$;
 - $j = 0$: coeff’s only increase; $j = d$: coeff’s only decrease
Example:

- say $m = 200$, $S_0 = 20$, $S_a = 2$, $d = 3$
- At any t,
 - there are 4 elements each with magnitude $r, 2r$
 - and $(20-8) = 12$ elements with magnitude $M = 3r$
Example:

- say $m = 200$, $S_0 = 20$, $S_a = 2$, $d = 3$
- At any t,
 - there are 4 elements each with magnitude $r, 2r$
 - and $(20-8)=12$ elements with magnitude $M = 3r$
 - any 2 out of the 180 zero elements added to support at mag r
Example:

- say $m = 200$, $S_0 = 20$, $S_a = 2$, $d = 3$
- At any t,
 - there are 4 elements each with magnitude $r, 2r$
 - and $(20-8) = 12$ elements with magnitude $M = 3r$
 - any 2 out of the 180 zero elements added to support at mag r
 - any 2 out of the 4 with mag r increase to $2r$,
 - the other 2 reduce to zero (removed)
Example:

- say $m = 200$, $S_0 = 20$, $S_a = 2$, $d = 3$
- At any t,
 - there are 4 elements each with magnitude $r, 2r$
 - and $(20-8)=12$ elements with magnitude $M = 3r$
 - any 2 out of the 180 zero elements added to support at mag r
 - any 2 out of the 4 with mag r increase to $2r$,
 - the other 2 reduce to zero (removed)
 - any 2 out of the 4 with mag $2r$ increase to $3r$,
 - the other 2 reduce to r
Corollary (modified-CS error bound [modification of Jacques,2010])

If \(\|w_t\|_2 \leq \epsilon \) and \(\delta |N_t| + |\Delta_t| + |\Delta_{e,t}| < (\sqrt{2} - 1)/2 \), then

\[
\|x_t - \hat{x}_{t,modcs}\|_2 \leq C_1(|N_t| + |\Delta_t| + |\Delta_e|) \leq 8.79\epsilon
\]
Obtaining the stability result

Corollary (modified-CS error bound) [Modification of Jacques, 2010]

If $\|w_t\|_2 \leq \epsilon$ and $\delta|N_t| + |\Delta_t| + |\Delta_{e,t}| < (\sqrt{2} - 1)/2$, then

$$\|x_t - \hat{x}_{t,modcs}\|_2 \leq C_1(|N_t| + |\Delta_t| + |\Delta_e|) \leq 8.79\epsilon$$

Simple facts

1. All elements with $\text{mag} > b$ definitely detected at t
 - if $b \geq \alpha + \max_i |(x_t - \hat{x}_{modcs,t})_i|$
Obtaining the stability result

Corollary (modified-CS error bound \[^{[\text{modification of Jacques,2010}]}\])

If \(\|w_t\|_2 \leq \epsilon \) and \(\delta |N_t| + |\Delta_t| + |\Delta_{e,t}| < (\sqrt{2} - 1)/2 \), then

\[
\|x_t - \hat{x}_{t,modcs}\|_2 \leq C_1(|N_t| + |\Delta_t| + |\Delta_e|) \leq 8.79\epsilon
\]

Simple facts

1. All elements with mag > b definitely detected at t
 - if \(b \geq \alpha + \max_i |(x_t - \hat{x}_{modcs,t})_i| \)

2. All zero elements definitely deleted/not falsely added at t
 - if \(\alpha \geq \max_i |(x_t - \hat{x}_{modcs,t})_i| \)
Obtaining the stability result

Corollary (modified-CS error bound [modification of Jacques, 2010])

If \(\|w_t\|_2 \leq \epsilon \) and \(\delta \|N_t\| + |\Delta_t| + |\Delta_{e,t}| < (\sqrt{2} - 1)/2 \), then

\[
\|x_t - \hat{x}_{t, modcs}\|_2 \leq C_1(\|N_t\| + |\Delta_t| + |\Delta_e|) \leq 8.79\epsilon
\]

Simple facts

1. All elements with mag > \(b \) definitely detected at \(t \)
 - if \(b \geq \alpha + \max_i |(x_t - \hat{x}_{modcs, t})_i| \)

2. All zero elements definitely deleted/not falsely added at \(t \)
 - if \(\alpha \geq \max_i |(x_t - \hat{x}_{modcs, t})_i| \)

- Use above facts/corollary to obtain sufficient conditions s.t.
 - only coeff’s with magnitude < 2\(r \) are part of missed set, \(\tilde{\Delta}_t \),
 - and the final set of extras, \(\tilde{\Delta}_{e,t} \) is an empty set

support errors (initial): \(\Delta_t := N_t \setminus T_t, \Delta_{e,t} := T_t \setminus N_t \), support errors (final): \(\tilde{\Delta}_t := N_t \setminus \tilde{T}_t, \tilde{\Delta}_{e,t} := \tilde{T}_t \setminus N_t \)
Theorem (Stability of Modified-CS)

If

1. *(support estimation threshold)* \(\alpha = 8.79\epsilon \)
2. *(support size, support change size)* \(S_0, S_a \) satisfy
 \(\delta_{S_0 + 3S_a} < (\sqrt{2} - 1)/2 \) (for a given \(A \))
3. *(new coeff. increase rate)* \(r \geq 8.79\epsilon \),
4. *(initial time)* at \(t = 0, n_0 \) large enough s.t. \(\delta_{2S_0} < (\sqrt{2} - 1)/2 \)

then, at all times, \(t \),
Theorem (Stability of Modified-CS)

If

1. (support estimation threshold) $\alpha = 8.79\epsilon$
2. (support size, support change size) S_0, S_a satisfy
 - $\delta_{S_0 + 3S_a} < (\sqrt{2} - 1)/2$ (for a given A)
3. (new coeff. increase rate) $r \geq 8.79\epsilon$,
4. (initial time) at $t = 0$, n_0 large enough s.t. $\delta_{2S_0} < (\sqrt{2} - 1)/2$

then, at all times, t,

- final support errors, $|\tilde{\Delta}_t| \leq 2S_a$ and $|\tilde{\Delta}_{e,t}| = 0$
- initial support errors, $|\Delta_t| \leq 2S_a$ and $|\Delta_{e,t}| \leq S_a$
Theorem (Stability of Modified-CS)

If

1. *(support estimation threshold)* \(\alpha = 8.79\epsilon \)
2. *(support size, support change size)* \(S_0, S_a \) satisfy
 \[\delta_{S_0 + 3S_a} < \left(\sqrt{2} - 1\right)/2 \] \(\text{(for a given } A) \)
3. *(new coeff. increase rate)* \(r \geq 8.79\epsilon \),
4. *(initial time)* at \(t = 0 \), \(n_0 \) large enough s.t. \(\delta_{2S_0} < \left(\sqrt{2} - 1\right)/2 \)

then, at all times, \(t \),

- *final support errors*, \(|\tilde{\Delta}_t| \leq 2S_a \) and \(|\tilde{\Delta}_{e,t}| = 0 \)
- *initial support errors*, \(|\Delta_t| \leq 2S_a \) and \(|\Delta_{e,t}| \leq S_a \)
- and so recon error satisfies \(\|x_t - \hat{x}_{t,modcs}\|_2 \leq 8.79\epsilon \)
Theorem (Stability of Modified-CS)

If

1. (support estimation threshold) $\alpha = 8.79\epsilon$
2. (support size, support change size) S_0, S_a satisfy
 - $\delta_{S_0 + 3S_a} < (\sqrt{2} - 1)/2$ (for a given A)
3. (new coeff. increase rate) $r \geq 8.79\epsilon$,
4. (initial time) at $t = 0$, n_0 large enough s.t. $\delta_{2S_0} < (\sqrt{2} - 1)/2$

then, at all times, t,

- final support errors, $|\tilde{\Delta}_t| \leq 2S_a$ and $|\tilde{\Delta}_{e,t}| = 0$
- initial support errors, $|\Delta_t| \leq 2S_a$ and $|\Delta_{e,t}| \leq S_a$
- and so recon error satisfies $\|x_t - \hat{x}_{t,\text{modcs}}\|_2 \leq 8.79\epsilon$

- Slow support change $\Rightarrow S_a \ll S_0$
 - \Rightarrow support errors’ bound small compared to support size
Compare with simple CS

- To get the same error bound, CS needs
 \[\delta_{2S_0} < (\sqrt{2} - 1)/2 \]

- Modified-CS only needs
 \[\delta_{S_0 + 3S_a} < (\sqrt{2} - 1)/2 \]

 recall: \(S_0 \): support size, \(S_a \): # of support changes at \(t \)
Discussion

Compare with simple CS

- To get the same error bound, CS needs
 - $\delta_{2S_0} < (\sqrt{2} - 1)/2$

- Modified-CS only needs
 - $\delta_{S_0+3S_a} < (\sqrt{2} - 1)/2$
 - recall: S_0: support size, S_a: # of support changes at t

Limitations

- Bounding ℓ_∞ norm of error by ℓ_2 norm: loose
Discussio

Compare with simple CS

- To get the same error bound, CS needs
 - \(\delta_{2S_0} < (\sqrt{2} - 1)/2\)

- Modified-CS only needs
 - \(\delta_{S_0 + 3S_a} < (\sqrt{2} - 1)/2\)
 - recall: \(S_0\): support size, \(S_a\): # of support changes at \(t\)

Limitations

- Bounding \(\ell_\infty\) norm of error by \(\ell_2\) norm: loose

- Using a single threshold, \(\alpha\), for simultaneous add/del to/from support
 - need \(\alpha\) large enough to ensure correct deletion
 - \(\Rightarrow\) need rate of coeff. increase, \(r\), even larger
A two threshold solution: Add-LS-Del

- Add using a small threshold

\[T_{\text{add}} = T \cup \{ i : |(\hat{x}_{\text{mod-CS}})_i| > \alpha_{\text{add}} \} \]

- can use \(\alpha_{\text{add}} \) just large enough s.t. well-conditioned \((A)_{T_{\text{add}}}\)

\(^1\) idea related to [DantzigSelector, Candes, Tao’06], [KF-CS, Vaswani’08], [CoSaMP, Needell, Tropp’08]
A two threshold solution: Add-LS-Del \(^1\)

- Add using a small threshold

\[T_{\text{add}} = T \cup \{ i : |(\hat{x}_{\text{modCS}})_i | > \alpha_{\text{add}} \} \]

- Can use \(\alpha_{\text{add}} \) just large enough s.t. well-conditioned \((A)_{T_{\text{add}}\text{add}}\)

- Compute LS estimate on \(T_{\text{add}} \)

\[\hat{x}_{\text{add}} = \text{LS}(T_{\text{add}}, y_t) \]

- Reduces bias and mean squared error if \(T_{\text{add}} \approx N_t \)

\(^1\) Idea related to [DantzigSelector, Candes, Tao’06], [KF-CS, Vaswani’08], [CoSaMP, Needell, Tropp’08]
A two threshold solution: Add-LS-Del \(^1\)

- **Add using a small threshold**

 \[T_{\text{add}} = T \cup \{i : |(\hat{x}_{\text{modCS}})_i| > \alpha_{\text{add}}\} \]

 - can use \(\alpha_{\text{add}}\) just large enough s.t. well-conditioned \((A)_{T_{\text{add}}}\)

- **Compute LS estimate on** \(T_{\text{add}}\)

 \[\hat{x}_{\text{add}} = LS(T_{\text{add}}, y_t) \]

 - reduces bias and mean squared error if \(T_{\text{add}} \approx N_t\)

- **Delete with larger threshold**

 \[\hat{N} = T_{\text{add}} \setminus \{i : |(\hat{x}_{\text{add}})_i| \leq \alpha_{\text{del}}\} \]

 - only deleting (not adding) \(\Rightarrow\) \(\alpha_{\text{del}}\) can be larger
 - \(\hat{x}_{\text{add}}\) more accurate \(\Rightarrow\) \(\alpha_{\text{del}}\) can be larger

\(^1\) idea related to [DantzigSelector, Candes, Tao’06], [KF-CS, Vaswani’08], [CoSaMP, Needell, Tropp’08]
Obtaining the stability result

Lemma (Detection condition)

All elements with magnitude > b definitely detected at t if

\[\|w\| \leq \varepsilon, \delta s_0 + |\Delta_{e,t}| + |\Delta_t| < \left(\sqrt{2} - 1 \right)/2 \text{ and } b > \alpha_{\text{add}} + 8.79\varepsilon \]

Lemma (No false deletion condition)

All elements in T_{\text{add}} with magnitude > b not deleted at t if

\[\|w\| \leq \varepsilon, \delta |T_{\text{add}}| < 1/2 \text{ and } b_1 > \alpha_{\text{del}} + \sqrt{2}\varepsilon + 2\theta |T_{\text{add}}|, |\Delta_{\text{add}}| \|x_{\Delta_{\text{add}}}\|_2 \]

Lemma (Deletion condition)

All elements of \(\Delta_{e,\text{add},t} \) deleted at t if

\[\|w\| \leq \varepsilon, \delta |T_{\text{add}}| < 1/2 \text{ and } \alpha_{\text{del}} \geq \sqrt{2}\varepsilon + 2\theta |T_{\text{add}}|, |\Delta_{\text{add}}| \|x_{\Delta_{\text{add}}}\|_2 \]

From the signal model,

\[N_t = N_{t-1} \cup A_t \setminus R_t \]
\[S_{t,2} = S_{t-1,2} \cup (A_t \cup D_{t,1}) \setminus (R_t \cup I_{t,2}) \]

\(S_{t,2} \): set of indices of all nonzero coeff’s with magnitude < 2r
\(A_t \): new additions at t, \(R_t \): new removals at t
\(I_{t,2} \): all coeff’s that increased from r to 2r at t, \(D_{t,1} \): decreased from 2r to r
Theorem (Stability of modified-CS with add-LS-del)

If

1. (addition and deletion thresholds)
 - \(\alpha_{\text{add}} \) is large enough s.t. at most \(S_a \) false adds per unit time,
 - \(\alpha_{\text{del}} = \sqrt{2\epsilon} + 2\sqrt{S_a}\theta_{S_0 + 2S_a,s_a}r \),

2. (support size, support change size) \(S_0, S_a \) satisfy
 - \(\delta_{S_0 + 3S_a} < (\sqrt{2} - 1)/2 \), and
 - \(\theta_{S_0 + 2S_a,s_a} < \frac{1}{4\sqrt{S_a}} \),

3. (new coeff. increase rate) \(r \geq \max(G_1, G_2) \), where

\[
G_1 \triangleq \frac{\alpha_{\text{add}} + 8.79\epsilon}{2}, \quad G_2 \triangleq \frac{\sqrt{2\epsilon}}{1 - 2\sqrt{S_a}\theta_{S_0 + 2S_a,s_a}}
\]

4. (initial time) at \(t = 0 \), \(n_0 \) is large enough

then, at all \(t \), all the same conclusions hold.
Discussion – 1: Limitation and a Way Out

\[\theta_{S_0 + 2S_a, S_a} < \frac{1}{(4\sqrt{S_a})} \] difficult to satisfy for large problems
Discussion – 1: Limitation and a Way Out

- \(\theta_{S_0+2S_a,S_a} < \frac{1}{4\sqrt{S_a}} \) difficult to satisfy for large problems

- Get this since we bound LS error as \(\|x - \hat{x}_{\text{add}}\|_\infty \leq \|x - \hat{x}_{\text{add}}\|_2 \)
 - clearly a loose bound
 - esp. since LS step reduces bias (when support errors small)
Discussion – 1: Limitation and a Way Out

- $\theta_{S_0+2S_a,S_a} < 1/(4\sqrt{S_a})$ difficult to satisfy for large problems

- Get this since we bound LS error as $\|x - \hat{x}_{\text{add}}\|_\infty \leq \|x - \hat{x}_{\text{add}}\|_2$
 - clearly a loose bound
 - esp. since LS step reduces bias (when support errors small)

- Instead if assume $\|x - \hat{x}_{\text{add}}\|_\infty \leq (1/\sqrt{S_a}) \|x - \hat{x}_{\text{add}}\|_2$, then
 - theta condition weakened to

 \[\theta_{S_0+2S_a,S_a} < 1/4 \]

 - and lower bound on coeff. increase rate, r, also reduced
Discussion – 1: Limitation and a Way Out

- \(\theta_{S_0+2S_a,S_a} < 1/(4\sqrt{S_a}) \) difficult to satisfy for large problems

- Get this since we bound LS error as \(\|x - \hat{x}_{add}\|_\infty \leq \|x - \hat{x}_{add}\|_2 \)
 - clearly a loose bound
 - esp. since LS step reduces bias (when support errors small)

- Instead if assume \(\|x - \hat{x}_{add}\|_\infty \leq (1/\sqrt{S_a}) \|x - \hat{x}_{add}\|_2 \), then
 - \textbf{theta condition weakened to}
 \[
 \theta_{S_0+2S_a,S_a} < 1/4
 \]
 - and lower bound on coeff. increase rate, \(r \), also reduced
 - (in simulation expts, above assumption holds 99% of times)
Comparison with CS result

- For the same error bound, CS needs:

\[\delta_{2S_0} < (\sqrt{2} - 1)/2 \]

- Mod-CS with add-LS-del only needs:

\[\delta_{S_0 + 3S_a} < (\sqrt{2} - 1)/2 \text{ and } \theta_{S_0 + 2S_a, S_a} < 1/4 \]

Comparison with Modified-CS result

- Mod-CS needs \(r \geq 8.79\epsilon \)

- Mod-CS with add-LS-del only needs \(r \geq (\alpha_{\text{add}} + 8.79\epsilon)/2 \)
 - usually \(\alpha_{\text{add}} \) can be quite small
Discussion – 2: Comparisons

Comparison with CS result

- For the same error bound, CS needs:
 \[\delta_{2S_0} < (\sqrt{2} - 1)/2 \]

- Mod-CS with add-LS-del only needs:
 \[\delta_{S_0+3S_a} < (\sqrt{2} - 1)/2 \text{ and } \theta_{S_0+2S_a+S_a} < 1/4 \]

Comparison with Modified-CS result

- Mod-CS needs \(r \geq 8.79\epsilon \)
- Mod-CS with add-LS-del only needs \(r \geq (\alpha_{\text{add}} + 8.79\epsilon)/2 \)
 - usually \(\alpha_{\text{add}} \) can be quite small

Comparison with LS-CS result

- proved similar result for LS-CS; its requirements much stronger
Simulations: support errors

(a) $r = 1$: (mean # of misses)/S_0
(b) $r = 1$: (mean # of extras)/S_0

- Measurement model: $n = 29.5\%$, $w_t \sim \text{unif}(-c, c)$ with $c = 0.1266$
- Support size, $S_0 = 10\%$, support change size, $S_a = 1\%$
- Signal model: $r = 1$, $d = 3$
Simulations: support errors

(c) $r = 1/2$: (mean # of misses)/S_0
(d) $r = 1/2$: (mean # of extras)/S_0

- Measurement model: $n = 29.5\%$, $w_t \sim \text{unif}(-c, c)$ with $c = 0.1266$
- Support size, $S_0 = 10\%$, support change size, $S_a = 1\%$
- Signal model: $r = 1/2$, $d = 4$
Simulations: reconstruction error

NMSE vs. time for different methods:
- mod-CS
- mod-CS-add-LS-del
- LS-CS
- Gauss-CS
- CS

$r = 1$

$r = 1/2$
Conclusions and Ongoing Work

- Under mild assumptions (S_0, S_a small enough and r large enough), we obtained time-invariant support error (and recon. error) bounds for
 - modified-CS (single threshold)
 - modified-CS with add-LS-del

- If “slow support change” holds, i.e. if $S_a \ll S_0$,
 - the support error bounds are small compared to support size
 - larger support size is allowed than what simple CS needs
Conclusions and Ongoing Work

- Under mild assumptions (S_0, S_a small enough and r large enough), we obtained time-invariant support error (and recon. error) bounds for
 - modified-CS (single threshold)
 - modified-CS with add-LS-del

- If “slow support change” holds, i.e. if $S_a \ll S_0$,
 - the support error bounds are small compared to support size
 - larger support size is allowed than what simple CS needs

- Ongoing work
 - Experiments with real functional MRI sequences
 - Stability of KalMoCS (Kalman-like Modified-CS)
 - Mod-CS with a slow signal value change term
 - Real-time (recursive and causal) robust PCA [Qiu, Vaswani, Allerton'10]
 - online matrix completion w/ sparse corruptions
For a given measurement matrix, A, and noise bound, ϵ, if,

1. the support estimation threshold(s) are large enough,
2. the support size, S_0, and support change size, S_a are small enough,
3. the newly added coefficients increase (existing large coefficients decrease) at least at a certain rate, r, and
4. the initial number of measurements, n_0, is large enough for simple CS

then
For a given measurement matrix, A, and noise bound, ϵ, if,

1. the support estimation threshold(s) are large enough,
2. the support size, S_0, and support change size, S_a are small enough,
3. the newly added coefficients increase (existing large coefficients decrease) at least at a certain rate, r, and
4. the initial number of measurements, n_0, is large enough for simple CS

then

- the support errors are bounded by time-invariant values
 - $|N_t \setminus \hat{N}_{t-1}| \leq 2S_a$, $|\hat{N}_{t-1} \setminus N_t| \leq S_a$
For a given measurement matrix, A, and noise bound, ϵ, if,

1. the support estimation threshold(s) are large enough,
2. the support size, S_0, and support change size, S_a are small enough,
3. the newly added coefficients increase (existing large coefficients decrease) at least at a certain rate, r, and
4. the initial number of measurements, n_0, is large enough for simple CS

then

- the support errors are bounded by time-invariant values
 - $|N_t \setminus \hat{N}_{t-1}| \leq 2S_a$, $|\hat{N}_{t-1} \setminus N_t| \leq S_a$
- consequently, the recon. error is also “stable”
- “Slow support change” $\Rightarrow S_a \ll S_0 \Rightarrow$ support error bound small
Proof Outline: Proof by induction

To show: under Theorem 1 conditions, $|\tilde{\Delta}_{e,t}| = 0$; $\tilde{\Delta}_t \subseteq S_{t,2}$

1. bound $|\Delta_t|, |\Delta_{e,t}|, |T_t|$
 - by induc. assump., $|T_t| = |\tilde{T}_{t-1}| \leq |N_{t-1}| + |\tilde{\Delta}_{e,t-1}| \leq S_0$
 - use signal model & induc. assump. to bound $|\Delta_t|, |\Delta_{e,t}|$

2. bound $|\Delta_{\text{add},t}|, |\Delta_{\text{add},e,t}|, |T_{\text{add},t}|$
 - use 1; detection conditions; and following\(^2\) to bound $\Delta_{\text{add},t}$
 $$S_{t,2} = S_{t-1,2} \cup (A_t \cup D_{t,1}) \setminus (R_t \cup I_{t,2})$$
 - use 1 and bound on \# of false adds to show $|\Delta_{e,\text{add},t}| \leq 2S_a$; and so $|T_{\text{add},t}| \leq |N_t| + 2S_a = S_0 + 2S_a$

3. bound $|\tilde{\Delta}_t|, |\tilde{\Delta}_{e,t}|$
 - use 2 and no-false-deletion conditions to show $\tilde{\Delta}_t \subseteq S_{t,2}$
 - use deletion condition lemma to show $|\tilde{\Delta}_{e,t}| = 0$

\(^2\) $S_{t,2}$: set of indices of all nonzero coeff’s with magnitude < $2r$

$I_{t,2}$: all coeff’s that increased from r to $2r$ at t, $D_{t,1}$: decreased from $2r$ to r

A_t: new additions at t, R_t: new removals at t