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Hidden Markov Model & Goal

* hidden state sequence: {X,}, observations: {Y}
— state sequence, {X,}, Is a Markov chain
— Y, conditioned on X, independent of past & future
— p(X|X..,): state transition prior (known)
— p(y:|x,): observation likelihood (known)

» Goal: recursively get the optimal estimate of X, at
each time, t, using observations, Y
— compute/approximate the posterior, (X)) := p(X{Y )

— use m,to compute any “optimal” state estimate, e.g.
MMSE, MAP,...
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Problem Setup

e Observation Likelihood is often multimodal or
heavy-tailed
— e.g. some sensors fail or are nonlinear
— e.g. clutter, occlusions, low contrast images

— If the state transition prior is narrow enough, posterior
will be unimodal: can adapt KF, EKF

e If not (fast changing sequence): req. a Particle Filter

e Large dimensional state space
— e.g. tracking the temperature field in a large area
— e.g. deformable contour tracking
— PF expensive: requires impractically large N
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— X =
Temperature measured with 2 types of sensors, each with nonzero
failure probability
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Multimodal likelihood examples — 1

 Nonlinear sensor [Gordon et al'93]

— sensor measuring the square of temperature
corrupted by Gaussian noise

Y, = X2 +w, w,~N(0,62)

« whenever Y, > 0, p(Y|X)) is bimodal as a function of X, with
modes at X, = Y12, -Y /2

 More generally, if observation = many-to-one
function of state + noise [kale-vaswani, ICASSP'07]

— Y= hy(X; 1) hy(X;,) +w, : hy, h, monotonic
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Multimodal likelihood examples — 2

e Sensors with nonzero failure probability

— temperature measured with 2 sensors, each with
some probability of failure, o, conditionally indep.

Y ~ (1- 0)N(X;,6%) + a N(O, 100 ¢?), i=1,2
— bimodal likelihood if any of them fails
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Multimodal likelihood examples — 3

 Deformable contour tracking [Isard-Blake’96][Vaswani et al’06]

through low contrast images (tumor region in brain MRI)

-

through overlapping background clutter




Particle Filter [Gordon et al'93]

e Sequential Monte Carlo technique to approx the
Bayes’ recursion for computing the posterior
Tct(xl:t) = p(xl:tlYl:t)

— Approx approaches true posterior as the # of M.C.

samples (“particles”)—> «, for a large class of
nonlinear/non-Gaussian problems

* Does this sequentially at each t using Sequential
Importance Sampling along with a Resampling
step (to eliminate particles with very small
Importance weights)
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Outline

 In this talk, I will focus on
— efficient importance sampling (EIS)
— conditional posterior mode tracking (MT)

— PF with EIS & PF with MT: easy extension
— PF-MT for deformable contour tracking
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Existing Work — 1

 PF-Original: Importance Sample from prior [Gordon et al'93]
— always applicable but is inefficient

« Optimal IS density: p*(x,) := p(X;| X.1,Y;) [D’98][older works]
— cannot be computed in closed form most cases

 When the optimal IS density, p*, is unimodal

— Adapt KF, EKF, PMT [Brockett et al'94][TZ’92][Jackson et al'04]
» Possible if the posterior is unimodal too

— PF-D: IS from Gaussian approx to p* [Doucet'98]
— Unscented PF [vbbw,NIPs'01]: UKF to approx to p*

e MHT, IMM, Gaussian Sum PF [Kotecha-Djuric’03], ...
— practical only if # of modes is small & known

11
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Existing Work — 2

If a large part of state space conditionally linear
Gaussian or can be vector quantized

— use Rao Blackwellized PF [Chen-Liu’00][SGN,TSP’05]

If a large part of state space is asymp. stationary
— marginalize over it using MC [Chorin et al'04][Givon et al'08]

If cannot do either: need PF-EIS w/ Mode Tracker

Resampling modifications
— Look ahead resampling: Auxiliary PF [pitt-Shepherd'99]
— Repeated resampling within a single t [Oudjane et al'03]

12

[OWA STATE UNIVERSITY| PE-EIS and PE-MT

Becoming the best.




Corresponding static problem

e Compute the MMSE estimate of a large dimensional state/signal, X,
from its observation, Y

e Study problems where Y is a nonlinear and non-(Gaussian noise corrupted
function of X: resulting in frequently multimodal or heavy-tailed
likelihoods

e The MMSE estimate, E[X|Y = y] = [ xp(z|y)dz, requires computing the
posterior,

p*(z) = pzly) o plylz) pl)
~—— ~—— S~~~
posterior likelihood prior

When p* cannot be computed analytically: use importance sampling

13

[OWA STATE UNIVERSITY| PE-EIS and PE-MT

Becoming the best.




Example Applications:

e Temperature, pressure or other random field estimation from a set of un-
reliable and noisy sensor measurements

e Segment deforming objects from clutterred, low contrast or partly oc-
cluded images

, 14
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Issues

Sample from prior, weight by likelihood: inefficient

Sample from Gaussian approx to posterior, p*: valid only if p* is (effec-
tively) unimodal

Sample from Gaussian or other mixture density approx’s to p*: practical
only if number of possible modes of p* is small

Marginalize over part of the state space: can be done only in certain
special cases

Large dimensional problems with multimodal likelihoods

— if the prior is broad, the posterior, p*, will be multimodal

— number of possible modes of p* often increase exponentially with
dimension

— effective sample size reduces as dimension increases

15
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Key proposed ideas

e Use the fact that in most large dim. problems, the prior is broad in

only a few dimensions (multimodal states)

e Ifin the rest of the dimensions, the prior is unimodal and “narrow enough”,
the posterior conditioned on the multimodal states (conditional
posterior) will be unimodal

e If the conditional posterior is also very narrow, there is little error in

replacing imp. sampling by posterior Mode Tracking (MT)

— MT': use conditional posterior mode as the sample

— MT is an approx of imp sampling: introduces some extra error

— But reduces sampling dimension by a large amount: improves effec-
tive sample size

— Net effect:

small
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Efficient iImportance sampling (EIS)

e Split the state, X, into a small dimensional multimodal part, X, and
the rest of the states, X, (s.t. conditional posterior of X, is unimodal
“mostly”)

e IS-prior: Fori=1,...N, sample 2% from its prior, p(xs)

e EIS: Fori =1,...N, sample 2% from a Gaussian approx to the condi-
tional posterior, p***(x,)

>x<>:<,i(

PN (ay) = plaly,ay) oo pylee,y) pla|ey)
denote the Gaussian approx. by N (z;,; m?, 3?)

e For i =1,...N, weight appropriately: w* o« -2 (%ggﬂ’g T)nf (;35")"’”1)

: 17
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Computing the Gaussian approx of the conditional posterior:

e Compute the mode of p***(x,.) as

m, = argmin [—logp(ylz,,z;) + —logp(w,|z})]
\ Ey(zr) D(xr) )
L(,)

e Set X' equal to the Hessian of L(z,) computed at mt

e The Gaussian approx of p*** is N(z,; mfﬂa Ei)

18
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Conditional posterior mode tracking
(MT)

e IS-prior: Fori=1,...N, sample 2% from its prior, p(z,)

e IS-MT: Fori=1,...N,set 2% = m’ (conditional posterior mode) where

m, = argmin |[— logp(y|33r,$i) T —logp(a:,n|xi)]

r

e For i =1,... N, weight appropriately: w' o< p(y|zt,x") p(at|z?)

19

[OWA STATE UNIVERSITY| PE-EIS and PE-MT

Becoming the best.




EIS-MT

e Split X into a small dimensional multimodal part, X, and the rest of the
states, X, (s.t. conditional posterior of X, is most likely to be unimodal)

e Split X, into X, ; (larger prior variance) and X, , (smaller prior variance)
e IS-prior on X,

e EIS on X, ;

e IS-MT on X, ,

e Weight appropriately

20
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Simulation results

Simulated a temperature field sensing application when sensors are unre-
liable and prone to occasional outlier noise

Modeled failure or outlier noise as a second Gaussian mixture component
of sensor noise with very large variance. Cond. indep. measurements.

ij ~ (1 - aj)N(va 02) + ajN(Ov 10002)

Y ~ (1 - a;)N(Xj,0%) + a;N(X;,10007)

Simulated a 7 dimensional system. Compared EIS, EIS-MT against IS-
prior and IS-Gaussian

When N=30 samples are used EIS-MT has best performance

When N=100 samples are used EIS has the best performance

21
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Importance Sampling method

Err(N=100)

EIS-MT (X, = [W1], X, s = [Vo, V3], X, = [V, Vs, Vs, V7]) 0.0375
EIS (X5 = V4], X5 = [Vo, V3, Vi, V5, Vi, V7], X, = empty) 0.0368
[S-Gaussian (X5 = empty, X, s = [V], X, , = empty) 0.0587
[S-prior (X5 = [V], X, s = empty, X, , = empty) 0.0599
Importance Sampling method Err(N=30)
EIS-MT (X, = [W1], X, s = [Vo, V3], X, = [V, V5, Vs, V7)) 0.0416
EIS (Xs — [Vl]a Xr,s — [V27 VES: V47 V57 ‘/Ga V7]7 X’r,r — empty) 0.0449
[S-Gaussian (X5 = empty, X, s = [V], X, , = empty) 0.0610
[S-prior (X5 = [V], X, s = empty, X, , = empty) 0.0733
22
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Conditional posterior unimodality

e The likelihood is multimodal (E,(z,) has multiple minima)

e How narrow should the prior be (spread of D(z,) be) so that the
conditional posterior is unimodal (L(z,) has one minimizer)?
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Main idea of result

e Assume that

— Prior is strongly log-concave, e.g. Gaussian (D(z,) strongly convex)

— The unique minimizer of D(x,), x¥, is close enough to a minimizer

of E,(x,) to ensure that E,(x,) is convex at x

— Rpc: largest continuous region around z; where E, locally convex

Inside Rrc, L(x,) = D(z,)+ E,(z,) is strongly convex, i.e. it has at most
one minimizer

e We need to bound the variance of the prior (spread of D(z,)) so
that outside Rypc, L has no stationary points (no minimizers)

, 24
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e We need to bound the variance of the prior (spread of D(zx,)) so
that outside Ry, L has no stationary points (no minimizers)

e Qutside Ry, VL can be zero only at points where, in all dimensions, V.D
and VE, have different signs (or are both zero): call this region G

e Notice that D(x,) has no stationary points outside Ryc

e If we can ensure that the sign of VL follows the sign of VD, in at least
one dimension, at all points in G, we will be done

e A sufficient condition for the above is that the prior be Gaussian and
the eigenvalues of its covariance be smaller than A* where

. |[xr — X*]pl
A* = inf max r

(use 4+ where [V D], = [z, — z}],, [VFE,], have different signs, use — elsewhere)

, 25
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The final result yaswani, tsp, ocros

The posterior is unimodal if
e The prior is strongly log-concave, e.g. Gaussian, with unique mode

e " is close enough to a mode of the likelihood to ensure that the likelihood
is locally log-concave in its neighborhood: call the largest such region Rrc

e The eigenvalues of the covariance of the (Gaussian prior are less
than A* where

) |[Xr - X*]p|
A* -— inf max X
xr€G p=1,..M €g % |[VEy (x;)]p|

(use 4+ where [x, — x;]p, [VE,]|, have different signs, use — elsewhere)

— Ey(xr) "= _logp(y’xivxr)
— G : region outside Ry, in which, in all dimensions, VE,, VD either
have different signs, or are both zero

26
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The exact result

* The posterior is unimodal if
— the prior strongly log-concave, e.g. Gaussian

— Its unique mode, X,, Is close enough to a likelihood
mode s.t. likelihood is locally log-concave at X,

— spread of the prior narrow enough s.t. 3an e, >0 s.t.
[ inf max vy, (z)] > 1

x€NP(ApUZp)
VD@,
S VERTT L €A
1) = < [VE()],]
\ o VE@,] T € 4p

Z,:=Ryc' N{z: [VE],-[VD], > 0,|[VE],| < e}
A, = Rpc' N {z: [VE], [VD], < 0}
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Implications aswani, tsp, octos

 Need a Gaussian prior with

—the mode, X, close enough
to a likelihood mode

— max. variance small enough
compared to distance b/w
nearest & second-nearest
likelihood mode to x,

— allowed max variance bound
Increases with decreasing
strength of the second-
nearest mode
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PF'EIS a|gOrIthm [Vaswani, TSP, Oct’08]

o Split X, = [X,s, X, ]

t,s?

e At eacht, for each particle |
— IS-prior: Importance Sample X, ' ~ p(X; ¢'|X;.1")

— Compute mode of posterior conditioned on x, ' , X'
m; = arg min, -[ log p(y; | X) + log p(x | X, X1) ]
— EIS: Importance Sample x, ' ~ N(m/, Z")
— Weight
Wi o Wi POYe| %) POX | Xesh Xea') I N(X,' 5 m{, 2Y)
« Resample

31
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An example problem

« State transition model: state, X, = [C,, v]
— temperature vector at time t, C, = C_; + By,

— temperature change coefficients along eigen-directions,
(vy): spatially i.i.d. Gauss-Markov model

— Notice that temp. change, Bv,, is spatially correlated

 Likelihood: observation, Y,= sensor measurements
Yy~ (1- o) N(Cy;, %) + ;N(0,1005?)
— diff. sensor measurements conditionally independent
— with probability «;, sensor | can fall

— Likelihood heavy-tailed (raised Gaussian) w.r.t. [C];, If
sensor at node | fails

32
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Choosing multimodal state, X

Practical heuristics motivated by the unimodality result

o Get the eigen-directions of the covariance of
temperature change

* |f one node has older sensors (higher failure
probability) than other nodes:

— choose temperature change along eigen-directions most
strongly correlated to temperature at this node and having
the largest variance (eigenvalues) as X ¢

 |f all sensors have equal failure probability:
— choose the K eigen-directions with largest variance (evals)

33
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PF-EIS with Mode Tracking

 |f for a part of the unimodal state (“residual state”),
the conditional posterior is narrow enough,
— It can be approx. by a Dirac delta function at its mode

 Mode Tracking (MT) approx of Imp Sampling (1S)
— MT approx of IS: introduces some error

— But it reduces IS dimension by a large amount (improves
effective particle size): much lower error for a given N,
when N is small

— Net effect: lower error when N is small

34
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PF-EIS-MT algorithm design

» Select the multimodal state, X, , using
heuristics motivated by the unimodality result

* Split X;, further into X, , X, , s.t. the
conditional posterior of X, , (residual state) Is
narrow enough to justify IS-MT

_ 35
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P F' E I S' MT algOrIth m [Vaswani, TSP, Oct’08]

Ateacht, split X, =] Xig, Xi; o Xipr ] &

« for each particle, |,
— sample x, ;i from its state transition prior

— compute the conditional posterior mode of X,
— sample x;, J from Gaussian approx about mode

— compute mode of conditional posterior of X, . and set

X; . equal to it

t,r,r

— weight appropriately
e resample

36
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Simulation Results: sensor failure
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B A k=1 (FF-EI5)

4nl| —=— K=M (PF-Criginal)
—f— GSPE-|,N=8"T=5G

RMSE

llllll
||||||||||||||||||||||||||||||||||||||

- .il'
20F :| :r :| :|. :. :| :r

i
H

- = -

.
T :.-. IR

(= N ] L} = e g
l‘_l . . . . . . .
................................. : T I I T
H b H h . H - . . . " " . . H . . H
: : : H H : H : H H
a =T i
. .

Cima

i

.
Vi

l n
lllllllllllllllllll

RMSE from ground truth. N=50 particles

EEIERI IR I EIIE LI EEIEE IR IR IR e e IR I IR PRI IR PRI IR IR IR IR IRT

[OWA STATE UNIVERSITY]

Becoming the best.

14

......,_ T S-S N ‘Zar -

13 : : : : : R : : : : : : :
L EEVE SRTT ETRP IERI- O ........ ........ e R
10 ek Bl e T R
. = v e e i LIy = o '

g = S i .

] ] 3 5?1’ .n > -. .. "E. o |E|| |El| |El|

1 B T T T I T - -

A P : o :

2 4 5] g

PF-EIS and PF-MT

Tracking temperature
at M=3 sensor nodes,
each with 2 sensors

Node 1 had much
higher failure
probability than rest

PF-EIS: X 5=V,
PF-EIS (black)

outperforms PF-D,
PF-Original & GSPF
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Simulation Results: sensor failure

% N=100partices e Tracking on M=10

el sensor nodes, each
S W[ g2 e With two sensors per
B 0 0 A O e node. Node 1 has
: much higher failure
% prob than rest
&
£ e PF-MT (blue) has
b least RMSE

— using K=1 dim

multimodal state

, 38
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N. Vaswani, Particle Filtering for Large Dimensional State Spaces
with Multimodal Observation Likelihoods, IEEE Trans. Signal
Processing, Oct 2008

 N. Vaswani, Y. Rathi, A. Yezzi, A. Tannenbaum, Deform PF-MT-:
Particle Filter with Mode Tracker for Tracking Non-Affine Contour
Deformation, IEEE Trans. Image Processing, to appear

e Y. Rathi, N. Vaswani A. Tannenbaum, A. Yezzi, Tracking Deforming
Objects using Particle Filtering for Geometric Active Contours, IEEE
Trans. on Pattern Analysis and Machine Intelligence (PAMI), pp.
1470-1475, August 2007

« S. Das and N. Vaswani, Nonstationary Shape Activities: Dynamic
Models for Landmark Shape Change and Applications, IEEE Trans.
PAMI, to appear

 A. Kale and N. Vaswani, Generalized ELL for Detecting and
Tracking Through lllumination Model Changes, IEEE Intl. Conf.
Image Proc. (ICIP), 2008
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Open Issues

o Parallel implementations, speed-up posterior mode comp.

e Current conditions for posterior unimodality expensive to
verify, depend on previous particles & current observation
— develop heuristics based on the result to efficiently select

multimodal states on-the-fly, or
— modify the result s.t. unimodality can be checked offline (select
multimodal states offline), find states to ensure unimodality w.h.p.

 Residual space directions usually change over time

— How do we select the MT directions on-the-fly?

e can we use Compressed Sensing or Kalman filtered CS
[Vaswani, ICIP’08] on the state change vector to do this?

* Analyze the IS-MT approx, prove stability of PF-MT
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Deformable Contour Tracking

e State: contour, contour point velocities
* Observation: image intensity and/or edge map

 Likelihood: - exponential of segmentation energies

— Region based: observation = image intensity
 Likelihood = probability of image being generated by the contour
 Multimodal in case of low contrast images

— Edge based: observation = edge locations (edge map)

 Likelihood = probability of a subset of these edges being
generated by the contour; of others being generated by clutter or
being missed due to low contrast

e Multimodal due to clutter or occlusions or low contrast

41
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Two proposed PF-MT algorithms

o Affilne PF-MT [Rathi et al, CVPR'05, PAMI, Aug’07]
— Effective basis sp: 6-dim space of affine deformations

— Assumes OL modes separated only by affine
deformation or small non-affine deformation per frame

e Deform PF-MT [vaswani et al, CDC’06, Trans IP (to appear)]

— Effective basis sp: translation & deformation at K sub-
sampled locations around the contour. K can change

— Useful when OL modes separated by non-affine def
(e.g. due to overlapping clutter or low contrast) & large
non-affine deformation per frame (fast deforming seq)

42
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Background clutter & occlusions

 Need edge based OL.: if do not know occluding
or background object intensities or If intensities
change over the sequence

« 3 dominant modes (many weak modes) of edge
based OL due to background clutter

* Overlapping clutter or partial occlusions: OL
modes separated by non-affine deformation

43
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Low contrast images, small deformation
per frame: use Affine PF-MT

o Tracking humans from a distance (small def per frame)

« Deformation due to perspective camera effects
(changing viewpoints), e.g. UAV tracking a plane

e P
. *.’;

Condensation
(PF 6-dim) fails
IOWA STATE UNIVERSITY PF-EIS and PF-MT 44




Low contrast images, large deformation
per frame: use Deform PF-MT

e Brain slices, track the tumor sequence

« Multiple nearby likelihood modes of non-affine
deformation: due to low contrast
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Collaborators

 Deformable contour tracking
— Anthony Yezzi, Georgia Tech
— Yogesh Rathi, Georgia Tech
— Allen Tannenbaum, Georgia Tech

* lllumination tracking
— Amit Kale, Siemens Corporate Tech, Bangalore

 Landmark shape tracking
— Ongoing work with my student, Samarjit Das
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Summary

Efficient Importance Sampling techniques that do not
require unimodality of optimal IS density

Derived sufficient conditions to test for posterior unimodality
— developed for the conditional posterior, p**(X,,) := p(X;, | X;¢', Xi.1"Y))
— used these to guide the choice of multimodal state, X, for PF-EIS

If the state transition prior of a part of X, , Is narrow enough,
its conditional posterior will be unimodal & also very narrow

— approx by a Dirac delta function at its mode: IS-MT
— Improves effective particle size: net reduction in error

Demonstrated applications in
— tracking spatially varying physical quantities using unreliable sensors
— deformable contour tracking, landmark shape tracking, illumination
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