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is a continuous and unimodal function of ��, with the unique maximum
achieved at �� � ����

�����
, see also (9a). We conclude that ����

���
�

����
�����

must go to zero. The second claim of Theorem 1 follows.

REFERENCES

[1] IEEE Signal Process. Mag. (Special Issue on Compressive Sampling),
vol. 25, no. 2, Mar. 2008.

[2] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, pp. 4203–4215, Dec. 2005.

[3] E. J. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?,” IEEE Trans. Inf. Theory,
vol. 52, no. 12, pp. 5406–5425, 2006.

[4] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, pp. 1289–1306, Apr. 2006.

[5] J. A. Tropp and S. J. Wright, “Computational methods for sparse
solution of linear inverse problems,” Proc. IEEE, vol. 98, no. 6, pp.
948–958, 2010.

[6] P. Boufounos and R. Baraniuk, “1-bit compressive sensing,” in Proc.
42nd Annu. Conf. Inf. Sci. Syst., Princeton, NJ, Mar. 2008, pp. 16–21.

[7] W. Dai, H. V. Pham, and O. Milenkovic, “Distortion-rate functions for
quantized compressive sensing,” in IEEE Inf. Theory Workshop Netw.
Inf. Theory, Volos, Greece, Jun. 2009, pp. 171–175.

[8] L. Jacques, D. Hammond, and M. Fadili, “Dequantizing compressed
sensing: When oversampling and non-Gaussian constraints combine,”
IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 559–571, 2011.

[9] A. Zymnis, S. Boyd, and E. Candès, “Compressed sensing with quan-
tized measurements,” IEEE Signal Process. Lett., vol. 17, pp. 149–152,
Feb. 2010.
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Exact Reconstruction Conditions for Regularized
Modified Basis Pursuit

Wei Lu and Namrata Vaswani

Abstract—In this work, we obtain sufficient conditions for exact recovery
of regularized modified basis pursuit (reg-mod-BP) and discuss when the
obtained conditions are weaker than those for modified compressive
sensing or for basis pursuit (BP). The discussion is also supported by
simulation comparisons. Reg-mod-BP provides a solution to the sparse
recovery problem when both an erroneous estimate of the signal’s support,
denoted by , and an erroneous estimate of the signal values on are
available.

Index Terms—Compressive sensing, modified-CS, partially known sup-
port, sparse reconstruction.

I. INTRODUCTION

In this work, we obtain sufficient conditions for exact recovery of
regularized modified basis pursuit (reg-mod-BP) and discuss when the
obtained conditions are weaker than those for modified compressive
sensing [2] or for basis pursuit (BP) [3], [4]. Reg-mod-BP was briefly
introduced in our earlier work [2] as a solution to the sparse recovery
problem when both an erroneous estimate of the signal’s support, de-
noted by � , and an erroneous estimate of the signal values on � , de-
noted by ����� , are available. The problem is precisely defined in Sec-
tion I-A. Reg-mod-BP, given in (11), tries to find a vector that is sparsest
outside the set � among all solutions that are close enough to �����
on � and satisfy the data constraint. In practical applications, � and
����� may be available from prior knowledge, or in recursive recon-
struction applications, e.g., recursive dynamic MRI [2], [5], recursive
compressive sensing (CS) based video compression [6], [7], or recur-
sive projected CS (ReProCS) [8], [9] based video layering, one can use
the support and signal estimate from the previous time instant for this
purpose.

Basis pursuit (BP) was introduced in [3] as a practical (polynomial
complexity) solution to the problem of reconstructing a sparse � � �
vector, �, with support denoted by � , from an � � � measurements’
vector, � �� 	�, when � 
 �. BP solves the following convex (actu-
ally linear) program:

��	
�
���� subject to � � 	�� (1)

The recent CS literature has provided strong exact recovery results for
BP that are either based on the restricted isometry property (RIP) [4],
[10] or that use the geometry of convex polytopes to obtain “exact re-
covery thresholds” on the � needed for exact recovery with high prob-
ability [11], [12]. BP is often just referred to as CS in recent works and
our work also occasionally does this.
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In recent work [2], we introduced the problem of sparse reconstruc-
tion with partial and partly erroneous support knowledge, denoted
by � , and proposed a solution called modified compressive sensing
(mod-CS). We obtained exact reconstruction conditions for mod-CS
and showed when they are weaker than those for BP. Mod-CS tries to
find the solution that is sparsest outside the set � among all solutions
of � � ��, i.e., it solves

���
�
��� �� subject to � � ��� (2)

Ideally, the above should be referred to as mod-BP, but since we used
the term mod-CS when we introduced it, we will retain it here. Similar
problems were also studied in parallel work by von Borries et al. [13]
and Khajehnejad et al. [14]. In [14], the authors assumed a probabilistic
prior on the support, solved the following weighted �� problem, and
obtained exact recovery thresholds similar to those in [12]:

���
�
��� �� � ���� �� subject to � � ��� (3)

In another related work [15], Wang et al. showed how to iteratively
improve recovery of a single signal by solving BP in the first itera-
tion, obtaining a support estimate, solving (2) with this support esti-
mate and repeating this. They also obtained exact recovery guarantees
for a single iteration.

Another related idea is CS-diff or CS-residual, which recovers the
residual signal � � �	 by solving (1) with � replaced by � � ��	. This
is related to our earlier least squares CS-residual (LS-CS) and Kalman
filtered CS (KF-CS) ideas [5], [16]. However, as explained in [2], the
residual signals using all these methods have a support size that is equal
to or slightly larger than that of � (except if ��	�� � �� ). As a result,
these do not achieve exact recovery with fewer measurements. The lim-
itations of some other variants of this are also discussed in detail in [17].
Reg-mod-BP may also be interpreted as a Bayesian or a model-based
CS approach. Recent work in this area include [18]–[20].

This paper is organized as follows. We introduce reg-mod-BP in Sec-
tion II. In Section III, we obtain the exact reconstruction result, discuss
its implications and give the key lemmas leading to its proof. Simula-
tion comparisons are given in Section IV and conclusions in Section V.

Notation and Problem Definition

For a set � , � � � �
 � 	
� � � � � ��� 
 � ��. � is the empty set. We
use ��� to denote the cardinality of a set. The same notation is also used
for the absolute value of a scalar. The meaning is clear from context.

For a vector �, ���� , or just �� , denotes a subvector containing the
elements of � with indices in � . ���� means the �� norm of the vector
�. The notation � �  �� 	 � means that each element of the vector
� is greater than or equal to (strictly greater than) zero. Similarly � 

 �� � �means each element is less than or equal to (strictly less than)
zero. We define the sign pattern, ������ as

	�������� �
�

�� �
if �� �� 

 if �� � �
(4)

We use � for matrix transpose. For a matrix �, �� denotes the sub-
matrix containing the columns of � with indices in � . Also, ��� ��

���� ���
����
���

is the induced 2 norm.
Our goal is to solve the sparse reconstruction problem, i.e., recon-

struct an �-length sparse vector, �, with support, � , from an � � �
length measurement vector,

� �� �� (5)

when an erroneous estimate of the signal’s support, denoted by � ; and
an erroneous estimate of the signal values on � , denoted by ��	�� , are
available. The support estimate, � , can be rewritten as

� � � �	 �������� � �� � � � ��� �	 �� � �� (6)

are the errors (� contains the misses while �	 contains the extras) in
the support estimate.

The signal value estimate is assumed to be zero along � �, i.e.,

�	 �
��	��
��

and it satisfies

��	�� � ���� � �� ���� ���� � �� (7)

The restricted isometry constant (RIC) [4], �
, for �, is defined as
the smallest positive real number satisfying �
��
������ � ������� �
�
 � �
������ for all subsets � of cardinality ��� � � and all real
vectors � of length ���. The restricted orthogonality constant (ROC)
[4], �
 �
 , is defined as the smallest positive real number satisfying
������

��� ��� � �
 �
 ���������� for all disjoint sets ��, �� with
���� � ��, ���� � �� and �� � �� � �, and for all vectors ��, �� of
length ����, ���� respectively. Both �
 and �
 �
 are nondecreasing
functions of � and of ��, ��, respectively [4].

We will frequently use the following functions of the RIC and ROC
of � in Section III:

����� ��� ��
��
�
 �

 

���


� �
 � 

���

(8)

����� ��

�

 � ��


� �� � 

���

� (9)

For the matrix �, and for any set � for which ��
��� is full rank,

we define the matrix ���� as

���� �� � � �����
����

����
�� (10)

II. REGULARIZED MODIFIED BASIS PURSUIT

Mod-CS given in (2) puts no cost on �� and no explicit constraint
except � � ��. Thus, when very few measurements are available, ��
can become larger than required in order to satisfy � � �� with the
smallest ��� ��. A similar, though less, bias will also occur with (3)
when � � 
. However, if a signal value estimate on � , ��	�� , is also
available, one can use that to constrain �� . One way to do this, as sug-
gested in [2], is to add ���� � �	� ��� to the mod-CS cost. However,
as we saw from simulations, while this does achieve lower reconstruc-
tion error, it cannot achieve exact recovery with fewer measurements
(smaller �) than mod-CS [2]. The reason is it puts a cost on the entire
�� distance from ��	�� and so encourages elements on the extras set,
�	, to be closer to ��	�� which is nonzero.

On the other hand, if we instead use the �� distance from ��	�� , and
add it as a constraint, then, at least in certain situations, we can achieve
exact recovery with a smaller � than mod-CS. Thus, we study

���
�
��� ��� subject to � � �� ��� ��� � �	� �� � � (11)

and call it reg-mod-BP. We see from simulations, that whenever one or
more of the inequality constraints are active at �, i.e., ��� � �	�� � �
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for some � � � , (11) does achieve exact recovery with fewer measure-
ments than mod-CS. We use this observation to derive a better exact
recovery result below.1

III. EXACT RECONSTRUCTION CONDITIONS

In this section, we obtain exact reconstruction conditions for reg-
mod-BP by exploiting the above fact. We give the result and discuss
its implications below in Section III-A. The key lemmas leading to its
proof are given in Section III-B and the proof outline in Section III-C.

A. Exact Reconstruction Result

Let us begin by defining the two types of active sets (set of indices
for which the inequality constraint is active), ��� and ���, and the
inactive set, ���, as follows:

��� �� �� � � � �� � ��� � ��

��� �� �� � � � �� � ��� � ���

��� �� �� � � � ��� � ���� � ��� (12)

In the result below, we try to find the sets ���� � ��� and ���� �
��� so that ������������� is maximized while ���� and ���� satisfy
certain constraints. We call these the “good” sets. We define the “bad”
subset of � , as �� �� � � ����� � �����. As we will see, the smaller
the size of this bad set, the weaker are our exact recovery conditions.

Theorem 1 (Exact Recovery Conditions): Consider recovering a
sparse vector, �, with support � , from 	 �� 
� by solving (11). The
support estimate, � , and the misses and extras in it, �, ��, satisfy (6).
The signal estimate, ��, satisfies (7), i.e., 	�� � ��� 	� 
 �. Define
the sizes of the sets � and � as

� �� �� ��  �� ���� (13)

The true � is the unique minimizer of (11) if
1) ���� � �, ��� � �� � ������ � �, and
2) ���	� � � �� �� � � � where

�� ��� � ����� � ������ 
��

�� �� ����

������ ����� � 
� �
�
�� ���

�� ������ � � ������� subject to

����� ����� ����� � ����


�
�

� � � � � � ������ and


�
�

� � � � � � ������

where

� ���� ����
��
�
�

�� ����
��
�	�������

��� ��� � � ����� � ������� (14)

���� is specified in (10), ����� ��� is defined in (8), and the sets
���, ��� are defined in (12).

Notice that ����� ��� is a nondecreasing function of �. Since �� �
� � ������ � ������, thus, finding the largest possible sets ���� and
���� ensures that the condition ���	� � � �� �� � � � is the

1One can also try to constrain the distance instead of the distance.
When the constraint is active, one should again need a smaller for exact
recovery. When we check this via simulations, this does happen, but since it is
at most one active constraint, the reduction in required is small compared to
what is achieved by (11) and hence we do not study this further.

weakest. The reason for defining ���� and ���� in the above fashion
will become clear in the proof of Lemma 2.

Notice also that the first condition of the above result ensures that
�� � �. Since � ���� 
 �, thus, 
��

�
�� is positive definite and thus
invertible. Thus �� ���� is always well defined. The first condition also
ensures that ���	� � � �. Since �� 
 �, and since �� and �� �� are
nondecreasing functions of�� �	� ��, it also ensures that�� �� � � �.

Remark 1 (Applicability): A practical case where some of the in-
equality constraints will be active with nonzero probability is when
dealing with quantized signals and quantized signal estimates. If the
range of values that the signal estimate can take given the signal (or
vice versa) is known, the smallest choice of � is easily computed. We
show some examples in Section IV. In general, even if just the range
of values both can take is known, we can compute �. The fewer the
number values that �� � ��� can take, the larger will be the expected
size of the active set, �	 �� ��� � ���. Also, the condition (14)
will hold for nonempty �
 �� ���� � ���� with nonzero probability.
Some real applications where quantized signals and signal estimates
occur are recursive CS based video compression [6], [7] (the original
video itself is quantized) or in recursive projected CS (ReProCS) [8],
[9] based moving or deforming foreground objects’ extraction (e.g., a
person moving towards a camera) from very large but correlated noise
(e.g., very similar looking but slowly changing backgrounds), particu-
larly when the videos are coarsely quantized (low bit rate). A common
example where low bit rate videos occur is mobile telephony applica-
tions. In any of these applications, if we know a bound on the maximum
change of the sparse signal’s value from one time instant to the next,
that can serve as �.

Remark 2 (Comparison With BP, Mod-CS, Other Results): The
worst case for Theorem 1 is when both the sets ���� and ���� are
empty either because no constraint is active (��� and ��� are both
empty) or because (14) does not hold for any pair of subsets of ���
and ���. In this case, we have �� � � and so the required sufficient
conditions are the same as those of mod-CS [2, Theorem 1]. A small
extra requirement is that � satisfies (7). Thus, in the worst case,
Theorem 1 holds under the same conditions on 
 (needs the same
number of measurements) as mod-CS [2]. In [2], we have already
argued that the mod-CS result holds under weaker conditions than
the results for BP [4], [10] as long as the size of the support errors,
���, ����, are small compared to the support size, �� �, and hence the
same can be said about Theorem 1. For example, we argued that when
��� � ���� � ���	�� � (numbers taken from a recursive dynamic
MRI application), the mod-CS conditions are weaker than those
of BP. Small ���, ���� is a valid assumption in recursive recovery
applications like recursive dynamic MRI, recursive CS based video
compression, or ReProCS based foreground extraction from large but
correlated background noise.

Moreover, if some inequality constraints are active and (14) holds,
as in case of quantized signals and signal estimates, Theorem 1 holds
under weaker conditions on 
 than the mod-CS result.

As noted by an anonymous reviewer, our exact recovery conditions
require knowledge of �. However this is an issue with many results
in sparse recovery, e.g., [21], and especially those that use more prior
knowledge, e.g., [18].

Remark 3 (Small Reconstruction Error): The reconstruction error of
reg-mod-BP is significantly smaller than that of mod-CS, weighted �	
or BP, even when none of the constraints is active, as long as � is small
(see Table III). On the other hand, the exact recovery conditions do not
depend on the value of �, but only on the size of the good subsets of
the active sets. This is also observed in our simulations. In Table III, we
show results for � � ���. Even when we tried � � ���, the exact recon-
struction probability or the smallest � needed for exact reconstruction
remained the same, but the reconstruction error increased.
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Remark 4 (Computation Complexity): Finding the best ���� and
���� requires that one check all possible subsets of ��� and ��� and
find the pair with the largest sum of sizes that satisfies (14). To do this,
one would start with ����� � ���, ����� � ���; compute ��� and �
and check if (14) holds; if it does not, remove one element from �����
and then check (14); then remove an element from ����� and check
(14); keep doing this until one finds a pair for which (14) holds. In
the worst case, one will need to check (14) ��� ���� � times. How-
ever, the complexity of computing the RIC ��� � or any of the ROC’s is
anyway exponential in �� � and �� � � �����������. In summary, com-
puting the conditions of Theorem 1 has complexity that is exponential
in the support size, but the same is true for all sparse recovery results
that use the RIC. We should mention though that, for certain random
matrices, e.g., random Gaussian, there are results that upper bound the
RIC values with high probability, e.g., see [4]. However, the resulting
bounds are usually quite loose.

B. Proof of Theorem 1: Key Lemmas

Our overall proof strategy is similar to that of [4] for BP and of [2] for
mod-CS. We first find a set of sufficient conditions on an � � � vector,
�, that help ensure that � is the unique minimizer of (11). This is done
in Lemma 1. Next, we find sufficient conditions that the measurement
matrix� should satisfy so that one such� can be found. This is done in
an iterative fashion in the theorem’sproof.TheproofusesLemma2at the
zeroth iteration, followed by applications of Lemma 3 at later iterations.

To obtain the sufficient conditions on �, as suggested in [4], we first
write out the Karush–Kuhn–Tucker (KKT) conditions for � to be a
minimizer of (11)[22, Ch. 5]. By strengthening these a little, we get a set
of sufficient conditions for � to be the unique minimizer. The necessary
conditions for � to be a minimizer are: there exists an �� �, vector �
(Lagrange multiplier for the constraints in � � ��), a ������� vector,
��, and a ����� � � vector, ��, such that (s.t.)

1) every element of �� and �� is nonnegative, i.e., �� � � and �� �
�;

2) ��
�� � �, ��

�� � ��, ��
�� � ���, ��

�� �
��	
���, and �������

���� � �.
As we will see in the proof of Lemma 1, strengthening
�������

���� � � to �������
���� 	 �, keeping the other

conditions the same, and requiring that ���� 	 � gives us a set of
sufficient conditions.

Lemma 1: Let � be as defined in Theorem �
 � is the unique mini-
mizer of (11) if ���� 	 � and if we can find an �� � vector, �, s.t.

1) ��
�� � �, ��

�� � �, ��
�� � �;

2) ��
�� � ��	
���;

3) ���
��� 	 � for all � �	 � 
�.

Recall that ���, ��� and �	
 are defined in (12) and � � in Theorem 1.

Proof: The proof is given in Appendix A.
Notice that the first condition is weaker than that of Lemma 1 of

mod-CS [2] (which requires ��
�� � �), while the other two are the

same. Next, we try to obtain sufficient conditions on the measurement
matrix,� (on its RIC’s and ROC’s) to ensure that such a� can be found.
This isdonebyusingLemmas2and3givenbelow.Lemma2helpsensure
that the first two conditions of Lemma 1 hold and provides the starting
point for ensuring that the third condition also holds. Then, Lemma 3
applied iteratively helps ensure that the third condition also holds.

Lemma 2: Assume that �� � �. Let � be such that ���� � �.
If �� � �� � ��� �� 	 �, then there exists an � � � vector �� and an
“exceptional” set, �, disjoint with � 
�, s.t.

1) ��
� �� � �, ��

� �� � �, ��
� �� � �;

2) ��
� �� � ��	
���;

3) ��� 	 �, ���
� ���� � �� 
�� ��


�, ���

� ��� � � ����	��
�	


� �� �	

� 
 � 
 �;

4) � ���� � �� 
��

�.

Recall that ��
�� ��, ��
�� are defined in (8), (9) and ����, ����, ��,
�,  and � in Theorem 1.

Notice that because we have assumed that �� � �� � ��� �� 	 �,
�� 
�� �� and �� 
�� are positive. We call the set � an “exceptional”
set, because except on the set � � 
� 
 ��
, everywhere else on

� 
 ��
, ���

� ��� is bounded. This notion is taken from [4]. Notice
that the first two conditions of the above lemma are one way to satisfy
the first two conditions of Lemma 1 since �� � �	
 
 
��� � ����� 


��� � �����.

Proof: The proof is given in Appendix B. We let �� �
�
�����
��

��
������
����	
���. Since the good sets ����,

���� are appropriately defined [see (14)], the first two conditions hold.
The rest of the proof bounds � ����, and finds the set � � 
� 
 ��


of size ��� 	 � so that ���
� ��� is bounded for all � �	 � 
� 
 � and

also ���
� ���� is bounded.

Lemma 3 [2, Lemma 2]: Assume that  � �. Let �, � be such that
 � �� � � �. Assume that �	 � �� � ����	 	 �. Let �� be a set that
is disjoint with � , of size ���� � � and let � be a ���� � � vector. Then
there exists an �� � vector, ��, and a set, �, disjoint with � 
 ��, s.t.
i) ��

� �� � �, ii) ��
� �� � �, iii) ��� 	 �, ���

� ���� � ��
�� ������,
���

� ��� � � �	��	��
�	
����� �� �	 �
��
�, and iv) � ���� � ��
������.

Recall that ��
�� ��, ��
�� are defined in (8), (9), and � � in The-
orem 1.

Proof: The proof of Lemma 3 is given in [2] and also in
[23, App. C].

Notice that because we have assumed that �	 � �� � ����	 	 �,
��
�� �� and ��
�� are positive.

C. Proof Outline of Theorem 1

The proof is very similar to that of [2]. Hence we give only the outline
here. The complete proof is in [23]. At iteration zero, we apply Lemma
2 with � � �, to get a �� and an exceptional set ����, disjoint with
� 
�, of size less than �. Lemma 2 can be applied because � �  and
condition 1 of the theorem holds. At iteration � � �, we apply Lemma
3 with �� � � 
 ���� (so that � � ��), �� � �, �� � ��

���

and � � � to get a ���� and an exceptional set ������ disjoint with
� 
 � 
 ���� of size less than �. Lemma 3 can be applied because
condition 1 of the theorem holds. Define � �� �

���
��������. We
then argue that if condition 2 of the theorem holds, � is well-defined
and satisfies the conditions of Lemma 1. Applying Lemma 1, the result
follows.

IV. NUMERICAL EXPERIMENTS

In this section, we show two types of numerical experiments. The
first simulates quantized signals and signal estimates. This is the case
where some constraints are active with nonzero probability. The good
set, � � ���� 
 ���� is also non empty with nonzero probability.
Hence, for a given small enough �, reg-mod-BP has significantly
higher exact reconstruction probability, �����
��, as compared to
both mod-CS [2] and weighted ��[14] and much higher than that of
BP [3], [4]. Alternatively, it also requires a significantly reduced � for
exact reconstruction with probability one, �����
��. In computing
�����
�� we average over the distribution of �, � and ��, as also in [2],
[4]. All numbers are computed based on 100 Monte Carlo simulations.
To compute �����
��, we tried various values of � for each algorithm
and computed the smallest � required for exact recovery always (in
all 100 simulations).

We also do a second simulation where signal estimates are not quan-
tized.

In the following steps, the notation

� � discrete-uniform
��� ��� � � � ���



2638 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

TABLE I
QUANTIZED SIGNALS AND SIGNAL ESTIMATES. RECALL THAT

� � ��. FOR � � �, THE EXPECTED SIZES OF , AND

ARE � � � �� ��, � � � 	 �
 AND � � � �� 
�. FOR

� � ��, � � � � ��, � � � � � AND � � � �� 


means that � is equally likely to be equal to ��� ��� � � � or ��. We use
�� as short for ��, ��. Also, � � uniform��� �� generates a scalar
uniform random variable in the range ��� ��. The notation ��

���
� � for

all � � � means that, for all � � �, each �� is identically distributed
according to � and is independent of all the others.

For the quantized case, � was an � � 	
� length sparse vector
with support size �	 � � �
 � � 	� and support estimate error sizes
� � ��� � ���� � �
�	 � � �. We generated the matrix � once as
an  � � random Gaussian matrix (generate an  � � matrix with
i.i.d zero mean Gaussian entries and normalize each column to unit ��
norm). The following steps were repeated 100 times.

1) The support set, 	 , of size �	 �, was generated uniformly at
random from ����. The support misses set, �, of size �, was
generated uniformly at random from the elements of 	 . The
support extras set, ��, also of size �, was generated uniformly
at random from the elements of 	 �. The support estimate,
� � 	 ��� �� and thus �� � � �	 � � 	�.

2) We generated ��
���
� discrete-uniform��� for � � 	 	 � ; ��

���
�

discrete-uniform���
� for � � �, and �� � � for � � 	 �. ����
and �� are also independent of each other. We generated ��� �

�� � � where ��
���
� discrete-uniform���� �

�
��	 �

�
� � � �� �� for

� � � 	 	 and ��
���
� discrete-uniform�� �

�
��	 �

�
� � � � � �� for

� � ��. We used � � �
 and tried two choices of� . Notice that,
for a given � , the number of equally likely values that �� � ���
for � � � can take are roughly 	� �  (	� when � � ��).
The constraint is active when �� � ��� is equal to ��. Thus, the
expected size of the active set is roughly �

����
�� �.

3) We generated � � ��. We solved reg-mod-BP given in (11) with
� � �
; BP given in (1); mod-CS given in (2); and weighted
�� given in (3) with various choices of �: ��
 �
�
 �
� �
���.
We used the CVX optimization package, http://www.stan-
ford.edu/boyd/cvx/, which uses primal-dual interior point method
for solving the minimization problem.

We computed ���	
��� as the number of times �� was equal to
� (“equal” was defined as ��	�	�

�	�
� ��) divided by 100. For

weighted ��, we computed ���	
��� for each choice of � and
recorded the largest one. This corresponded to � � �
. We tabulate
results in Table I. In the first row, we record ���	
���

 �� for all the
methods, when using � � 	. We also record the Monte Carlo average
of the sizes of the active set ��
� � ��	� � �	��; of the good set,
���� � ��	����	��� and of the bad set ���� � ������. In the second
row, we record the normalized root mean-square error (N-RMSE). In
the third row, we record ��	
���. In the next three rows, we repeat
the same things with � � 
.

As can be seen, ���� is about half the size of the active set, ��
�. As
� is increased, ��
� and hence ���� reduces (���� increases) and thus
���	
���

 �� decreases and ��	
��� increases. Also, for mod-CS
and weighted ��, ���	
���

 �� is significantly smaller than for reg-
mod-BP, while ��	
��� is larger.

TABLE II
QUANTIZED SIGNALS AND SIGNAL ESTIMATES: CASE 2. RECALL THAT

� � ��. THE EXPECTED SIZES OF , AND ARE

� � �  ��, � � � � 	� AND � � � �� ��

TABLE III
THE NON-QUANTIZED CASE

Next, we simulated a more realistic scenario—the case of 3-bit quan-
tized images (both � and �� take integer values between 0 to 7). Here
again � � 	
�, �	 � � �
 � � 	�, and � � ��� � ���� �
�
�	 � � �. The sets 	 , �, �� and � were generated as before.
We generated ��

���
� discrete-uniform��� �� � � � �� for � � 	 	 � ;

�� � discrete-uniform�� 	� for � � �; and �� � � for � � 	 �. Also,
��� � ������� � �� where �� � discrete-uniform��	��� �� � 	� for
� � � 		 ; and �� � discrete-uniform��	��� � 	� for � � ��. Also
������� clips any value more than 7 to 7 and any value less than zero
to zero. Clearly, in this case � � 	. We record our results in Table II.
Similar conclusions as before can be drawn.

Finally, we simulated the nonquantized case. We used � � 	
�,
�	 � � �
 � � 	�, and � � ��� � ���� � �
�	 � � �.
We generated ��

���
� discrete-uniform��� for � � 	 	 � ;

��
���
� discrete-uniform���
� for � � �, and �� � � for � � 	 �.

The signal estimate, ��� � �� � � where ��
���
� uniform���� �� with

� � �
. We tabulate our results in Table III.
Since � is a real vector (not quantized), the probability of any con-

straint being active is zero. Thus, as expected, ���	
� and ��	
� are
the same for reg-mod-BP and mod-CS and weighted ��, though sig-
nificantly better than BP. However, the N-RMSE for reg-mod-BP is
significantly lower than that for mod-CS and weighted �� also, partic-
ularly when  � �
 �.

V. CONCLUSION

In this work, we obtained sufficient exact recovery conditions for
reg-mod-BP, (11), and discussed their implications. Our main conclu-
sion is that if some of the inequality constraints are active and if even a
subset of the set of active constraints satisfies certain conditions (given
in (14)), then reg-mod-BP achieves exact recovery under weaker condi-
tions than what mod-CS needs. A practical situation where this would
happen is when both the signal and its estimate are quantized. In other
cases, the conditions are only as weak as those for mod-CS. In either
case they are much weaker than those for BP as long as � is a good sup-
port estimate. From simulations, we see that even without any active
constraints, the reg-mod-BP reconstruction error is much lower than
that of mod-CS or weighted ��.

APPENDIX

A. Proof of Lemma 1

Denote a minimizer of (11) by �. Since � � �� and � satisfies (7),
� is feasible for (11). Thus,


�� 
� � 
�� 
� � 
��
�
 (15)
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Next, we use the conditions on � given in Lemma 1 and the fact that
� is supported on � � � � � to show that ��� �� � ��� �� and
hence ��� �� � ��� ��. Notice that

��� �� �
���

��� � �� � �� ��
� �����

��� �

�
���

��� � �� � �� ��
� �����

������ (16)

�
���

���������� � ��� � ����

�
� �����

������� � ��� (17)

� ����� �
� ���

������� � ���

� ����� � ����� � ���

�
���

������� � ��� (18)

� ����� �
���

������� � 	�� � 	�� � ��� (19)

� ����� �
���

������� � 	�� � ��

�
���

������� � 	�� � �� (20)

������ � ��� ��	 (21)

In the above, the inequality in (16) follows because ���� � ����� � 


 for � �� � �� and because ��� � � �� . Inequality (17) uses the fact
that �� � ������ for any two scalars  and � and that �� � � for � ��
� ��. In (18), the first equality uses ��������� � ��� � and ���� �
������� for � � �. The second equality just rewrites the second term
in a different form. In (19), we use the fact that �� � �� � �
(since both � and � are feasible) to eliminate ����� � ���. Equa-
tion (20) uses ���� � � for � � ��� and the definitions of ��� and
��� given in (12). Finally, (21) follows because� ��� ��������
	�� � ��� ��� ������� � 	�� � �� � �. This holds since �� �
�� � 	�� � � for all � � � ; ���� � � for � � ���; and ���� � �
for � � ���.

Both inequalities (15) and (16)–(21) can hold only when ��� �� �
��� ��, i.e., all the inequalities in (16)–(21) hold with equality. Con-
sider the inequality in (16). Since ����� � 
 
 for � �� � ��, this holds
with equality only if �� � � for all � �� � ��. Since �� � � � ��
and since both � and � are supported on � � � (or on its subset),
��������� � ����� � �. Since ���� 
 
, ���� has full rank.
Therefore, this means that ���� � ����. Thus, we can conclude that
� � �, i.e., � is the unique minimizer.

B. Proof of Lemma 2

This proof uses the following simple facts. Let �������, �������
denote the minimum and maximum eigenvalues of a matrix � .
i) For positive semi-definite matrices, � , �, ��� � �������;
���� � ������; ������ � �� � ������� � �������;
and for a positive definite matrix, � , ����� � �

� 	�

;

ii) for any matrices, �, � , �� � �� � ��� � ���; iii) for
disjoint sets ��, ��, ���

��� � � ��� ���� � [2, eq. (3)]; iv)

 � ��� � � �������

��� � � �������
��� � � 
 � ��� �[4]; v)

���	� is a projection matrix and so ���	����	�
� � ���	� and

����	�� � 
; and vi) ���������� � 	
�.

The lemma assumes that �� � �� � ��� �� 
 
. This im-
plies that a) �� 
 
 and so ��

��� is positive definite and
so � � �; b) �� 
 
 and so ��

��� is positive def-
inite and ���	� is well-defined; and c) as we show next,

��
����	��� is positive definite and hence full rank. Since

��
����	��� � ��

��� � ��
��� ���

��� �����
��� is a

difference of two positive semi-definite matrices, thus,

�������
����	����

� �������
����� �������

��� ���
��� �����

����

� �
� ����
��� ��


� ��
� �	 (22)

Thus, ��
����	��� is positive definite. The first inequality in (22)

follows from fact i). The second one follows because

�������
���� � �
� ��� (using fact iv));

�������
��� ���

��� �����
����

� ���
��� ���

��� �����
����

� ���
��� � ����

��� ���� ���
���� (using fact i));

���
��� � � ���

���� � �� �� (using fact iii)); and

����
��� ���� � 


�������
��� �

� 



� ��
(since ��

���

is positive definite, this follows using fact i) and fact iv)).

The third inequality of (22) follows because �
 � ��� �



���
�

��� �� �� � �


���
� �. Both the numerator and the denominator

are positive because we have assumed that �� � �� � ��� �� 
 
.
Using fact v), ��

����	��� � ��
����	����	�

���. Thus,
using the above, ��

����	����	�
��� is positive definite and hence

has full rank �. Thus, the �
� fat matrix, ��
����	� has full rank, �.

To prove the lemma, we first try to construct an � 
 
 vector,
��, that satisfies the first two conditions of the lemma. Then, we
show that we can find an exceptional set � so that the constructed
�� and � satisfy all the required conditions. Any �� that satisfies
��

� �� � � lies in the null space of ��
� and hence is of the form

�� � ���	��. To satisfy the second condition, we need a � that sat-
isfies ��

����	�� � �������. As shown above, ��
����	� is full

rank and so this system of equations has a solution (in fact has infinitely
many solutions). We can compute the minimum �� norm solution in
closed form as � � ���	�

������
����	����	�

����
���������.

Since ���	����	�
� � ���	�, �� � ���	�� can be rewritten as

�� � ���	������
����	����

���������	 (23)

Using the definition of ���� , ���� given in (14) in Theorem 1, we
can see that �� satisfies the first two conditions of the lemma. Recall
that ��

�� � � for all � � ���� is equivalent to ��
�� � �, and

similarly, ��
�� 
 � for all � � ���� is equivalent to ��

�� � �.
The rest of the proof is similar to that of [2, Lemma 2]. Consider any

set � disjoint with � �� of size � �� � �. Then,

���
� ���� ����

����	���� ����
����	����

�������������
� ���� �

���� ����

� ��





� �� �



���

	
�

� �� �� ��
	

�	 (24)

Notice that �� �� �� is positive because we have assumed
that �� � �� � ��� �� 
 
. The bound in (24) follows using
the simple facts given in the beginning. We obtain (24) as
follows. Consider the first term ���

����	����. Using
the definition of ���	� and fact ii), ���

����	���� �
���

��������
��� ���

��� �����
����. Using fact iii),

���
���� � ����, ���

��� � � ���� and ���
���� � ���� .

Since ��
��� is positive definite, using fact i) and fact iv),
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����
��� ���� � �

� �� � �
� �

��� . Thus, we

get ����
��������� � ������ �

	 	

��� �. Consider the

second term ����
���������

���. Since ��
�������� is

positive definite, using fact i) and (22), ����
���������

���
� �

� �� 
�� �� �
� �

���� ��
. Using fact vi), the third

term, ���������� �
�
�.

Define the set,�, as� �� �� � �� �	�� � ���
� 
	� 
  ������

�
�

�
��

�.
Notice that ��� must obey ��� � �� since otherwise we can contradict
(24) by taking ��� 	 �. Since ��� � �� and � is disjoint with � �
	, (24) holds for ��� 
 �, i.e., ���

� 
	�� � � ��� ���
�
�. Also, by

definition of �, ���
� 
	� �  ������

�
�

�
��

� �� ��� � �� � �	 ��. Thus,

	 satisfies the third condition of the lemma.

Finally, � 
	�� � ������� ���� ����
���������

��� �� �
�� ���

�
�. This follows using fact v); ���� �

�
� � ��; and fact

i) and (22). Thus, we have found a 
	 and � that satisfy all required
conditions.
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Generalized New Mersenne Number Transforms

Said Boussakta, Monir T. Hamood, and Nick Rutter

Abstract—Two new number theoretic transforms named as odd and odd-
squared new Mersenne number transforms are introduced for incorpora-
tion into a generalized new Mersenne number transforms (GNMNTs) suite,
which are defined in finite fields modulo Mersenne primes where arithmetic
operations and residue reductions are simple to implement. This suite is
categorized by type, with detailed instructions regarding their derivations.
An example is given which shows their suitability for the calculation of
different types of convolutions, along with an analysis of their arithmetic
complexities for radix-2 and split radix algorithms. This in turn shows that
these new transforms are suitable for fast error free calculation of convo-
lutions/correlations for signal processing and other applications.

Index Terms—New Mersenne number transform (NMNT), number theo-
retic transforms (NTTs), odd new Mersenne number transform (ONMNT),
odd-squared new Mersenne number transform �� �����.

I. INTRODUCTION

The use of number theoretic transforms (NTTs) have been firmly
established within the field of signal processing [1]. This is owing to
their contributing ability to perform error-free calculations over a field
or a ring of integers whilst maintaining the Cyclic Convolution Prop-
erty (CCP). In contrast to other methods of calculation, such as the
fast Fourier transform (FFT) which involves complex arithmetic with
rounding and/or truncation errors in its calculations; errors also arise
in the multiplication with cosine and sine functions which are irra-
tional, preventing exact representation in a finite precision machine
[2]. Additionally, the use of NTTs have been proven to provide such
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