
182 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 1, JANUARY 2012

Regularized Modified BPDN for Noisy Sparse
Reconstruction With Partial Erroneous Support and

Signal Value Knowledge
Wei Lu and Namrata Vaswani

Abstract—We study the problem of sparse reconstruction from
noisy undersampled measurements when the following knowl-
edge is available. (1) We are given partial, and partly erroneous,
knowledge of the signal’s support, denoted by � . (2) We are also
given an erroneous estimate of the signal values on � , denoted
by ����� . In practice, both of these may be available from prior
knowledge. Alternatively, in recursive reconstruction applications,
like real-time dynamic MRI, one can use the support estimate
and the signal value estimate from the previous time instant as
� and ����� . In this paper, we introduce regularized modified
basis pursuit denoising (BPDN) (reg-mod-BPDN) to solve this
problem and obtain computable bounds on its reconstruction
error. Reg-mod-BPDN tries to find the signal that is sparsest
outside the set � , while being “close enough” to ����� on � and
while satisfying the data constraint. Corresponding results for
modified-BPDN and BPDN follow as direct corollaries. A second
key contribution is an approach to obtain computable error
bounds that hold without any sufficient conditions. This makes it
easy to compare the bounds for the various approaches. Empirical
reconstruction error comparisons with many existing approaches
are also provided.

Index Terms—Compressive sensing, modified-CS, partially
known support, sparse reconstruction.

I. INTRODUCTION

T HE goal of this work is to solve the sparse recovery
problem [2]–[6]. We try to reconstruct an -length

sparse vector , with support , from an length noisy
measurement vector , satisfying

(1)

when the following two things are available: (i) partial, and
partly erroneous, knowledge of the signal’s support, denoted by

; and (ii) an erroneous estimate of the signal values on , de-
noted by . In (1), is the measurement noise and is the
measurement matrix. For simplicity, in this paper, we just refer
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to as the signal and to as the measurement matrix. How-
ever, in general, is the sparsity basis vector (which is either the
signal itself or some linear transform of the signal) and
where is the measurement matrix and is the sparsity basis
matrix. If is the identity matrix then is the signal itself.

The true support of the signal, , can be rewritten as

(2)

where

(3)

are the errors in the support estimate, is the complement set
of , and is the set difference notation ( ).

The signal estimate is assumed to be zero along , i.e.

(4)

and the signal itself can be rewritten as

(5)

where denotes the error in the prior signal estimate. It is as-
sumed that the error energy is small compared to the signal
energy, .

In practical applications, and may be available from
prior knowledge. Alternatively, in applications requiring recur-
sive reconstruction of (approximately) sparse signal or image
sequences, with slow time-varying sparsity patterns and slow
changing signal values, one can use the support estimate and
the signal value estimate from the previous time instant as the
“prior knowledge.” A key domain where this problem occurs
is in fast (recursive) dynamic MRI reconstruction from highly
undersampled measurements. In MRI, we typically assume
that the images are wavelet sparse. We show slow support and
signal value change for two medical image sequences in Fig. 1.
From the figure, we can see that the maximum support changes
for both sequences are less than 2% of the support size and
almost all signal values’ changes are less than 0.16% of the
signal energy. Slow signal value change also implies that a
signal value is small before it gets removed from the support.
Other potential applications include single-pixel camera based
real-time video imaging [7]; video compression; ReProCS (re-
cursive projected CS) based video denoising or video layering
(separating video in foreground and background layers) [8],
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Fig. 1. (a) Two medical image sequences (a cardiac and a larynx sequence). (b) � is the two-level Daubechies-4 2D discrete wavelet transform (DWT) of the
cardiac or the larynx image at time � and the set� is its 99% energy support (the smallest set containing 99% of the vector’s energy). Its size, �� � varied between
4121–4183 (� �����) for larynx and between 1108–1127 (� �����) for cardiac. Notice that all support changes are less than 2% of the support size and
almost all signal values changes are less than 4% of ��� � � (a) (i) a larynx (vocal tract) image sequence. (ii) cardiac image sequence. (b) (i) support additions,

. (ii) support removals, . (iii) signal value change, .

[9]; and spectral domain optical coherence tomography [10]
based dynamic imaging.

This work has the following contributions.
1) We introduce regularized modified basis pursuit denoising

(BPDN) (reg-mod-BPDN) and obtain a computable bound
on its reconstruction error using an approach motivated by
[3]. Reg-mod-BPDN solves

(6)

i.e., it tries to find the signal that is sparsest outside the set
, while being “close enough” to on , and while sat-

isfying the data constraint. Reg-mod-BPDN uses the fact
that is a good estimate of the true support, , and that

is a good estimate of . In particular, for , this
implies that is close to zero (since for ).

2) Our second key contribution is to show how to use the
reconstruction error bound result to obtain another com-
putable bound that holds without any sufficient conditions
and is tighter. This allows easy bound comparisons of the
various approaches. A similar result for mod-BPDN and
BPDN follows as a direct corollary.

3) Reconstruction error comparisons with these and many
other existing approaches are also shown.

Notations and Problem Definition

For any set and vector , denotes a sub-vector containing
the elements of with indices in . refers to the norm of
the vector . Also, counts the number of nonzero elements
of .

The notation denotes the set complement of , i.e.,
. is the empty set.

We use for transpose. For the matrix , denotes the
submatrix containing the columns of with indices in . The
matrix norm , is defined as .
is an identity matrix on the set of rows and columns indexed

by elements in . is a zero matrix on the set of rows and
columns indexed by elements in and , respectively.

The notation denotes the gradient of the function
with respect to .

When we say is supported on we mean that the support
of (set of indices where is nonzero) is a subset of .

Our goal is to reconstruct a sparse vector, , with support,
, from the noisy measurement vector, satisfying (1). We

assume partial knowledge of the support, denoted by , and of
the signal estimate on , denoted by . The support estimate
may contain errors – misses, , and extras, , defined in (3).
The signal estimate is assumed to be zero along , i.e., it
satisfies (4) and the signal satisfies (5).

A. Related Work

The sparse reconstruction problem, without using any sup-
port or signal value knowledge, has been studied for a long time
[2]–[6]. It tries to find the sparsest signal among all signals that
satisfy the data constraint, i.e., it solves .
This brute-force search has exponential complexity. One class
of practical approaches to solve this is basis pursuit which re-
places by [2]. The norm is the closest norm to
that makes the problem convex. For noisy measurements, the
data constraint becomes an inequality constraint. However, this
assumes that the noise is bounded and the noise bound is avail-
able. In practical applications where this may not be available,
one can use the Lagrangian version which solves

(7)

This is called basis pursuit denoising (BPDN) [2]. Since this
solves an unconstrained optimization problem, it is also faster.
An error bound of BPDN was obtained in [3]. Error bounds for
its constrained version were obtained in [11], [12].

The problem of sparse reconstruction with partial support
knowledge was introduced in our work [13], [14]; and also in
parallel in Khajehnejad et al. [15] and in vonBorries et al. [16].
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Fig. 2. The N-RMSE for reg-mod-BPDN, mod-BPDN, BPDN, LS-CS, KF-CS, weighted � , CS-residual, CS-mod-residual, and modified-CS-residual are plotted.
For � � �����, reg-mod-BPDN has smaller errors than those of mod-BPDN and the gap is larger when the signal estimate is good. For � � ����, the errors of
reg-mod-BPDN, mod-BPDN, and weighted � are close and all small. (a) � � �����, � � �� , � � �� . (b) � � �����, � � �� , � � �� . (c)
� � ����, � � �� , � � �� . (d) � � ����, � � �� , � � �� .

In [13] and [14], we proposed an approach called modified-CS
which tries to find the signal that is sparsest outside the set
and satisfies the data constraint. We obtained exact reconstruc-
tion conditions for it by using the restricted isometry approach
[17]. When measurements are noisy, for the same reasons as
above, one can use the Lagrangian version

(8)

We call this modified-BPDN (mod-BPDN). Its error was
bounded in the conference version of this work [1], while the
error of its constrained version was bounded in Jacques [18].

In [15], Khajehnejad et al. assumed a probabilistic support
prior and proposed a weighted solution. They also obtained
exact reconstruction thresholds for weighted by using the
overall approach of Donoho [19]. In Fig. 2, we show compar-
isons with the noisy Lagrangian version of weighted which
solves

(9)

Our earlier work on Least Squares CS-residual (LS-CS) and
Kalman Filtered CS-residual (KF-CS) [20], [21] can also be
interpreted as a possible solution for the current problem, al-
though it was proposed in the context of recursive reconstruc-
tion of sparse signal sequences. Reg-mod-BPDN may also be
interpreted as a Bayesian CS or a model-based CS approach.
Recent work in this area includes [22]–[28].

B. Some Related Approaches**

Before going further, we discuss below a few approaches that
are related to, but different from reg-mod-BPDN, and we argue
when and why these will be worse than reg-mod-BPDN. This
section may be skipped on a quick reading. We show compar-
isons with all these in Fig. 2.

The first is what can be called CS-residual or CS-diff which
computes

(10)
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This has the following limitation. It does not use the fact that
when is an accurate estimate of the true support, is
much more sparse compared with the full (the support
size of is while that of is which
is much larger). The exception is if the signal value prior is so
strong that is zero (or very small) on all or a part of .

CS-residual is also related to LS-CS and KF-CS. LS-CS
solves (10) but with being the LS estimate computed as-
suming that the signal is supported on and with .
For a static problem, KF-CS can be interpreted as computing
the regularized LS estimate on and using that as . LS-CS
and KF-CS also have a limitation similar to CS-residual.

Another seemingly related approach is what can be called
CS-mod-residual. It computes

(11)

where stands for . This is solving a sparse recovery
problem on , i.e., it is implicitly assuming that is either
equal to or very close to it. Thus, this also works only when
the signal value prior is very strong.

Both CS-residual and CS-mod-residual can be interpreted as
extensions of BPDN, and [3, Theorem 8] can be used to bound
their error. In either case, the bound will contain terms propor-
tional to and as a result, it will be large when-
ever the prior is not strong enough1. This is also seen from our
simulation experiments shown in Fig. 2 where we provide com-
parisons for the case of good signal value prior (0.1% error in
initial signal estimate) and bad signal value prior (10% error in
initial signal estimate). We vary support errors from 5% to 20%
misses, while keeping the extras fixed at 10%.

Reg-mod-BPDN can also be confused with modi-
fied-CS-residual which computes[29]

(12)

This is indeed related to reg-mod-BPDN and in fact this inspired
it. We studied this empirically in [29]. However, one cannot get
good error bounds for it in any easy fashion. Notice that the
minimization is over the entire vector , while the cost is only
on .

One may also consider solving the following variant of reg-
mod-BPDN (we call this reg-mod-BPDN-var):

(13)

Since is supported on , the regularization term can be
rewritten as . Thus,
in addition to the norm cost on imposed by the first
term, this last term is also imposing an norm cost on it. If

is large enough, the norm cost will encourage the energy
of the solution to be spread out on , thus causing it to be
less sparse. Since the true is very sparse on ( is small
compared to the support size also), we will end up with a larger

1In either case, one can assume that �� � ��� is supported on � and the
“noise” is � � � �� � �� �. Thus, CS-residual error can be bounded by
���������� � �� �� � �� �� � while CS-mod-residual error can be
bounded by �� � �� � ���� ������� � �� �� � �� �� �.

Fig. 3. Plot of Fig. 2(a) extended all the way to � � (which is the same as

� � � ). Notice that if �� � � �, then the point � � of reg-mod-BPDN
(or of mod-BPDN) is the same as BPDN. But in our plot, �� � � 	 and hence
the two points are different, even though the errors are quite similar.

Fig. 4. Reconstructing a 32� 32 block of the actual (compressible) larynx se-
quence from partial Fourier measurements. Measurements � � �	�

 for
� � � and � � �	��
 for � � �. Reg-mod-BPDN has the smallest recon-
struction error among all methods.

recovery error2. [see Fig. 2(a)]. However, if we compare the two
approaches for compressible signal sequences, e.g., the larynx
sequence, it is difficult to say which will be better [see Fig. 4].

Finally, one may solve the following (we can call it
reg-BPDN):

(14)

This has two limitations. (1) Like CS-residual, this also does
not use the fact that when is an accurate estimate of the true
support, is much more sparse compared with the full

. (2) Its last term is the same as that of reg-mod-BPDN-var
which also causes the same problem as above.

C. Paper Organization

We introduce reg-mod-BPDN in Section II. We obtain
computable bounds on its reconstruction error in Section III.

2In the limit if is much larger than  , we may get a completely nonsparse
solution.
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The simultaneous comparison of upper bounds of multiple
approaches becomes difficult because their results hold under
different sufficient conditions. In Section IV, we address this
issue by showing how to obtain a tighter error bound that also
holds without any sufficient conditions and is still computable.
In both sections, the bounds for mod-BPDN and BPDN follow
as direct corollaries. In Section V, the above result is used
for easy numerical comparisons between the upper bounds of
various approaches – reg-mod-BPDN, mod-BPDN, BPDN,
and LS-CS and for numerically evaluating tightness of the
bounds with both Gaussian measurements and partial Fourier
measurements. We also provide reconstruction error com-
parisons with CS-residual, LS-CS, KF-CS, CS-mod-residual,
mod-CS-residual, and reg-mod-BPDN-var, as well as with
weighted , mod-BPDN and BPDN for (a) static sparse
recovery from random-Gaussian measurements; and for (b)
recovering a larynx image sequence from simulated MRI
measurements. Conclusions are given in Section VI.

II. REG-MOD-BPDN

Consider the sparse recovery problem when partial support
knowledge is available. As explained earlier, one can use mod-
BPDN given in (8). When the support estimate is accurate, i.e.,

and are small, mod-BPDN provides accurate recovery
with fewer measurements than what BPDN needs. However, it
puts no cost on except the cost imposed by the data term. Thus,
when very few measurements are available or when the noise is
large, can become larger than required (in order to reduce the
data term). A similar, though lesser, bias will occur with weighted

also when . To address this, when reliable prior signal
value knowledge is available, we can instead solve

(15)

which we call reg-mod-BPDN. Its solution, denoted by , serves
as the reconstruction of the unknown signal, . Notice that the
first term helps to find the solution that is sparsest outside ,
the second term imposes the data constraint while the third term
imposes closeness to along .

Mod-BPDN is the special case of (15) when . BPDN is
also a special case with and (so that ).

A. Limitations and Assumptions

A limitation of adding the regularizing term, is
as follows. It encourages the solution to be close to which
is not zero. As a result, will also not be zero (except if is
very small) even though . Thus, even in the noise-free
case, reg-mod-BPDN will not achieve exact reconstruction. In
both noise-free and noisy cases, if is large, being
close to can result in large error. Thus, we need the as-
sumption that is small.

For the reason above, when we estimate the support of , we
need to use a nonzero threshold, i.e., compute

(16)

with a . We note that thresholding as above is done only for
support estimation and not for improving the actual reconstruc-
tion. Support estimation is required in dynamic reg-mod-BPDN
(described later) where we use the support estimate from the
previous time instant as the support knowledge for the cur-
rent time.

In summary, to get a small error reconstruction, reg-mod-
BPDN requires the following (this can also be seen from the
result of Theorem 1).

1) is a good estimate of the true signal’s support , i.e.,
and are small compared to ; and

2) is a good estimate of . For , this implies that
is close to zero (since for ).

3) For accurate support estimation, we also need that most
nonzero elements of are larger than (for
exact support estimation, we need this to hold for all
nonzero elements of ).

The smallest nonzero elements of are usually on the set .
In this case, the third assumption is equivalent to requiring that
most elements of are larger than .

B. Dynamic Reg-Mod-BPDN for Recursive Recovery

An important application of reg-mod-BPDN is for recursively
reconstructing a time sequence of sparse signals from under-
sampled measurements, e.g., for dynamic MRI. To do this, at
time we solve (15) with , and

. Here is the support estimate of the previous
reconstruction, . At the initial time, , we can ei-
ther initialize with BPDN, or with mod-BPDN using from
prior knowledge, e.g., for wavelet sparse images, could be the
set of indices of the approximation coefficients. We summarize
the stepwise dynamic reg-mod-BPDN approach in Algorithm 1.
Notice that at , one may need more measurements since
the prior knowledge of may not be very accurate. Hence, we
use where is an measurement ma-
trix with .

In Algorithm 1, we should reiterate that for support estima-
tion, we need to use a threshold . The threshold should
be large enough so that most elements of

do not get detected into the support.
We briefly discuss here the stability of dynamic reg-mod-

BPDN (reconstruction error and support estimation errors
bounded by a time-invariant and small value at all times). Using
an approach similar to that of [30], it should be possible to show
the following. If (i) is large enough (so that does not falsely
detect any element that got removed from ); (ii) the newly
added elements to the current support, , either get added at a
large enough value to get detected immediately, or within a finite
delay their magnitude becomes large enough to get detected; and
(iii) the matrix satisfies certain conditions (for a given support
size and support change size); reg-mod-BPDN will be stable.

Algorithm 1 Dynamic Reg-mod-BPDN
At , compute as the solution of

, where is
either empty or is available from prior knowledge.
Compute . Set

and For , do
1) Reg-Mod-BPDN. Let and let

. Compute as the solution of (15).
2) Estimate Support.

.
3) Output the reconstruction .

Feedback and ; increment , and go to step 1.
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III. BOUNDING THE RECONSTRUCTION ERROR

In this section, we bound the reconstruction error of reg-mod-
BPDN. Since mod-BPDN and BPDN are special cases, their
results follow as direct corollaries. The result for BPDN is the
same as [3, Theorem 8]. In Section III-A, we define the terms
needed to state our result. In Section III-B we state our result
and discuss its implications. In Section III-C, we give the proof
outline.

A. Definitions

We begin by defining the function that we want to minimize
as

(17)

where

(18)

contains the two norm terms (data fidelity term and the regu-
larization term). If we constrain to be supported on for
some , then the minimizer of will be the regular-
ized least squares (LS) estimator obtained when we put a weight

on and a weight zero on .
Let be a given subset of . Next, we define three matrices

which will be frequently used in our results. Let

(19)

(20)

(21)

where is a identity matrix and , , are
all zeros matrices with sizes , and .

Assumption 1: We assume that is invertible. This
implies that, for any , the functions and are
strictly convex over the set of all vectors supported on .

Proposition 1: When , is invertible if has
full rank. When (mod-BPDN), this will hold if has
full rank.

The proof is easy and is given in Appendix A.
Let . Consider minimizing over supported on

. When and Assumption 1 holds,
is strictly convex and thus has a unique minimizer. The same
holds for . Define their respective unique minimizers
as

(22)

(23)

As explained earlier, is the regularized LS estimate of
when assuming that is supported on and with the

weights aforementioned. It is easy to see that

(24)

In a fashion similar to [3], define

(25)

This is different from the ERC of [3] but simplifies to it when
, and . In [3], the ERC, which in our no-

tation is , being strictly positive, along with ap-
proaching zero, ensured exact recovery of BPDN in the noise-
free case. Hence, in [3], ERC was an acronym for Exact Re-
covery Coefficient. In this work, the same holds for mod-BPDN.
If , the solution of mod-BPDN approaches the
true as approaches zero. We explain this further in Remark
2. However, no similar claim can be made for reg-mod-BPDN.
On the other hand, for the reconstruction error bounds, ERC
serves the exact same purpose for reg-mod-BPDN as it does for
BPDN in [3]: and greater than a certain
lower bound ensures that the reg-mod-BPDN (or mod-BPDN)
error can be bounded by modifying the approach of [3].

B. Reconstruction Error Bound

The reconstruction error can be bounded as follows.
Theorem 1: If is invertible, and

(26)

then,
1) has a unique minimizer .
2) The minimizer is equal to , and thus is supported

on .
3) Its error can be bounded as

(27)

is defined in (21) and in (19).
Corollary 1 (Corollaries for Mod-BPDN and BPDN): The

result for mod-BPDN follows by setting in Theorem 1.
The result for BPDN follows by setting , (and so

). This result is the same as [3, Theorem 8].
Remark 1 (Smallest ): Notice that the error bound above

is an increasing function of . Thus gives the
smallest bound.

In words, Theorem 1 says that, if is invertible,
is positive, and is large enough (larger than ),

then has a unique minimizer, , and is supported on
. This means that the only wrong elements

that can possibly be part of the support of are elements of .
Moreover, the error between and the true is bounded by a
value that is small as long as the noise, , is small, the prior



188 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 1, JANUARY 2012

TABLE I
SUFFICIENT CONDITIONS AND NORMALIZED BOUNDS COMPARISON OF

REG-MOD-BPDN, MOD-BPDN AND BPDN. SIGNAL LENGTH � � ���,
SUPPORT SIZE �� � � ����, ��� � �	�� �, � � �	�� �, � � ��

AND � � �� . “NOT HOLD” MEANS THE ONE OR ALL OF THE SUFFICIENT

CONDITIONS DOES NOT HOLD

term, , is small and is small. By rewriting
and using Lemma 2

(given in the Appendix) one can upper bound by terms that
are increasing functions of and . Thus, as
long as these are small, the bound is small.

As shown in Proposition 1, is invertible if
and is full rank or if is full rank.

Next, we use the idea of [3, Corollary 10] to show that
is an Exact Recovery Coefficient for mod-BPDN.

Remark 2 (ERC and Exact Recovery of Mod-BPDN): For
mod-BPDN, is the LS estimate when is supported
on . Using (24), (1), and the fact that is supported on

, it is easy to see that in the noise-free ( )
case, . Hence the numerator of will
be zero. Thus, using Theorem 1, if , the mod-
BPDN error satisfies . Thus the mod-
BPDN solution, , will approach the true as approaches
zero. Moreover, as long as , at least the support

of will equal the true support, 3.
We show a numerical comparison of the results of reg-mod-

BPDN, mod-BPDN and BPDN in Table I (simulation details
given in Section V). Notice that BPDN needs 90% of the mea-
surements for its sufficient conditions to start holding (ERC to
become positive) whereas mod-BPDN only needs 19%. More-
over, even with 90% of the measurements, the ERC of BPDN
is just positive and very small. As a result, its error bound is
large (27% normalized mean squared error (NMSE)). Similarly,
notice that mod-BPDN needs for its sufficient
conditions to start holding ( to become full rank which
is needed for to be invertible). For reg-mod-BPDN
which only needs to be full rank, suffices.

Remark 3: A sufficient conditions comparison only provides
a comparison of when a given result can be applied to provide
a bound on the reconstruction error. In other words, it tells us
under what conditions we can guarantee that the reconstruc-
tion error of a given approach will be small (below a bound).
Of course this does not mean that we cannot get small error
even when the sufficient condition does not hold, e.g., in simu-
lations, BPDN provides a good reconstruction using much less
than 90% of the measurements. However, when we
cannot bound its reconstruction error using Theorem 1 above.

C. Proof Outline

To prove Theorem 1, we use the following approach moti-
vated by that of [3].

3If we bounded the � norm of the error as done in [3] we would get a looser
upper bound on the allowed �’s for this.

1) We first bound by simplifying the
necessary and sufficient condition for it to be the minimizer
of when is supported on . This is done in
Lemma 1 in Appendix B.

2) We bound using the expression for
in (24) and substituting

in it (recall that is zero outside ). This is done in
Lemma 2 in Appendix B.

3) We can bound using the above two bounds
and the triangle inequality.

4) We use an approach similar to [3, Lemma 6] to find the
sufficient conditions under which is also the un-
constrained unique minimizer of , i.e., .
This is done in Lemma 3 in Appendix B.

The last step (Lemma 3) helps prove the first two parts of The-
orem 1. Combining the above four steps, we get the third part
(error bound). We give the lemmas in Appendix B. They are
proved in Appendix D1, D2, and D3.

Two key differences in the above approach with respect to the
result of [3] are

• is the regularized LS estimate instead of the LS
estimate in [3]. This helps obtain a better and simpler error
bound of reg-mod-BPDN than when using the LS estimate.
Of course, when (mod-BPDN or BPDN),
is just the LS estimate again.

• For reg-mod-BPDN (and also for mod-BPDN), the sub-
gradient set of the term is and so
any in this set is zero on , and only has .
Since , this helps to get a tighter bound on

in step 1 above as compared to that
for BPDN [3] (see proof of Lemma 1 for details).

IV. TIGHTER BOUNDS WITHOUT SUFFICIENT CONDITIONS

The problem with the error bounds for reg-mod-BPDN, mod-
BPDN, BPDN, or LS-CS [31] is that they all hold under dif-
ferent sufficient conditions. This makes it difficult to compare
them. Moreover, the bound is particularly loose when is such
that the sufficient conditions just get satisfied. This is because
the ERC is just positive but very small (resulting in a very large

and hence a very large bound). To address this issue, in this
section, we obtain a bound that holds without any sufficient con-
ditions and that is also tighter, while still being computable. The
key idea that we use is as follows:

• we modify Theorem 1 to hold for “sparse-compressible”
signals [31], i.e., for sparse signals, , in which some
nonzero coefficients out of the set are small (“com-
pressible”) compared to the rest; and then

• we minimize the resulting bound over all allowed split-ups
of into non-compressible and compressible parts.

Let be such that the conditions of Theorem 1 hold for
it. Then the first step involves modifying Theorem 1 to bound the
error for reconstructing when we treat as the “compress-

ible” part. The main difference here is in bounding
which now has a larger bound because of . We do

this in Lemma 4 in the Appendix C. Notice from the proofs of
Lemma 1 and Lemma 3 in Appendix D1 and D3 that nothing in
their result changes if we replace by a . Combining
Lemma 4 with Lemmas 1 and 3 applied for instead of leads
to the following corollary.
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Corollary 2: Consider a . If is invertible,
, and , then

(28)

where

(29)

(30)

, , are defined in (27) and in (26).
Proof: The proof is given in Appendix C1.

In order to get a bound that depends only on ,
, the noise, , and the sets , we can further

bound by rewriting
and then bounding using Lemma 4. Doing

this gives the following corollary.
Corollary 3: If is invertible, , and

, then

(31)

where

(32)

, , , and are defined in (27) and (30), and
in (26).

Proof: The proof is given in Appendix C2.
Using the above corollary and minimizing over all allowed
’s, we get the following result.
Theorem 2: Let

(33)

where

is invertible
(34)

If , then
1) has a unique minimizer supported on .

2) The error bound is

(35)

( is defined in (26)).
Proof: This result follows by minimizing over all allowed

’s from Corollary 3.
Compare Theorem 2 with Theorem 1. Theorem 1 holds only

when the complete set belongs to , whereas Theorem 2 holds
always (we only need to set appropriately). Moreover, even
when does belong to , Theorem 1 gives the error bound by
choosing . However, Theorem 2 minimizes over all al-
lowed ’s, thus giving a tighter bound, especially for the case
when the sufficient conditions of Theorem 1 just get satisfied
and is positive but very small. A similar compar-
ison also holds for the mod-BPDN and BPDN results.

The problem with Theorem 2 is that its bound is not com-
putable (the computational cost is exponential in ). Notice
that can be rewritten as

(36)

Let . The minimization over is expensive since it
requires searching over all size subsets of to first find
which ones belong to and then find the minimum over all

. The total computation cost to do the former for all sets
is , i.e., it is exponential

in . This makes the bound computation intractable for large
problems.

A. Obtaining a Computable Bound

In most cases of practical interest, the term that has the max-
imum variability over different sets in is . The mul-
tipliers , , and vary very slightly for different sets in
a given . Using this fact, we can obtain the following upper
bound on which is only slightly looser and also
holds without sufficient conditions, but is computable in poly-
nomial time.

Define and as follows:

if
otherwise

(37)

Then, clearly

(38)

since for any and it is also
less than infinity. For any , the set can be obtained
by sorting the elements of in decreasing order of magnitude
and letting contain the indices of the largest elements.
Doing this takes time since sorting takes
time. Computation of requires matrix multiplications and in-
versions which are . Thus, the total cost of doing this is
at most which is still polynomial in .



190 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 1, JANUARY 2012

Fig. 5. (a) Compare the three bounds from Theorem 1, 2, and 3 for one realization of �. (b) and (c) Compare the normalized average bounds from Theorem 3
and reconstruction errors with random Gaussian and partial Fourier measurements, respectively. (a) � � �����, � � �� , � � �� . (b) � � �����,
� � �� , � � �� . (c) � � �����, � � �� , � � �� .

Therefore, we get the following bound that is computable in
polynomial time and that still holds without sufficient conditions
and is much tighter than Theorem 1.

Theorem 3: Let

(39)

where and are defined in (37). If ,
1) has a unique minimizer, , supported on .
2) The error bound is

(40)

( is defined in (26)).
Corollary 4 (Corollaries for Mod-BPDN and BPDN): The

result for mod-BPDN follows by setting in Theorem 3.
The result for BPDN follows by setting , (and so

) in Theorem 3.
When and are large enough, the above bound

is either only slightly larger, or often actually equal, to that
of Theorem 2 (e.g., in Fig. 5(a), ,

, ). The reason for the equality is that the
minimizing value of is the one that is small enough to en-
sure that are small. When is small, ,

and have very similar values for all sets of the
same size . In (32), the only term with significant variability
for different sets of the same size is . Thus, (a)

and (b) is equal to

. Thus, (38) holds with equality and so the
bounds from Theorems 3 and 2 are equal. As and ap-
proach infinity, it is possible to use a law of large numbers (LLN)
argument to prove that both bounds will be equal with high prob-
ability (w.h.p.). The key idea will be the same as above: show
that as , go to infinity, w.h.p., , , , , , and
are equal for all sets of any given size . We will develop this
result in future work.

V. NUMERICAL EXPERIMENTS

In this section, we show both upper bound comparisons and
actual reconstruction error comparisons. The upper bound com-

parison only tells us that the performance guarantees of reg-
mod-BPDN are better than those for the other methods. To ac-
tually demonstrate that reg-mod-BPDN outperforms the others,
we need to compare the actual reconstruction errors. This sec-
tion is organized as follows. After giving the simulation model
in Section V-A, we show the reconstruction error comparisons
for recovering simulated sparse signals from random Gaussian
measurements in Section V-B. In Section V-C, we show com-
parisons for recursive dynamic MRI reconstruction of a larynx
image sequence. In this comparison, we also show the useful-
ness of the Theorem 3 in helping us select a good value of . In
the last three subsections, we show numerical comparisons of
the results of the various theorems. The upper bound compar-
isons of Theorem 3 and the comparison of the corresponding re-
construction errors suggests that the bounds for reg-mod-BPDN
and BPDN are tight under the scenarios evaluated. Hence, they
can be used as a proxy to decide which algorithm to use when.
We show this for both random Gaussian and partial Fourier
measurements.

A. Simulation Model

The notation means that we generate each element
of the vector independently and each is either or with
probability 1/2. The notation means that is gen-
erated from a Gaussian distribution with mean 0 and covariance
matrix . We use to denote the largest integer less than or
equal to . Independent and identically distributed is abbrevi-
ated as i.i.d. Also, N-RMSE refers to the normalized root mean
squared error.

We use the recursive reconstruction application [14], [20] to
motivate the simulation model. In this case, assuming that slow
support and slow signal value change hold [see Fig. 1], we can
use the reconstructed value of the signal at the previous time
as and its support as . To simulate the effect of slow signal
value change, we let where is a small i.i.d.
Gaussian deviation and we let (and so

).
The extras set, , contains elements that got re-

moved from the support at the current time or at a few previous
times (but so far did not get removed from the support estimate).
In most practical applications, only small valued elements at the
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previous time get removed from the support and hence the mag-
nitude of on will be small. We use to denote this small
magnitude, i.e., we simulate .

The misses’ set at time , , definitely includes the elements
that just got added to the support at or the ones that previously
got added but did not get detected into the support estimate so
far. The new elements typically get added at a small value and
their value slowly increases to a large one. Thus, elements in

will either have small magnitude (corresponding to the cur-
rent newly added ones), or will have larger magnitude but still
smaller than that of elements already in . To simulate this,
we do the following. (a) We simulate the elements on to
have large magnitude, , i.e., we let . (b) We
split the set into two disjoint parts, and .
The set contains the small (e.g., newly added) elements,
i.e., . The set contains the larger elements,
though still with magnitudes smaller than those in , i.e.,

, where .
In summary, we use the following simulation model.

(41)

where

(42)

and

(43)

We generate the support of , , of size , uniformly at
random from . We generate with size and
with size uniformly at random from and from , re-

spectively. The set of size is generated uni-

formly at random from . The set . We let
. We generate and then using (42) and

(41). We generate using (43).
In some simulations, we simulated the more difficult case

where . In this case, all elements on were identi-
cally generated and hence we did not need .

B. Reconstruction Error Comparisons

In Fig. 2, we compare the Monte Carlo average of the re-
construction error of reg-mod-BPDN with that of mod-BPDN,
BPDN, weighted [15] given in (9), CS-residual given in (10),
CS-mod-residual given in (11) and modified-CS-residual[29]
given in (12). Simulation was done according to the model spec-
ified above. We used random Gaussian measurements in this
simulation, i.e., we generated as an matrix with i.i.d.
zero mean Gaussian entries and normalized each column to unit

norm.
We experimented with two choices of , (where

reg-mod-BPDN outperforms mod-BPDN) and
(where both are similar) and two values of ,
(good prior) and (bad prior). For the cases of

Fig. 2(a) ( , ) and Fig. 2(b) ( ,
), we used signal length , support size

and support extras size, .
The misses’ size, , was varied between 0 and (these
numbers were motivated by the medical imaging application,
we used larger numbers than what are shown in Fig. 1). We
used , and . The noise variance was

. For the last two figures, Fig. 2(c) ( ,
) and Fig. 2(d) ( , ), for which

was larger, we used which is a more difficult
case for reg-mod-BPDN. For Fig. 2(c), we also used a larger
noise variance . All other parameters were the same.

In Fig. 3, we show a plot of reg-mod-BPDN and BPDN from
Fig. 2(a) extended all the way to (which is the same

as ). Notice that if , then the point of
reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But
in this plot, and hence the two points are different,
even though the errors are quite similar.

For applications where some training data is available, and
for reg-mod-BPDN can be chosen by interpreting the reg-

mod-BPDN solution as the maximum a posteriori (MAP) esti-
mate under a certain prior signal model (assume is Gaussian
with mean and variance and is independent of and
is i.i.d. Laplacian with parameter ). This idea is explained in de-
tail in [14]. However, there is no easy way to do this for the other
methods. Alternatively, choosing and according to Theorem
3 gives another good start point. We can do this for mod-BPDN
and BPDN, but we cannot do this for the other methods (we
show examples using this approach later). For a fair error com-
parison, for each algorithm, we selected from a set of values

. We tried
all these values for a small number of simulations (10 simu-
lations) and then picked the best one (one with the smallest
N-RMSE) for each algorithm. For weighted reconstruction,
we also pick the best in (9) from the same set in the same
way4. For reg-mod-BPDN, should be larger when the signal
estimate is good and should be decreased when the signal esti-
mate is not so good. We can use to adaptively deter-

mine its value for different choices of and . In our simula-
tions, we used for Fig. 2(a), (b), and (d) and
for Fig. 2(c).

We fixed the chosen , and and did Monte Carlo av-
eraging over 100 simulations. We conclude the following. (1)
When the signal estimate is not good (Fig. 2(b), and (d)) or
when is small [Fig. 2(a), and (b)], CS-residual and CS-mod-
residual have significantly larger error than reg-mod-BPDN. (2)
In case of Fig. 2(d) ( ), they also have larger error
than mod-BPDN. (3) In all four cases, weighed and mod-
BPDN have similar performance. This is also similar to that of
reg-mod-BPDN in case of , but is much worse in
case of . (4) We also show a comparison with reg-
modBPDN-var in Fig. 2(a). Notice that it has larger errors than
reg-mod-BPDN for reasons explained in Section I-C.

4To give an example, our finally selected numbers for Fig. 2(d)
were � � ����� ��������������������������������������� for
BPDN, mod-BPDN, reg-mod-BPDN, weighted � , LS-CS, CS-residual,
CS-mod-residual, mod-CS-residual, respectively, and � � ������
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C. Dynamic MRI Application Using From Theorem 3

In Fig. 4, we show comparisons for simulated dynamic MR
imaging of an actual larynx image sequence [Fig. 1(a)(i)]. The
larynx image is not exactly sparse but is only compressible in the
wavelet domain. We used a two-level Daubechies-4 2D discrete
wavelet transform (DWT). The 99%-energy support size of its
wavelet transform vector, . Also,
and . We used a 32 32 block of this sequence
and at each time and simulated undersampled MRI, i.e., we se-
lected 2D discrete Fourier transform (DFT) coefficients using
the variable density sampling scheme of [32], and added i.i.d.
Gaussian noise with zero mean and variance to each of
them. Using a small 32 32 block allows easy implementation
using CVX (for full sized image sequences, one needs special-
ized code). We used at and at

.
We implemented dynamic reg-mod-BPDN as described in

Algorithm 1. In this problem, the matrix where
contains the selected rows of the 2D-DFT matrix and

is the inverse 2D-DWT matrix (for a two-level Daubechies-4
wavelet). Reg-mod-BPDN was compared with similarly im-
plemented reg-mod-BPDN-var and CS-residual algorithms
(CS-residual only solved simple BPDN at ). We also
compared with simple BPDN (BPDN done for each frame
separately). For reg-mod-BPDN and reg-mod-BPDN-var, the
support estimation threshold, , was chosen as suggested
in [14]: we used which is slightly larger than the
smallest magnitude element in the 99%-energy support which
is 15. At , we used to be the set of indices of the
wavelet approximation coefficients. To choose and we
tried two different things. (a) We used and from the set

to do
the reconstruction for a short training sequence (5 frames), and
used the average error to pick the best and . We call the
resulting reconstruction error plot reg-mod-BPDN-opt. (b) We
computed the average of the obtained from Theorem 3 for
the 5-frame training sequence and used this as for the test
sequence. We selected from the above set by choosing the one
that minimizes the average of the bound of Theorem 3 for the
5 frames. We call the resulting error plot reg-mod-BPDN- .
The same two things were also done for BPDN and CS-residual
as well. For reg-mod-BPDN-var, we only did (a).

From Fig. 4, we can conclude the following. (1) Reg-mod-
BPDN significantly outperforms the other methods when using
so few measurements. (2) Reg-mod-BPDN-var and reg-mod-
BPDN have similar performance in this case. (3) The recon-
struction performance of reg-mod-BPDN using from The-
orem 3 is close to that of reg-mod-BPDN using the best chosen
from a large set. This indicates that Theorem 3 provides a good
way to select in practice.

D. Comparing the Result of Theorem 1

In Table I, we compare the result of Theorem 1 for reg-mod-
BPDN, mod-BPDN and BPDN. We used ,

, , , , and
. Also, and we varied . For each

experiment with a given , we did the following. We did 100
Monte Carlo simulations. Each time, we evaluated the sufficient

conditions for the bound of reg-mod-BPDN to hold. We say the
bound holds if all the sufficient conditions hold for at least 98
realizations. If this did not happen, we record not hold in Table I.

If this did happen, then we recorded where de-
notes the Monte Carlo average computed over those realizations
for which the sufficient conditions do hold. Here, “bound” refers
to the right hand side of (27) computed with
given in (26). An analogous procedure was followed for both
mod-BPDN and BPDN.

The comparisons are summarized in Table I.
For reg-mod-BPDN, we selected from the set

by picking the one that gave the smallest bound. Clearly the
reg-mod-BPDN result holds with the smallest , while the
BPDN result needs a very large ( ). Also even with

, the BPDN error bound is very large.

E. Comparing Theorems 1, 2, 3

In Fig. 5(a), we compare the results from Theorems 1, 2, and
3 for one simulation. We plot for ranging from 0
to 0.2. Also, we used , , ,

, and . Also,
and . We used given in the respective the-
orems, and we set . We notice the following. (1) The
bound of Theorem 1 is much larger than that of Theorem 2 or 3,
even for . (2) For larger values of , the suffi-
cient conditions of Theorem 1 do not hold and hence it does not
provide a bound at all. (3) For reasons explained in Section IV,
in this case, the bound of Theorem 3 is equal to that of Theorem
2. Recall that the computational complexity of the bound from
Theorem 2 is exponential in . However if is small, e.g.,
in our simulations , this is still doable.

F. Upper Bound Comparisons Using Theorem 3

In Fig. 5(b), we do two things. (1) We compare the reconstruc-
tion error bounds from Theorem 3 for reg-mod-BPDN, mod-
BPDN and BPDN and compare them with the bounds for LS-CS
error given in [31, Corollary 1]. All bounds hold without any
sufficient conditions which is what makes this comparison pos-
sible. (2) We also use the given by Theorem 3 to obtain the re-
constructions and compute the Monte Carlo averaged N-RMSE.
Comparing this with the Monte Carlo averaged upper bound on

the N-RMSE, , allows us to evaluate the tightness of
a bound. Here denotes the mean computed over 100 Monte
Carlo simulations and “bound” refers to the right hand side of
(40). We used , , , ,

, , and was varied from 0 to .
Also, and .

From the figure, we can observe the following. (1)
Reg-mod-BPDN has much smaller bounds than those of
mod-BPDN, BPDN and LS-CS. The differences between
reg-mod-BPDN and mod-BPDN bounds is minor when
is small but increases as increases. (2) The conclusions
from the reconstruction error comparisons are similar to those
seen from the bound comparisons, indicating that the bound
can serve as a useful proxy to decide which algorithm to use
when (notice bound computation is much faster than com-
puting the reconstruction error). (3) Also, reg-mod-BPDN and
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mod-BPDN bounds are quite tight as compared to the LS-CS
bound. BPDN bound and error are both 100%. 100% error is
seen because the reconstruction is the all zeros’ vector.

In Fig. 5(c), we did a similar set of experiments for the case
where corresponds to a simulated MRI experiment, i.e.,

where contains randomly selected rows of the
2D-DFT matrix and is the inverse 2D-DWT matrix (for a
two-level Daubechies-4 wavelet). We used and

. All other parameters were the same as in Fig. 5(b).
Our conclusions are also the same.

The complexity for Theorem 3 is polynomial in whereas
that of the LS-CS bound [31, Corollary 1] is exponential in .
To also show comparison with the LS-CS bound, we had to
choose a small value of so that the maximum value
of was small enough. In terms of MATLAB
time, computation of the Theorem 3 bound for reg-mod-BPDN
took 0.2 seconds while computing the LS-CS bound took 1.2
seconds. For all methods except LS-CS, we were able to do the
same thing fairly quickly even for , or even larger.
It took only 8 seconds to compute the bound of Theorem 3
when , , and

.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of sparse reconstruc-
tion from noisy undersampled measurements when partial and
partly erroneous, knowledge of the signal’s support and an
erroneous estimate of the signal values on the “partly known
support” is also available. Denote the support knowledge by
and the signal value estimate on by . We proposed and
studied a solution called regularized modified-BPDN which
tries to find the signal that is sparsest outside , while being
“close enough” to on , and while satisfying the data
constraint. We showed how to obtain computable error bounds
that hold without any sufficient conditions. This made it easy
to compare bounds for the various approaches (corresponding
results for modified-BPDN and BPDN follow as direct corol-
laries). Empirical error comparisons with these and many other
existing approaches are also provided.

In ongoing work, we are evaluating the utility of reg-mod-
BPDN for recursive functional MR imaging to detect brain ac-
tivation patterns in response to stimuli [33]. On the other end, we
are also working on obtaining conditions under which it will re-
main “stable” (its error will be bounded by a time-invariant and
small value) for a recursive recovery problem. In [30], this has
been done for the constrained version of reg-mod-BPDN. That
result uses the restricted isometry constants (RIC) and the re-
stricted orthogonality constants (ROC) [11], [17] in its sufficient
conditions and bounds. However, this means that the conditions
and bounds are not computable. Also, since the stability holds

under a different set of sufficient conditions and has a different
error bound than that for mod-CS [34] or LS-CS [20] or CS [11],
comparison of the various results is difficult. An open question
is how to extend the results of the current work (which are com-
putable) to show the stability of unconstrained reg-mod-BPDN.

APPENDIX

A. Proof of Proposition 1

When , . Thus, is
invertible iff is full rank. When , is as
defined in (19). Apply block matrix inversion lemma [see the
equation at the bottom of the page], with ,

, and , clearly
is invertible iff and are invertible where

. When is full rank, (i)
is full rank; and (ii) is a projection matrix. Thus
and so is positive semi-definite. As
a result, is positive definite and thus invertible.
Hence, when is invertible, is also invertible.

B. Proof of Theorem 1

In this subsection, we give the three lemmas for the proof of
Theorem 1. To keep notation simple we remove the subscripts

from , , , , , in this and
other Appendices.

Lemma 1: Suppose that is invertible, then

(44)

Lemma 1 can be obtained by setting and then
using block matrix inversion on . The proof of Lemma 1
is in Appendix D1. Next, can be bounded using
the following lemma.

Lemma 2: Suppose that is invertible. Then

(45)

The proof of Lemma 2 is in Appendix D2.
Lemma 3: If is invertible, , and

, then has a unique minimizer which is equal to
.

Lemma 3 can be obtained in a fashion similar to [1], [3]. Its
proof is given in Appendix D3.

Combining Lemmas 1, 2 and 3, and using the fact
, we get Theorem 1.

C. Proof of Theorem 2

The following lemma is needed for the proof of the corollaries
leading to Theorem 2.
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Lemma 4: Suppose that is invertible. Then

(46)

Since is only supported on and
, the last term of (46) can be obtained by

separating out. The proof of Lemma 4 is given in
Appendix D4.

Using Lemma 4, we can obtain Corollary 1 and then Corol-
lary 2. Then minimize over all allowed ’s in Corollary 2, we
get Theorem 2. The proof of Corollary 1 and 2 are given as
follows.

Proof of Corollary 1: Notice from the proof of Lemma 1
and Lemma 3 that nothing in the result changes if we replace

by a . By Lemma 1 for , we are able to bound
. Hence, we get the first term of (29). Next, in-

voke Lemma 4 to bound and we can obtain the rest
three terms of (29). Lemma 3 for gives the sufficient condi-
tions under which is the unique unconstrained minimizer
of .

Proof of Corollary 2: Corollary 2 is obtained by bounding

. can be bounded by

rewriting and
then bounding using
Lemma 4. Doing this, we get

Using the above inequality to bound and replacing in
, given in (29), by this bound, we can get (31).

D. Proof of Lemmas 1, 2, 3, 4

Proof of Lemma 1: We use the approach of [3, Lemma 3].
We can minimize the function over all vectors supported
on set by minimizing:

(47)

Since is invertible, is strictly convex as a function of
. Then at the unique minimizer, , .

Let denote the subgradient set of at
. Then clearly any in this set satisfies

(48)

(49)

Now, implies that

(50)

Simplifying the above equation, we get

(51)

Therefore, using (48) and (24), we have

(52)

Since

(53)

using the block matrix inversion lemma (see the equation at the
bottom of the page) with , ,

and and using , we obtain

Since , the bound of (44) follows.
Proof of Lemma 2: Recall is given in (24).

Since both and are zero outside , then
. With

and , we have

(54)

Notice . Using (54),

we obtain the following equation

(55)

Then, using (24) we can obtain

Finally, this gives (45).
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Proof of Lemma 3: The proof is similar to that in [3] and
[1]. Recall that minimizes the function over all
supported on . We need to show that if , then

is the unique global minimizer of .
The idea is to prove under the given condition, any small

perturbation on will increase function ,i.e.,
for small enough.

Then since is a convex function, will be the unique
global minimizer[3].

Similar to [1], we first split the perturbation into two parts
where is supported on and is supported

on . Clearly . We consider the case
since the case is already covered in Lemma 1. Then

Then, we can obtain

Since minimizes over all vectors supported on ,
. Then since

and , we need to prove that the rest
are positive,i.e.,

. Instead, we can prove this by proving a stronger condition
. Since

and is supported on
,

Thus,

Meanwhile,

(56)

And since is supported on .
Then what we need to prove is

(57)

Since we can select as small as possible, then we just need
to show

(58)

Since ,
and by Lemma 1 we know

and since , we
conclude that is the unique global minimizer if

(59)

Next, we will show that is also the unique global mini-
mizer under the following condition

(60)

Since the perturbation , then or . Therefore,
we will discuss the following three cases.

1) . In this case, we know
since is the unique minimizer over all vectors sup-
ported on . Therefore,
if (60) holds.

2) , and is not in the null space of , i.e.,
. In this case, we know . Hence,

when (60) holds.
3) , and . In this case,

. Thus,
if . Clearly, when (60)
holds.

Finally, combining (59) and (60), we can conclude that is
the unique global minimizer if the following condition holds

(61)

Proof of Lemma 4: Consider a such that
has full rank. Since

, expanding these terms we have

(62)

Then, using this in the expression for from (24), we get

(63)

Therefore, we get (46).
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