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Hidden Markov Model & Goal
• hidden state sequence: {Xt}, observations: {Yt}

– state sequence, {Xt }, is a Markov chain
– Yt conditioned on Xt independent of past & future
– p(xt|xt-1): state transition prior (known)
– p(yt|xt): observation likelihood (known)

• Goal: recursively get the optimal estimate of Xt at 
each time, t, using observations, Y1:t
– compute/approximate the posterior, πt(Xt) := p(Xt|Y1:t)
– use πt to compute any “optimal” state estimate, e.g. 

MMSE, MAP,…
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Problem Setup
• Observation Likelihood is often multimodal or 

heavy-tailed
– e.g. some sensors fail or are nonlinear
– e.g. clutter, occlusions, low contrast images
– If the state transition prior is narrow enough, posterior 

will be unimodal: can adapt KF, EKF
• If not (fast changing sequence): req. a Particle Filter

• Large dimensional state space
– e.g. tracking the temperature field in a large area
– e.g. deformable contour tracking
– PF expensive: requires impractically large N
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Narrow prior: 
Unimodal posterior

Broad prior: 
Multimodal posterior

Temperature measured with 2 types of sensors, each with nonzero 
failure probability
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Multimodal likelihood examples – 1 

• Nonlinear sensor [Gordon et al’93]

– sensor measuring the square of temperature 
corrupted by Gaussian noise

Yt = Xt
2 + wt, wt ∼ N(0,σ2)

• whenever Yt > 0, p(Yt|Xt) is bimodal as a function of Xt with 
modes at Xt = Yt

1/2 , -Yt
1/2

• More generally, if observation = many-to-one 
function of state + noise [Kale-Vaswani, ICASSP’07]

– Yt = h1(Xt,1) h2(Xt,2) + wt : h1, h2 monotonic
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Multimodal likelihood examples – 2 
• Sensors with nonzero failure probability

– temperature measured with 2 sensors, each with 
some probability of failure, α, conditionally indep. 
Yt,i ~ (1- α)N(Xt,σ2) + α N(0, 100 σ2), i=1,2 

– bimodal likelihood if any of them fails 
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Multimodal likelihood examples – 3 
• Deformable contour tracking [Isard-Blake’96][Vaswani et al’06]

through overlapping background clutter

through low contrast images (tumor region in brain MRI)
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Particle Filter [Gordon et al’93]

• Sequential Monte Carlo technique to approx the 
Bayes’ recursion for computing the posterior 
πt(X1:t) = p(X1:t|Y1:t)
– Approx approaches true posterior as the # of M.C. 

samples (“particles”) ∞, for a large class of 
nonlinear/non-Gaussian problems

• Does this sequentially at each t using Sequential 
Importance Sampling along with a Resampling
step (to eliminate particles with very small 
importance weights)
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Outline

• In this talk, I will focus on
– efficient importance sampling (EIS)
– conditional posterior mode tracking (MT)

– PF with EIS & PF with MT: easy extension
– PF-MT for deformable contour tracking
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Existing Work – 1 
• PF-Original: Importance Sample from prior [Gordon et al’93]

– always applicable but is inefficient

• Optimal IS density: p*(xt) := p(xt | xt-1,yt) [D’98][older works]
– cannot be computed in closed form most cases

• When the optimal IS density, p*, is unimodal 
– Adapt KF, EKF, PMT [Brockett et al’94][TZ’92][Jackson et al’04]

• Possible if the posterior is unimodal too
– PF-D: IS from Gaussian approx to p* [Doucet’98]
– Unscented PF [VDDW,NIPS’01]: UKF to approx to p* 

• MHT, IMM, Gaussian Sum PF [Kotecha-Djuric’03], …
– practical only if # of modes is small & known
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Existing Work – 2 
• If a large part of state space conditionally linear 

Gaussian or can be vector quantized
– use Rao Blackwellized PF [Chen-Liu’00][SGN,TSP’05]

• If a large part of state space is asymp. stationary
– marginalize over it using MC [Chorin et al’04][Givon et al’08]

• If cannot do either: need PF-EIS w/ Mode Tracker

• Resampling modifications
– Look ahead resampling: Auxiliary PF [Pitt-Shepherd’99]

– Repeated resampling within a single t [Oudjane et al’03]
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Corresponding static problem
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Issues



PF-EIS and PF-MT
16

Key proposed ideas
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Efficient importance sampling (EIS)
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Conditional posterior mode tracking 
(MT)
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EIS-MT
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Simulation results
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Conditional posterior unimodality

RLC

x0

Ey(x)
D(x)

L(x)

G
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Main idea of result
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The final result [Vaswani, TSP, Oct’08]



PF-EIS and PF-MT
27

The exact result
• The posterior is unimodal if

– the prior strongly log-concave, e.g. Gaussian
– its unique mode, x0, is close enough to a likelihood 

mode s.t. likelihood is locally log-concave at x0
– spread of the prior narrow enough s.t. ∃ an ²0 > 0 s.t. 

[ inf
x∈∩p(Ap∪Zp)

max
p

γp(x)] > 1

γp(x) :=

⎧⎪⎨⎪⎩
|[∇D(x)]p|

²0+|[∇E(x)]p| x ∈ Ap

|[∇E(x)]p|
²0−|[∇E(x)]p| x ∈ Zp

Zp := RLC
0 ∩ {x : [∇E]p · [∇D]p ≥ 0, |[∇E]p| < ²0}

Ap := RLC
0 ∩ {x : [∇E]p · [∇D]p < 0}
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Implications [Vaswani, TSP, Oct’08]

• Need a Gaussian prior with
– the mode, x0, close enough 

to a likelihood mode

– max. variance small enough 
compared to distance b/w 
nearest & second-nearest 
likelihood mode to x0

– allowed max variance bound 
increases with decreasing 
strength of the second-
nearest mode

RLC

x0

E(x)
D(x)

L(x)

A
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PF-EIS algorithm [Vaswani, TSP, Oct’08]

• Split Xt = [Xt,s, Xt,r]

• At each t, for each particle i
– IS-prior: Importance Sample xt,s

i ~ p(xt,s
i|xt-1

i)

– Compute mode of posterior conditioned on xt,s
i , xt-1

i

mt
i = arg minx -[ log p(yt | x) + log p(x | xt,s

i, xt-1
i) ]

– EIS: Importance Sample xt,r
i ~ N(mt

i, Σt
i)

– Weight 
wt

i ∝ wt-1
i p(yt | xt

i)  p(xt,r
i | xt,s

i, xt-1
i ) / N(xt,r

i ; mt
i, Σt

i)

• Resample
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An example problem
• State transition model: state, Xt = [Ct, vt] 

– temperature vector at time t, Ct = Ct-1 + Bvt
– temperature change coefficients along eigen-directions, 

(vt): spatially i.i.d. Gauss-Markov model
– Notice that temp. change, Bvt,  is spatially correlated

• Likelihood: observation, Yt = sensor measurements
Yt,j ~ (1- αj) N(Ct,j, σ2) + αj N(0,100σ2) 

– diff. sensor measurements conditionally independent
– with probability αj, sensor j can fail
– Likelihood heavy-tailed (raised Gaussian) w.r.t. [Ct]j, if 

sensor at node j fails
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Choosing multimodal state, Xt,s

Practical heuristics motivated by the unimodality result

• Get the eigen-directions of the covariance of 
temperature change

• If one node has older sensors (higher failure 
probability) than other nodes:
– choose temperature change along eigen-directions most 

strongly correlated to temperature at this node and having 
the largest variance (eigenvalues) as Xt,s

• If all sensors have equal failure probability:
– choose the K eigen-directions with largest variance (evals)
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PF-EIS with Mode Tracking
• If for a part of the unimodal state (“residual state”), 

the conditional posterior is narrow enough,
– it can be approx. by a Dirac delta function at its mode

• Mode Tracking (MT) approx of Imp Sampling (IS)
– MT approx of IS: introduces some error
– But it reduces IS dimension by a large amount (improves 

effective particle size): much lower error for a given N, 
when N is small

– Net effect: lower error when N is small 
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PF-EIS-MT algorithm design

• Select the multimodal state, Xt,s, using 
heuristics motivated by the unimodality result

• Split Xt,r further into Xt,r,s, Xt,r,r s.t. the 
conditional posterior of Xt,r,r (residual state) is 
narrow enough to justify IS-MT
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PF-EIS-MT algorithm [Vaswani, TSP, Oct’08]

At each t,  split Xt = [ Xt,s , Xt,r,s, Xt,r,r ] &

• for each particle, i, 
– sample xt,si from its state transition prior

– compute the conditional posterior mode of Xt,r

– sample xt,r,si from Gaussian approx about mode

– compute mode of conditional posterior of Xt,r,r and set 
xt,r,ri equal to it

– weight appropriately

• resample
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Simulation Results: Sensor failure

• Tracking temperature 
at M=3 sensor nodes, 
each with 2 sensors

• Node 1 had much 
higher failure 
probability than rest

• PF-EIS: Xt,s = vt,1

• PF-EIS (black) 
outperforms PF-D, 
PF-Original & GSPF
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Simulation Results: Sensor failure

• Tracking on M=10 
sensor nodes, each 
with two sensors per 
node. Node 1 has 
much higher failure 
prob than rest

• PF-MT (blue) has 
least RMSE
– using K=1 dim 

multimodal state
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• N. Vaswani, Particle Filtering for Large Dimensional State Spaces 
with Multimodal Observation Likelihoods, IEEE Trans. Signal 
Processing, Oct 2008 

• N. Vaswani, Y. Rathi, A. Yezzi, A. Tannenbaum, Deform PF-MT: 
Particle Filter with Mode Tracker for Tracking Non-Affine Contour 
Deformation, IEEE Trans. Image Processing, to appear

• Y. Rathi, N. Vaswani A. Tannenbaum, A. Yezzi, Tracking Deforming 
Objects using Particle Filtering for Geometric Active Contours, IEEE 
Trans. on Pattern Analysis and Machine Intelligence (PAMI), pp. 
1470-1475, August 2007

• S. Das and N. Vaswani, Nonstationary Shape Activities: Dynamic 
Models for Landmark Shape Change and Applications, IEEE Trans. 
PAMI, to appear

• A. Kale and N. Vaswani, Generalized ELL for Detecting and 
Tracking Through Illumination Model Changes, IEEE Intl. Conf. 
Image Proc. (ICIP), 2008 
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Open Issues
• Parallel implementations, speed-up posterior mode comp.

• Current conditions for posterior unimodality expensive to 
verify, depend on previous particles & current observation
– develop heuristics based on the result to efficiently select 

multimodal states on-the-fly, or
– modify the result s.t. unimodality can be checked offline (select 

multimodal states offline), find states to ensure unimodality w.h.p.

• Residual space directions usually change over time
– How do we select the MT directions on-the-fly?

• can we use Compressed Sensing or Kalman filtered CS 
[Vaswani, ICIP’08] on the state change vector to do this?

• Analyze the IS-MT approx, prove stability of PF-MT
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Deformable Contour Tracking
• State: contour, contour point velocities
• Observation: image intensity and/or edge map

• Likelihood: - exponential of segmentation energies 
– Region based: observation = image intensity 

• Likelihood = probability of image being generated by the contour
• Multimodal in case of low contrast images

– Edge based: observation = edge locations (edge map) 
• Likelihood = probability of a subset of these edges being 

generated by the contour; of others being generated by clutter or 
being missed due to low contrast

• Multimodal due to clutter or occlusions or low contrast
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Two proposed PF-MT algorithms
• Affine PF-MT [Rathi et al, CVPR’05, PAMI, Aug’07]

– Effective basis sp: 6-dim space of affine deformations
– Assumes OL modes separated only by affine 

deformation or small non-affine deformation per frame

• Deform PF-MT [Vaswani et al, CDC’06, Trans IP (to appear)]

– Effective basis sp: translation & deformation at K sub-
sampled locations around the contour. K can change

– Useful when OL modes separated by non-affine def 
(e.g. due to overlapping clutter or low contrast) & large 
non-affine deformation per frame (fast deforming seq)
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Background clutter & occlusions
• Need edge based OL: if do not know occluding 

or background object intensities or if intensities 
change over the sequence

• 3 dominant modes (many weak modes) of edge 
based OL due to background clutter

• Overlapping clutter or partial occlusions: OL 
modes separated by non-affine deformation
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Low contrast images, small deformation 
per frame: use Affine PF-MT

• Tracking humans from a distance (small def per frame)
• Deformation due to perspective camera effects 

(changing viewpoints), e.g. UAV tracking a plane

Condensation 
(PF 6-dim) fails
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Low contrast images, large deformation 
per frame: use Deform PF-MT

• Brain slices, track the tumor sequence
• Multiple nearby likelihood modes of non-affine 

deformation: due to low contrast
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Collaborators
• Deformable contour tracking

– Anthony Yezzi, Georgia Tech
– Yogesh Rathi, Georgia Tech
– Allen Tannenbaum, Georgia Tech

• Illumination tracking
– Amit Kale, Siemens Corporate Tech, Bangalore

• Landmark shape tracking
– Ongoing work with my student, Samarjit Das
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Summary
• Efficient Importance Sampling techniques that do not 

require unimodality of optimal IS density

• Derived sufficient conditions to test for posterior unimodality
– developed for the conditional posterior, p**(Xt,r) := p(Xt,r | Xt,s

i, Xt-1
i,Yt)

– used these to guide the choice of multimodal state, Xt,s, for PF-EIS

• If the state transition prior of a part of Xt,r is narrow enough, 
its conditional posterior will be unimodal & also very narrow
– approx by a Dirac delta function at its mode: IS-MT
– improves effective particle size: net reduction in error

• Demonstrated applications in 
– tracking spatially varying physical quantities using unreliable sensors
– deformable contour tracking, landmark shape tracking, illumination


