## PF with Efficient Importance Sampling (EIS) and Conditional Posterior Mode Tracking (MT)

Namrata Vaswani

Dept of Electrical & Computer Engineering

Iowa State University

http://www.ece.iastate.edu/~namrata



#### Hidden Markov Model & Goal

- hidden state sequence: {X<sub>t</sub>}, observations: {Y<sub>t</sub>}
  - state sequence, {X<sub>t</sub>}, is a Markov chain
  - Y<sub>t</sub> conditioned on X<sub>t</sub> independent of past & future
  - $-p(x_t|x_{t-1})$ : state transition prior (known)
  - $-p(y_t|x_t)$ : observation likelihood (known)
- Goal: recursively get the optimal estimate of X<sub>t</sub> at each time, t, using observations, Y<sub>1:t</sub>
  - compute/approximate the posterior,  $\pi_t(X_t) := p(X_t|Y_{1:t})$
  - use  $\pi_t$  to compute any "optimal" state estimate, e.g. MMSE, MAP,...



## Problem Setup

- Observation Likelihood is often multimodal or heavy-tailed
  - e.g. some sensors fail or are nonlinear
  - e.g. clutter, occlusions, low contrast images
  - If the state transition prior is narrow enough, posterior will be unimodal: can adapt KF, EKF
    - If not (fast changing sequence): req. a Particle Filter
- Large dimensional state space
  - e.g. tracking the temperature field in a large area
  - e.g. deformable contour tracking
  - PF expensive: requires impractically large N



## Narrow prior:

# Unimodal posterior

#### Broad prior: Multimodal posterior







-log[pdf]

## Multimodal likelihood examples – 1

- Nonlinear sensor [Gordon et al'93]
  - sensor measuring the square of temperature corrupted by Gaussian noise

$$Y_t = X_t^2 + W_t, W_t \sim N(0, \sigma^2)$$

- whenever  $Y_t > 0$ ,  $p(Y_t|X_t)$  is bimodal as a function of  $X_t$  with modes at  $X_t = Y_t^{1/2}$ ,  $-Y_t^{1/2}$
- More generally, if observation = many-to-one function of state + noise [Kale-Vaswani, ICASSP'07]
  - $Y_t = h_1(X_{t,1}) h_2(X_{t,2}) + w_t : h_1, h_2 monotonic$

### Multimodal likelihood examples – 2

#### Sensors with nonzero failure probability

– temperature measured with 2 sensors, each with some probability of failure,  $\alpha$ , conditionally indep.

$$Y_{t,i} \sim (1-\alpha)N(X_t,\sigma^2) + \alpha N(0, 100 \sigma^2), i=1,2$$

bimodal likelihood if any of them fails



## Multimodal likelihood examples – 3

• Deformable contour tracking [Isard-Blake'96][Vaswani et al'06]

through low contrast images (tumor region in brain MRI)











through overlapping background clutter









#### Particle Filter [Gordon et al'93]

- Sequential Monte Carlo technique to approx the Bayes' recursion for computing the posterior  $\pi_t(X_{1:t}) = p(X_{1:t}|Y_{1:t})$ 
  - Approx approaches true posterior as the # of M.C. samples ("particles") → ∞, for a large class of nonlinear/non-Gaussian problems
- Does this sequentially at each t using Sequential Importance Sampling along with a Resampling step (to eliminate particles with very small importance weights)

#### Outline

- In this talk, I will focus on
  - efficient importance sampling (EIS)
  - conditional posterior mode tracking (MT)
  - PF with EIS & PF with MT: easy extension
  - PF-MT for deformable contour tracking

## Existing Work – 1

- PF-Original: Importance Sample from prior [Gordon et al'93]
  - always applicable but is inefficient
- Optimal IS density:  $p^*(x_t) := p(x_t \mid x_{t-1}, y_t)$  [D'98][older works]
  - cannot be computed in closed form most cases
- When the optimal IS density, p\*, is unimodal
  - Adapt KF, EKF, PMT [Brockett et al'94][TZ'92][Jackson et al'04]
    - Possible if the posterior is unimodal too
  - PF-D: IS from Gaussian approx to p\* [Doucet'98]
  - Unscented PF [VDDW,NIPS'01]: UKF to approx to p\*
- MHT, IMM, Gaussian Sum PF [Kotecha-Djuric'03], ...
  - practical only if # of modes is small & known



## Existing Work – 2

- If a large part of state space conditionally linear Gaussian or can be vector quantized
  - use Rao Blackwellized PF [Chen-Liu'00][SGN,TSP'05]
- If a large part of state space is asymp. stationary
  - marginalize over it using MC [Chorin et al'04][Givon et al'08]
- If cannot do either: need PF-EIS w/ Mode Tracker
- Resampling modifications
  - Look ahead resampling: Auxiliary PF [Pitt-Shepherd'99]
  - Repeated resampling within a single t [Oudjane et al'03]



## Corresponding static problem

- Compute the MMSE estimate of a large dimensional state/signal, X, from its observation, Y
- Study problems where Y is a nonlinear and non-Gaussian noise corrupted function of X: resulting in **frequently multimodal or heavy-tailed** likelihoods
- The MMSE estimate,  $E[X|Y=y]=\int xp(x|y)dx$ , requires computing the posterior,

$$p^*(x) := \underbrace{p(x|y)}_{\text{posterior}} \propto \underbrace{p(y|x)}_{\text{likelihood prior}} \underbrace{p(x)}_{\text{prior}}$$

When  $p^*$  cannot be computed analytically: use importance sampling

#### **Example Applications:**

- Temperature, pressure or other random field estimation from a set of unreliable and noisy sensor measurements
- Segment deforming objects from clutterred, low contrast or partly occluded images



#### Issues

- Sample from prior, weight by likelihood: inefficient
- Sample from Gaussian approx to posterior,  $p^*$ : valid only if  $p^*$  is (effectively) unimodal
- Sample from Gaussian or other mixture density approx's to  $p^*$ : practical only if number of possible modes of  $p^*$  is small
- Marginalize over part of the state space: can be done only in certain special cases
- Large dimensional problems with multimodal likelihoods
  - if the prior is broad, the posterior,  $p^*$ , will be multimodal
  - number of possible modes of  $p^*$  often increase exponentially with dimension
  - effective sample size reduces as dimension increases



## Key proposed ideas

- Use the fact that in most large dim. problems, the prior is broad in only a few dimensions (multimodal states)
- If in the rest of the dimensions, the prior is unimodal and "narrow enough", the posterior conditioned on the multimodal states (conditional posterior) will be unimodal
- If the conditional posterior is also very narrow, there is little error in replacing imp. sampling by posterior Mode Tracking (MT)
  - MT: use conditional posterior mode as the sample
  - MT is an approx of imp sampling: introduces some extra error
  - But reduces sampling dimension by a large amount: improves effective sample size
  - Net effect: smaller error when number of samples, N, is small



## Efficient importance sampling (EIS)

- Split the state, X, into a small dimensional multimodal part,  $X_s$ , and the rest of the states,  $X_r$  (s.t. conditional posterior of  $X_r$  is unimodal "mostly")
- **IS-prior:** For i = 1, ...N, sample  $x_s^i$  from its prior,  $p(x_s)$
- **EIS:** For i = 1, ..., N, sample  $x_r^i$  from a Gaussian approx to the conditional posterior,  $p^{**,i}(x_r)$

$$p^{**,i}(x_r) := p(x_r|y, x_s^i) \propto p(y|x_r, x_s^i) p(x_r|x_s^i)$$

denote the Gaussian approx. by  $\mathcal{N}(x_r; m_r^i, \Sigma^i)$ 

• For  $i=1,\ldots N$ , weight appropriately:  $w^i \propto \frac{p(y|x_r^i,x_s^i) \ p(x_r^i|x_s^i)}{\mathcal{N}(x_r^i;m_r^i,\Sigma^i)}$ 

#### Computing the Gaussian approx of the conditional posterior:

• Compute the mode of  $p^{**,i}(x_r)$  as

$$m_r^i = \arg\min_{x_r} \left[ \underbrace{-\log p(y|x_r, x_s^i)}_{E_y(x_r)} + \underbrace{-\log p(x_r|x_s^i)}_{D(x_r)} \right]$$

- Set  $\Sigma^i$  equal to the Hessian of  $L(x_r)$  computed at  $m_r^i$
- The Gaussian approx of  $p^{**,i}$  is  $\mathcal{N}(x_r; m_r^i, \Sigma^i)$

# Conditional posterior mode tracking (MT)

- **IS-prior:** For i = 1, ..., N, sample  $x_s^i$  from its prior,  $p(x_s)$
- **IS-MT:** For i = 1, ..., N, set  $x_r^i = m_r^i$  (conditional posterior mode) where

$$m_r^i = \arg\min_{x_r} \left[ -\log p(y|x_r, x_s^i) + -\log p(x_r|x_s^i) \right]$$

• For  $i=1,\ldots N$ , weight appropriately:  $w^i \propto p(y|x_r^i,x_s^i) \ p(x_r^i|x_s^i)$ 

#### EIS-MT

- Split X into a small dimensional multimodal part,  $X_s$ , and the rest of the states,  $X_r$  (s.t. conditional posterior of  $X_r$  is most likely to be unimodal)
- Split  $X_r$  into  $X_{r,s}$  (larger prior variance) and  $X_{r,r}$  (smaller prior variance)
- IS-prior on  $X_s$
- EIS on  $X_{r,s}$
- IS-MT on  $X_{r,r}$
- Weight appropriately

#### Simulation results

- Simulated a temperature field sensing application when sensors are unreliable and prone to occasional outlier noise
- Modeled failure or outlier noise as a second Gaussian mixture component of sensor noise with very large variance. Cond. indep. measurements.

$$Y_j \sim (1 - \alpha_j) \mathcal{N}(X_j, \sigma^2) + \alpha_j \mathcal{N}(0, 100\sigma^2)$$

$$Y_j \sim (1 - \alpha_j) \mathcal{N}(X_j, \sigma^2) + \alpha_j \mathcal{N}(X_j, 100\sigma^2)$$

- Simulated a 7 dimensional system. Compared EIS, EIS-MT against IS-prior and IS-Gaussian
- When N=30 samples are used EIS-MT has best performance
- When N=100 samples are used EIS has the best performance

| Importance Sampling method                                                     | Err(N=100) |
|--------------------------------------------------------------------------------|------------|
| EIS-MT $(X_s = [V_1], X_{r,s} = [V_2, V_3], X_{r,r} = [V_4, V_5, V_6, V_7])$   | 0.0375     |
| EIS $(X_s = [V_1], X_{r,s} = [V_2, V_3, V_4, V_5, V_6, V_7], X_{r,r} = empty)$ | 0.0368     |
| IS-Gaussian $(X_s = empty, X_{r,s} = [V], X_{r,r} = empty)$                    | 0.0587     |
| IS-prior $(X_s = [V], X_{r,s} = empty, X_{r,r} = empty)$                       | 0.0599     |

| Importance Sampling method                                                     | Err(N=30) |
|--------------------------------------------------------------------------------|-----------|
| EIS-MT $(X_s = [V_1], X_{r,s} = [V_2, V_3], X_{r,r} = [V_4, V_5, V_6, V_7])$   | 0.0416    |
| EIS $(X_s = [V_1], X_{r,s} = [V_2, V_3, V_4, V_5, V_6, V_7], X_{r,r} = empty)$ | 0.0449    |
| IS-Gaussian $(X_s = empty, X_{r,s} = [V], X_{r,r} = empty)$                    | 0.0610    |
| IS-prior $(X_s = [V], X_{r,s} = empty, X_{r,r} = empty)$                       | 0.0733    |

## Conditional posterior unimodality

- The likelihood is multimodal  $(E_y(x_r))$  has multiple minima)
- How narrow should the prior be (spread of  $D(x_r)$  be) so that the conditional posterior is unimodal ( $L(x_r)$  has one minimizer)?



#### Main idea of result

- Assume that
  - Prior is strongly log-concave, e.g. Gaussian  $(D(x_r)$  strongly convex)
  - The unique minimizer of  $D(x_r)$ ,  $x_r^*$ , is close enough to a minimizer of  $E_y(x_r)$  to ensure that  $E_y(x_r)$  is convex at  $x_r^*$
  - $R_{LC}$ : largest continuous region around  $x_r^*$  where  $E_y$  locally convex
- Inside  $R_{LC}$ ,  $L(x_r) = D(x_r) + E_y(x_r)$  is strongly convex, i.e. it has at most one minimizer
- We need to bound the variance of the prior (spread of  $D(x_r)$ ) so that outside  $R_{LC}$ , L has no stationary points (no minimizers)

- We need to bound the variance of the prior (spread of  $D(x_r)$ ) so that outside  $R_{LC}$ , L has no stationary points (no minimizers)
- Outside  $R_{LC}$ ,  $\nabla L$  can be zero only at points where, in all dimensions,  $\nabla D$  and  $\nabla E_y$  have different signs (or are both zero): call this region  $\mathcal{G}$
- Notice that  $D(x_r)$  has no stationary points outside  $R_{LC}$
- If we can ensure that the sign of  $\nabla L$  follows the sign of  $\nabla D$ , in at least one dimension, at all points in  $\mathcal{G}$ , we will be done
- A sufficient condition for the above is that the **prior be Gaussian and** the eigenvalues of its covariance be smaller than  $\Delta^*$  where

$$\mathbf{\Delta}^* := \inf_{\mathbf{x_r} \in \mathcal{G}} \max_{\mathbf{p} = \mathbf{1}, \dots \mathbf{M}} \frac{|[\mathbf{x_r} - \mathbf{x_r^*}]_{\mathbf{p}}|}{\epsilon_{\mathbf{0}} \pm |[\nabla \mathbf{E_y}(\mathbf{x_r})]_{\mathbf{p}}|}$$

(use + where  $[\nabla D]_p = [x_r - x_r^*]_p$ ,  $[\nabla E_y]_p$  have different signs, use - elsewhere)

#### The final result [Vaswani, TSP, Oct'08]

The posterior is unimodal if

- The prior is strongly log-concave, e.g. Gaussian, with unique mode  $x_r^*$
- $x_r^*$  is close enough to a mode of the likelihood to ensure that the likelihood is locally log-concave in its neighborhood: call the largest such region  $R_{LC}$
- The eigenvalues of the covariance of the Gaussian prior are less than  $\Delta^*$  where

$$\mathbf{\Delta}^* := \inf_{\mathbf{x_r} \in \mathcal{G}} \max_{\mathbf{p} = \mathbf{1}, \dots \mathbf{M}} \frac{|[\mathbf{x_r} - \mathbf{x_r^*}]_{\mathbf{p}}|}{\epsilon_{\mathbf{0}} \pm |[\nabla \mathbf{E_y}(\mathbf{x_r})]_{\mathbf{p}}|}$$

(use + where  $[x_r - x_r^*]_p$ ,  $[\nabla E_y]_p$  have different signs, use - elsewhere)

- $E_y(x_r) := -\log p(y|x_s^i, x_r)$
- $\mathcal{G}$ : region outside  $R_{LC}$ , in which, in all dimensions,  $\nabla E_y$ ,  $\nabla D$  either have different signs, or are both zero

#### The exact result

- The posterior is unimodal if
  - the prior strongly log-concave, e.g. Gaussian
  - its unique mode, x<sub>0</sub>, is close enough to a likelihood mode s.t. likelihood is locally log-concave at x<sub>0</sub>
  - spread of the prior narrow enough s.t.  $\exists$  an  $\epsilon_o$  > 0 s.t.

$$\lim_{x \in \cap_{p}(A_{p} \cup Z_{p})} \max_{p} \gamma_{p}(x)] > 1$$

$$\gamma_{p}(x) := \begin{cases}
\frac{|[\nabla D(x)]_{p}|}{\epsilon_{0} + |[\nabla E(x)]_{p}|} & x \in A_{p} \\
\frac{|[\nabla E(x)]_{p}|}{\epsilon_{0} - |[\nabla E(x)]_{p}|} & x \in Z_{p}
\end{cases}$$

$$Z_{p} := R_{LC}' \cap \{x : [\nabla E]_{p} \cdot [\nabla D]_{p} \ge 0, |[\nabla E]_{p}| < \epsilon_{0}\}$$

$$A_{p} := R_{LC}' \cap \{x : [\nabla E]_{p} \cdot [\nabla D]_{p} < 0\}$$

#### Implications [Vaswani, TSP, Oct'08]

- Need a Gaussian prior with
  - the mode, x<sub>0</sub>, close enough
     to a likelihood mode
  - max. variance small enough compared to distance b/w nearest & second-nearest likelihood mode to x<sub>0</sub>
  - allowed max variance bound increases with decreasing strength of the second-nearest mode



## PF-EIS algorithm [Vaswani, TSP, Oct'08]

- Split  $X_t = [X_{t,s}, X_{t,r}]$
- At each t, for each particle i
  - IS-prior: Importance Sample  $x_{t,s}^i \sim p(x_{t,s}^i | x_{t-1}^i)$
  - Compute mode of posterior conditioned on  $x_{t,s}^{i}$ ,  $x_{t-1}^{i}$  $m_{t}^{i} = arg min_{x} - [log p(y_{t} | x) + log p(x | x_{t,s}^{i}, x_{t-1}^{i})]$
  - EIS: Importance Sample  $x_{t,r}^i \sim N(m_t^i, \Sigma_t^i)$
  - $\ \, \text{Weight} \\ \quad \ \, w_{t}{}^{i} \propto w_{t\text{-}1}{}^{i} \, p(y_{t} \, | \, x_{t}{}^{i}) \, \, p(x_{t,r}{}^{i} \, | \, x_{t,s}{}^{i}, \, x_{t\text{-}1}{}^{i}) \, / \, N(x_{t,r}{}^{i} \, ; \, m_{t}{}^{i}, \, \Sigma_{t}{}^{i}) \\$
- Resample

## An example problem

- State transition model: state, X<sub>t</sub> = [C<sub>t</sub>, v<sub>t</sub>]
  - temperature vector at time t,  $C_t = C_{t-1} + Bv_t$
  - temperature change coefficients along eigen-directions,
     (v<sub>t</sub>): spatially i.i.d. Gauss-Markov model
  - Notice that temp. change, Bv<sub>t</sub>, is spatially correlated
- Likelihood: observation,  $Y_t$  = sensor measurements  $Y_{t,j} \sim (1 \alpha_j) N(C_{t,j}, \sigma^2) + \alpha_j N(0,100\sigma^2)$ 
  - diff. sensor measurements conditionally independent
  - with probability  $\alpha_i$ , sensor j can fail
  - Likelihood heavy-tailed (raised Gaussian) w.r.t. [C<sub>t</sub>]<sub>j</sub>, if sensor at node j fails



## Choosing multimodal state, X<sub>t,s</sub>

Practical heuristics motivated by the unimodality result

- Get the eigen-directions of the covariance of temperature change
- If one node has older sensors (higher failure probability) than other nodes:
  - choose temperature change along eigen-directions most strongly correlated to temperature at this node and having the largest variance (eigenvalues) as X<sub>t,s</sub>
- If all sensors have equal failure probability:
  - choose the K eigen-directions with largest variance (evals)



## PF-EIS with Mode Tracking

- If for a part of the unimodal state ("residual state"),
   the conditional posterior is narrow enough,
  - it can be approx. by a Dirac delta function at its mode
- Mode Tracking (MT) approx of Imp Sampling (IS)
  - MT approx of IS: introduces some error
  - But it reduces IS dimension by a large amount (improves effective particle size): much lower error for a given N, when N is small
  - Net effect: lower error when N is small



## PF-EIS-MT algorithm design

- Select the multimodal state, X<sub>t,s</sub>, using heuristics motivated by the unimodality result
- Split  $X_{t,r}$  further into  $X_{t,r,s}$ ,  $X_{t,r,r}$  s.t. the conditional posterior of  $X_{t,r,r}$  (residual state) is narrow enough to justify IS-MT

## PF-EIS-MT algorithm [Vaswani, TSP, Oct'08]

At each t, split  $X_t = [X_{t,s}, X_{t,r,s}, X_{t,r,r}] &$ 

- for each particle, i,
  - sample x<sub>t,s</sub> from its state transition prior
  - compute the conditional posterior mode of X<sub>t,r</sub>
  - sample x<sub>t,r,s</sub> from Gaussian approx about mode
  - compute mode of conditional posterior of X<sub>t,r,r</sub> and set x<sub>t,r,r</sub>i equal to it
  - weight appropriately
- resample

#### Simulation Results: Sensor failure



- Tracking temperature at M=3 sensor nodes, each with 2 sensors
- Node 1 had much higher failure probability than rest
- PF-EIS:  $X_{t,s} = V_{t,1}$
- PF-EIS (black)
   outperforms PF-D,
   PF-Original & GSPF

#### Simulation Results: Sensor failure



- Tracking on M=10 sensor nodes, each with two sensors per node. Node 1 has much higher failure prob than rest
- PF-MT (blue) has least RMSE
  - using K=1 dim multimodal state

- N. Vaswani, Particle Filtering for Large Dimensional State Spaces with Multimodal Observation Likelihoods, IEEE Trans. Signal Processing, Oct 2008
- N. Vaswani, Y. Rathi, A. Yezzi, A. Tannenbaum, Deform PF-MT: Particle Filter with Mode Tracker for Tracking Non-Affine Contour Deformation, IEEE Trans. Image Processing, to appear
- Y. Rathi, N. Vaswani A. Tannenbaum, A. Yezzi, Tracking Deforming Objects using Particle Filtering for Geometric Active Contours, IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), pp. 1470-1475, August 2007
- S. Das and N. Vaswani, Nonstationary Shape Activities: Dynamic Models for Landmark Shape Change and Applications, IEEE Trans. PAMI, to appear
- A. Kale and N. Vaswani, Generalized ELL for Detecting and Tracking Through Illumination Model Changes, IEEE Intl. Conf. Image Proc. (ICIP), 2008



## Open Issues

- Parallel implementations, speed-up posterior mode comp.
- Current conditions for posterior unimodality expensive to verify, depend on previous particles & current observation
  - develop heuristics based on the result to efficiently select multimodal states on-the-fly, or
  - modify the result s.t. unimodality can be checked offline (select multimodal states offline), find states to ensure unimodality w.h.p.
- Residual space directions usually change over time
  - How do we select the MT directions on-the-fly?
    - can we use Compressed Sensing or Kalman filtered CS [Vaswani, ICIP'08] on the state change vector to do this?
- Analyze the IS-MT approx, prove stability of PF-MT



### Deformable Contour Tracking

- State: contour, contour point velocities
- Observation: image intensity and/or edge map
- Likelihood: exponential of segmentation energies
  - Region based: observation = image intensity
    - Likelihood = probability of image being generated by the contour
    - Multimodal in case of low contrast images
  - Edge based: observation = edge locations (edge map)
    - Likelihood = probability of a subset of these edges being generated by the contour; of others being generated by clutter or being missed due to low contrast
    - Multimodal due to clutter or occlusions or low contrast



## Two proposed PF-MT algorithms

- Affine PF-MT [Rathi et al, CVPR'05, PAMI, Aug'07]
  - Effective basis sp: 6-dim space of affine deformations
  - Assumes OL modes separated only by affine deformation or small non-affine deformation per frame
- Deform PF-MT [Vaswani et al, CDC'06, Trans IP (to appear)]
  - Effective basis sp: translation & deformation at K subsampled locations around the contour. K can change
  - Useful when OL modes separated by non-affine def (e.g. due to overlapping clutter or low contrast) & large non-affine deformation per frame (fast deforming seq)



## Background clutter & occlusions

- Need edge based OL: if do not know occluding or background object intensities or if intensities change over the sequence
- 3 dominant modes (many weak modes) of edge based OL due to background clutter
- Overlapping clutter or partial occlusions: OL modes separated by non-affine deformation

# Low contrast images, small deformation per frame: use Affine PF-MT

- Tracking humans from a distance (small def per frame)
- Deformation due to perspective camera effects (changing viewpoints), e.g. UAV tracking a plane



## Low contrast images, large deformation per frame: use Deform PF-MT

- Brain slices, track the tumor sequence
- Multiple nearby likelihood modes of non-affine deformation: due to low contrast











#### Collaborators

- Deformable contour tracking
  - Anthony Yezzi, Georgia Tech
  - Yogesh Rathi, Georgia Tech
  - Allen Tannenbaum, Georgia Tech
- Illumination tracking
  - Amit Kale, Siemens Corporate Tech, Bangalore
- Landmark shape tracking
  - Ongoing work with my student, Samarjit Das

## Summary

- Efficient Importance Sampling techniques that do not require unimodality of optimal IS density
- Derived sufficient conditions to test for posterior unimodality
  - developed for the conditional posterior,  $p^{**}(X_{t,r}) := p(X_{t,r} | X_{t,s}^i, X_{t-1}^i, Y_t)$
  - used these to guide the choice of multimodal state,  $X_{t,s}$ , for PF-EIS
- If the state transition prior of a part of X<sub>t,r</sub> is narrow enough, its conditional posterior will be unimodal & also very narrow
  - approx by a Dirac delta function at its mode: IS-MT
  - improves effective particle size: net reduction in error
- Demonstrated applications in
  - tracking spatially varying physical quantities using unreliable sensors
  - deformable contour tracking, landmark shape tracking, illumination

