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Abstract

In this chapter, we describe our recent work on the design andanalysis of recursive algorithms for causally reconstructing a
time sequence of (approximately) sparse signals from a greatly reduced number of linear projection measurements. The signals
are sparse in some transform domain referred to as the sparsity basis and their sparsity patterns (support set of the sparsity basis
coefficients) can change with time. By “recursive”, we mean use only the previous signal’s estimate and the current measurements
to get the current signal’s estimate. We also briefly summarize our exact reconstruction results for the noise-free caseand our
error bounds and error stability results (conditions underwhich a time-invariant and small bound on the reconstruction error holds
at all times) for the noisy case. Connections with related work are also discussed.

A key example application where the above problem occurs is dynamic magnetic resonance imaging (MRI) for real-time
medical applications such as interventional radiology andMRI-guided surgery, or in functional MRI to track brain activation
changes. Cross-sectional images of the brain, heart, larynx or other human organ images are piecewise smooth, and thus
approximately sparse in the wavelet domain. In a time sequence, their sparsity pattern changes with time, but quite slowly.
The same is also often true for the nonzero signal values. This simple fact, which was first observed in our work, is the key reason
that our proposed recursive algorithms can achieve provably exact or accurate reconstruction from very few measurements.

I. I NTRODUCTION

In this chapter, we describe our recent work on the design andanalysis of recursive algorithms for causally reconstructing a
time sequence of (approximately) sparse signals from a greatly reduced number of linear projection measurements. The signals
are sparse in some transform domain referred to as the sparsity basis and their sparsity patterns (support set of the sparsity
basis coefficients) can change with time. The most importantexample of the above problem occurs in dynamic magnetic
resonance imaging (MRI) for real-time medical applications such as interventional radiology, MR image guided surgery, or
functional MRI to track brain activation changes. MRI is a technique for cross-sectional imaging that sequentially captures
the 2D Fourier projections of the cross-section to be reconstructed. Cross-sectional images of the brain, heart, larynx or other
human organ images are usually piecewise smooth, e.g. see Fig. 1, and thus approximately sparse in the wavelet domain. In
a time sequence, the sparsity pattern changes with time, butslowly. Often, the signal values also change gradually overtime.
We demonstrate this for a larynx and a cardiac MRI sequence inFig. 1.

Since MR data acquisition is sequential, the ability to accurately reconstruct with fewer measurements directly translates to
reduced scan times. Shorter scan times along with online (causal) and fast (recursive) reconstruction allow the possibility of
real-time imaging of fast changing physiological phenomena. Other example applications where real-time imaging is needed
include real-time single-pixel video imaging [1], real-time video compression/decompression, real-time sensor network based
sensing of time-varying fields [2], or real-time extractionof the foreground image sequence (sparse image) from a slow changing
background image sequence (well modeled as lying in a low-dimensional space [3]) using recursive projected compressive
sensing (CS) [4], [5]. For other potential applications, see [6], [7].

Since the recent introduction of compressive sensing (CS) [8], [9], [10], the static sparse reconstruction problem hasbeen
thoroughly studied. However most existing algorithms for the dynamic problem just use CS to jointly reconstruct the entire
time sequence in one go [11], [12], [13]. This is an offline andbatch solution with very high complexity. The alternative -
doing CS at each time separately (simple CS) - is online and fast but requires many more measurements. The question then
is: for a time sequence of sparse signals, how can we obtain a recursive solution that improves the accuracy of simple CS by
using past observations, and does this while keeping the computational complexity only as much as that of simple CS (and
thus much lower than that of the batch methods)? In particular, how can we use slow or correlated sparsity pattern change,
and in certain cases also slow signal value change, to do this? By “recursive” , we mean a solution that uses only the previous
signal estimate and the current observation vector at the current time.

This problem was first studied in [14] which proposed a solution called Kalman Filtered Compressed Sensing (KF-CS). In
later work, a simpler special case of KF-CS, called Least Squares CS-residual (LS-CS) was analyzed in detail [15]; and more
powerful approaches such as Modified-CS [16], [17], Modified-CS-residual [18], [19] and regularized modified-CS [20], [21]
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were introduced. Performance guarantees – exact recovery conditions in the noise-free case [16], [17], [21] and time-invariant
error bounds (stability) in the noisy case [15], [22] – were also obtained. We describe all of these ideas in the next few
sections. We first begin by providing a short background on sparse recovery and compressed sensing, followed by giving a
formal problem definition for our problem and discussing related work.

II. N OTATION AND SPARSERECOVERY BACKGROUND

A. Notation

We useT c to denote the complement ofT w.r.t. [1,m] := [1, 2, . . .m], i.e. T c := {i ∈ [1,m] : i /∈ T }. The notation|T |
denotes the size (cardinality) of the setT . The set operations∪, ∩, and\ have the usual meanings.

For a vector,v, and a set,T , vT denotes the|T | length sub-vector containing the elements ofv corresponding to the indices
in the setT . Also, ‖v‖k denotes thèk norm of a vectorv. Whenk = 0, ‖v‖0 counts the number of nonzero elements in the
vectorv. If just ‖v‖ is used, it refers to‖v‖2.

For a matrixM , ‖M‖k denotes its inducedk-norm, while just‖M‖ refers to‖M‖2. M ′ denotes the transpose ofM and
M † denotes its Moore-Penrose pseudo-inverse. For a tall matrix, M , M † := (M ′M)−1M ′. For a fat matrixA, AT denotes
the sub-matrix obtained by extracting the columns ofA corresponding to the indices inT .

The restricted isometry constant (RIC) [10],δS , for a matrixA, is the smallest real number satisfying

(1− δS)‖c‖2 ≤ ‖AT c‖2 ≤ (1 + δS)‖c‖2 (1)

for all subsetsT ⊆ [1,m] of cardinality|T | ≤ S and all real vectorsc of length|T |. It is easy to see that‖AT
′AT ‖ ≤ (1+δS),

‖(AT
′AT )

−1‖ ≤ 1/(1− δS) and‖AT
†‖ ≤ 1/

√

(1 − δS).
The restricted orthogonality constant (ROC) [10],θS,S′ , for a matrixA, is the smallest real number satisfying

|c1′AT1

′AT2
c2| ≤ θS,S′ ‖c1‖ ‖c2‖ (2)

for all disjoint setsT1, T2 ⊆ [1,m] with |T1| ≤ S, |T2| ≤ S′, S + S′ ≤ m, and for all vectorsc1, c2 of length |T1|, |T2|.

B. Background on Sparse Recovery

The sparse recovery problem has been studied for a very long time, e.g. see [23], [24], [25]. The goal in sparse recovery, or
what is now interchangeably referred to as compressive sensing (CS), is to recover a sparse signal from a reduced number of
its linear projection measurements. To be precise, we wouldlike to recover anm length sparse vector,x, with support size,
s, from y := Ax, or, in the noisy case, fromy := Ax+ w, whenA is a fat matrix (a matrix with more columns than rows).
Consider the noise-free case. The sparse recovery problem is solved if we can find the sparsest vectorb among all vectors
satisfyingy = Ab, i.e. if we can solve

min
b

‖b‖0 s.t. y = Ab

and if A is such that every set of2s columns ofA are linearly independent [24], [10]. Finding the sparsest vector requires a
combinatorial search and thus has complexity of the order ofms [10]. The exponential complexity ins makes it impractical
to directly solve this for any reasonable sized problem. Practical (polynomial complexity) approaches to this probleminclude
(i) `1 minimization methods (replace thè0 norm by the`1 norm which is the closest norm tò0 that makes the problem
convex) such as basis pursuit [24] and its noisy relaxations– basis pursuit denoising (BPDN) [24], [26], [27], Dantzig selector
[28] and others; (ii) greedy methods such as matching pursuit [23], orthogonal matching pursuit [29] and many other recent
works [30], [31]; and (iii) various other more recent approaches. While these approaches have been proposed and used since
the 1990s, the recent work on compressed sensing provided strong performance guarantees for them: exact recovery conditions
[8], [9], [10] and bounds on reconstruction error when exactrecovery is not possible [26], [28], [27].

III. PROBLEM DEFINITION, CHAPTER ORGANIZATION AND RELATED WORK

A. Problem Definition and Chapter Organization

The recursive reconstruction problem explained here was first introduced in the ICIP 2008 paper on Kalman filtered
compressed sensing (KF-CS) [14]. Let(zt)m×1 denote the spatial signal at timet and (yt)n×1, with n < m, denote its
noise-corrupted measurements’ vector att, i.e. yt = Hzt + wt wherewt is measurement noise andH is the measurement
matrix. The signal,zt, is sparse in a given sparsity basis (e.g. wavelet) with orthonormal basis matrix,Φm×m, i.e. xt := Φ′zt
is a sparse vector. Thus the observation model can be writtenas

yt = Axt + wt, A := HΦ (3)

We assume thatA has unit norm columns. We study both the noise-free case, i.e. wt = 0, and the bounded noise case, i.e.
‖wt‖2 ≤ ε. We useNt to denote the support ofxt, i.e.

Nt := supp(xt) = {i : (xt)i 6= 0}.
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The goal is to recursively estimatext (or equivalently the signal,zt = Φxt) using y1, . . . yt. By recursively, we mean, use
only yt and the estimate fromt− 1, x̂t−1, to compute the estimate att. This is done under one or both of the following two
assumptions.

1) Slow Support Change.The support additions,|Nt \Nt−1| ≤ Sa � |Nt| and the removals,|Nt−1 \Nt| ≤ Sa � |Nt| at
all times t. This assumption is verified for MRI sequences in Fig. 1.

2) Slow Signal Value Change.The magnitude of the nonzero signal values also changes slowly with time, i.e. ‖(xt −
xt−1)Nt

‖2 � ‖(xt)Nt
‖2. This assumption is also verified in Fig. 1.

Consider first the class of problems for which only the first assumption holds. Under this assumption, the above problem
can be reformulated as one of sparse recovery in the presenceof partial support knowledge. We can use the support estimate
obtained from the previous time instant,N̂t−1, as the “partial support knowledge”. We describe this problem and the proposed
solutions for it in Sec. IV. If both assumptions hold, the above problem can be reformulated as one of sparse recovery with
partial support and signal value knowledge. This is discussed in Sec. V. Performance guarantees (exact reconstructionresults,
error bounds, and conditions for time-invariant error bounds) are briefly discussed in Sec. VI and some interesting experimental
results are shown in Sec. VII. Conclusions are given in Sec. VIII.

B. Related Work

The recursive reconstruction problem was first studied in [14]. Before this, the only works that dealt with time sequences
of sparse signals were batch methods [11], [12], [13].

A modification of KF-CS was introduced in [32]. Recent work onBayesian or other model-based approaches to recursive
sparse estimation with time-varying supports includes [33], [34], [35], [36], [37]. The work of [13] gives an approximate batch
solution for dynamic MRI that is quite fast, but is offline. Related work on model-based and Bayesian approaches for a single
signal includes [38], [39], [40], [41], [42], [43], [44].

The problem of sparse reconstruction with partial knowledge of the support was simultaneously addressed in [16], [17] and
in [45], [46], [47]. The work of [46] obtains exact recovery thresholds for weighted̀1, similar to those in [48], for the case
when a probabilistic prior on the signal support is available. Some later work motivated by modified-CS includes modified
OMP [49], modified CoSaMP [50], modified block CS [51], error bounds on modified BPDN [52], [22], [53], [20], better
conditions for modified-CS based exact recovery [54], and exact support recovery conditions for multiple measurement vectors
(MMV) based recursive recovery [33].

There is other recent work that may also be referred to as recursive sparse reconstruction, but whose goals are quite different
from the problem that we discuss in this chapter. This includes (i) homotopy methods, e.g. [55], [56], whose goal is to only
speed up the optimization algorithm using homotopy or warm starts and the previous reconstructed signal, but not to reduce
the number of measurements required; (ii) [57], [55], [58],[59] which reconstruct a single signal from sequentially arriving
measurements; and (iii) [60], [61], [62], which iteratively improve support estimation for a single sparse signal. Another recent
work [63] proposes causal but batch methods. This can be interpreted as a causal approach to solve the multiple measurements’
vector (MMV) problem.

We should note that none of the above works obtain conditionsunder which a time-invariant bound on the reconstruction
error (i.e. stability) holds. Except [46] and [62], none of these obtain exact reconstruction conditions either.

IV. SPARSERECOVERY WITH PARTIAL SUPPORT KNOWLEDGE

This problem was first formulated in [16], [17]. The goal is torecover a sparse vector,x, with support setN , either from
noise-free undersampled measurements,y := Ax, or from noisy measurements,y := Ax + w, when partial and possibly
erroneous support knowledge,T , is available. The true supportN can be rewritten as

N = T ∪∆ \∆e where ∆ := N \ T, ∆e := T \N

It is easy to see that

|N | = |T |+ |∆| − |∆e|

Here we refer to the set∆ as themissesin the support knowledge and the set∆e is the extras in it. We say thesupport
knowledge is accurate if|∆| � |N | and |∆e| � |N |.

Least Squares CS-residual (LS-CS) introduced in [64], [15]can be interpreted as the first solution to the above problem.
We describe this next. The first solution that gives exact recovery under weaker conditions (using fewer measurements) than
what simple CS needs was Modified-CS [16], [17]. We explain this in Sec. IV-B. For using either LS-CS or modified-CS for
recursive reconstruction, we use the support estimate fromthe previous time instant as the partial knowledge setT . Support
estimation approaches are discussed in Sec. IV-C and LS-CS or modified-CS for recursive reconstruction is given in Sec. IV-D.
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(i) a larynx (vocal tract) image sequence (ii) cardiac imagesequence
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Fig. 1. In (a), we show two MRI image sequences (a cardiac and a larynxsequence). In (b),xt is the two-level Daubechies-4 2D discrete
wavelet transform (DWT) of the cardiac or the larynx image attime t and the setNt is its 99% energy support (the smallest set containing
99% of the vector’s energy). The support size was between 6-7% of the image size. In (c) we plot signal value change. As can be seen from
the plots, all support changes (both additions and removals) are less than 2% of the support size. Also, almost all signalvalue changes are
are less than 4% of‖(xt)Nt‖2.

Algorithm 1 Dynamic LS-CS: LS-CS for recursive reconstruction

Simple CS.At t = 0, setT = ∅ and computêx0 as the solution ofminb ‖b‖1 s.t. ‖y −Ab‖2 ≤ ε
For t > 0, do

1) SetT = N̂t−1.
2) Initial LS.

a) Compute the initial LS estimate(x̂t,init)T = (AT
′AT )

−1AT
′yt, (x̂t,init)T c = 0

3) CS-residual.

a) Compute the observation residual,ỹt = yt −Ax̂t,init

b) Solve thè 1 problem for the residual, i.e. computêβt as the solution ofminb ‖b‖1 s.t. ‖ỹt −Ab‖2 ≤ ε
c) Computex̂t = x̂t,init + β̂t

4) Support Estimation via Add-LS-Del.

Tadd=T ∪ {i ∈ T c : |(x̂t)i| > αadd}
(x̂add)Tadd =ATadd

†yt, (x̂add)T c
add

= 0

N̂t =Tadd\ {i ∈ T : |(x̂add)i| ≤ αdel} (4)

5) Final LS Estimate.

(x̂t,final)N̂t
=A

N̂t

†yt, (x̂t,final)N̂c
t
= 0 (5)

A. Least Squares CS-residual (LS-CS)

The key idea of LS-CS is as follows [64], [15]. UsingT as the support set, compute an initial estimate ofx by computing
an LS estimate onT and setting all other elements to zero, i.e. compute

(x̂init)T = (AT
′AT )

−1AT
′yt, (x̂init)T c = 0 (6)

Compute the observation residual,ỹ,

ỹ = y −Ax̂init (7)

followed by solving thè 1 minimization problem for this residual, i.e. computeβ̂ as the solution of

argmin
b

‖b‖1 s.t. ‖ỹ −Ab‖2 ≤ ε (8)

Then, the estimate ofx is computed as

x̂ = x̂init + β̂. (9)
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Algorithm 2 Dynamic Modified-CS: Modified-CS for recursive reconstruction

1) In Algorithm 1, replace steps 2 and 8 by the followingModified-CS step.

a) Computêxt as the solution ofminb ‖bT c‖1 s.t. ‖yt −Ab‖2 ≤ ε.

This is followed by support estimation and computing a final LS estimate on the estimated support as described in Sec IV-C.
Notice that, the signal residual,β := x− x̂init , is supported onT ∪∆ and satisfies

βT =(AT
′AT )

−1AT
′(A∆x∆ + w), ‖βT‖2 ≤ θ|T |,|∆|

1− δ|T |
‖x∆‖2 +

1
√

1− δ|T |
ε

βT c = x∆

If |∆| is small enough,θ is small. If |∆e| is small enough,|T | ≤ |N |+ |∆e| is not too large and so1/(1− δ|T |) is only a little
more than one. Finally if the noise is also small, the above implies that‖βT ‖2 � ‖x∆‖2. Thus, ifT is a good estimate of the
true support,N ; the measurement matrixA is incoherent enough; and the noise is small enough; thenβ is small on the setT .
Or, in other words,β is approximately supported only on∆. SinceT is a good estimate of the true support,|∆| � |N | and so
the `1 problem that we need to solve in this case is much easier than in case of simple CS. As a result, it is possible to show
that LS-CS results in small reconstruction error using muchfewer measurements than what simple CS needs [15, Theorem 1].
We summarize LS-CS for recursive reconstruction in Algorithm 1.

However, notice that the exact sparsity size (total number of nonzero components) of the signal residual,β, is |T | + |∆|
and this is equal to or larger than that of the signal,|N |. Since the number of measurements required for exact reconstruction
is governed by the exact sparsity size, LS-CS is not able to achieve exact reconstruction using fewer noiseless measurements
than those needed by simple CS. The search for such a solutionled us to our next and more powerful idea called Modified-CS.

B. Modified-CS

The key idea of Modified-CS is as follows [16], [17]. Suppose first that∆e is empty, i.e.N = T ∪∆. Thus, the sparse
recovery problem now becomes one of trying to find the sparsest vector whose support containsT among all vectors that
satisfy the data constraint. Or in other words, we would liketo find the vector that is sparsest outside the setT among all
vectors that satisfy the data constraint. In the noise-freecase, this can be written as

min
b

‖bT c‖0 s.t. y = Ab

The above also works if∆e is not empty. It is easy to show that it can exactly recoverx if w = 0 (noise-free case) and if
every set of|T | + 2|∆| = |N | + |∆| + |∆e| columns ofA are linearly independent [17, Proposition 1]. In comparison, the
original `0 problem given in Sec. II-B requires every set of2|N | columns ofA to be linearly independent [10]. This is much
stronger when|∆| ≈ |∆e| � |N |.

The abovè 0 problem also has exponential complexity, and hence as in case of CS, we replace it by thè1 problem (̀ 1
norm is the closest norm tò0 that makes the optimization problem convex). Thus,modified-CSsolves

min
b

‖bT c‖1 s.t. y = Ab (10)

and we denote its solution bŷx. Once again, this works, and can provably achieve exact recovery, even when∆e is not empty.
We give the exact recovery conditions in Sec VI-A. For noisy measurements, one can relax the data constraint as follows.

min
b

‖bT c‖1 s.t. ‖y −Ab‖2 ≤ ε (11)

We summarize modified-CS for recursive reconstruction in Algorithm 2. In practice, for large scale problems, one alwaysadds
the data term as a soft constraint and solves the following unconstrained problem (which is less expensive to solve and does
not require knowledge of the noise bound). We refer to this asmodified-BPDN [53], [20].

min
b

γ‖bT c‖1 + 0.5‖y −Ab‖22 (12)

C. Support Estimation: thresholding and add-LS-del

In order to use either LS-CS or modified-CS for recursive reconstruction, we use the support estimate from the previous time
as the setT . Thus, we need to estimate the support of the signal at each time. The simplest way to do this is by thresholding,
i.e. we compute

N̂ = {i : |(x̂)i| > α}
whereα ≥ 0 is the zeroing threshold. In cases of exact reconstruction,i.e. if x̂ = x, we can useα = 0. In other situations,
we need a nonzero value. In cases of very accurate reconstruction, we can setα to be slightly smaller than the magnitude of
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the smallest nonzero element ofx (assuming its rough estimate is available) [17]. This will ensure close to zero misses and
few false additions. In general,α should depend on both the noise level and the magnitude of thesmallest nonzero element
of x. For compressible signals, one should do the above but with “support” replaced by theb%-energy support. For a given
number of measurements,b can be chosen to be the largest value so that all elements of the b%-energy support can be exactly
reconstructed [17].

Single step thresholding as above means that the threshold,α, needs to be large enough to ensure that most missed elements
from T are correctly deleted while ensuring that there are few false detections. However, notice that, in both modified-CS and
LS-CS, x̂ is a biased estimate ofx. Consider modified-CS. Along∆ ⊂ T c, the values of̂x are biased towards zero (because
we minimize‖(β)T c‖1), while, along∆e ⊂ T , they may be biased away from zero (since there is no constraint on (β)T ).
The same also happens for LS-CS although the reasoning is a bit different [15, Sec II-A]. Since the estimates along∆ are
biased towards zero, one needs a smaller threshold to detectthem, whereas, since those along∆e may be biased away from
zero, one may need a higher threshold to delete them. One partial solution to this problem is to use the following three step
Add-LS-Del approach:

Tadd=T ∪ {i : |(x̂)i| > αadd} (13)

(x̂add)Tadd =ATadd
†y, (x̂add)T c

add
= 0 (14)

N̂ =Tadd\ {i : |(x̂add)i| ≤ αdel} (15)

The above add-LS-del procedure involves a support additionstep, that uses a smaller threshold,αadd, as in (13); followed by
LS estimation on the new support estimate,Tadd, as in (14); and then a deletion step that thresholds the LS estimate, as in
(15). The addition step threshold,αadd, needs to be just large enough to ensure that the matrix used for LS estimation,ATadd is
well-conditioned. Ifαadd is chosen properly and if the number of measurements,n, is large enough, the LS estimate onTadd

will have smaller error, and will be less biased, thanx̂ (modified-CS or LS-CS output). As a result, deletion will be more
accurate when done using this estimate. This also means thatone can use a larger deletion threshold,αdel, which will ensure
deletion of more extras.

A similar issue for noisy CS, and a possible solution (Gauss-Dantzig selector), was first discussed in [28]. The add-LS-del
idea was first introduced in the KF-CS and LS-CS papers [14], [15], [22] for recursive reconstruction and simultaneouslyalso
in [30], [31] for greedy algorithms for static sparse reconstruction.

Support estimation is usually followed by LS estimation on the final support estimate, in order to get a solution with reduced
bias (Gauss-Dantzig selector idea), i.e. one computes

(x̂final)N̂ =A
N̂

†y, (x̂final)N̂c = 0 (16)

D. Recursive Recovery

For recursive recovery, in case of slow support change, one can useT = N̂t−1. We summarize the complete algorithm for
LS-CS in Algorithm 1 and that for Modified-CS in Algorithm 2. Recent work [4] has introduced solutions for the more general
case where the support change may not be slow, but is still highly correlated over time.

V. SPARSERECOVERY WITH PARTIAL SUPPORT AND SIGNAL VALUE KNOWLEDGE

So far we only talked about the case where prior support information is available. In certain applications, one may also
have partial signal value knowledge. In recursive recoveryproblems, it often happens that signal values also change slowly
over time. In this case the problem can be formulated as follows. The goal is to recover a sparse vectorx, with support set
N , either from noise-free undersampled measurements,y := Ax, or from noisy measurements,y := Ax + w, when partial
erroneous support knowledge,T , is available and partial erroneous signal value knowledgeon T , µ̂T , is available. The true
supportN can be written as

N = T ∪∆ \∆e where ∆ := N \ T, ∆e := T \N

and the true signalx can be written as

(x)N∪T = (µ̂)N∪T + e

(x)Nc = 0, (µ̂)T c = 0 (17)

The errore in the prior signal estimate is assumed to be small, i.e.‖e‖ � ‖x‖.
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A. Regularized Modified-CS

Regularized modified-CS adds the slow signal value change constraint to modified-CS and solves the following [21], [20].

min
b

‖bT c‖1 s.t. ‖y −Ab‖2 ≤ ε, and‖bT − µ̂T ‖∞ ≤ ρ (18)

As before, the following Lagrangian version (constraints added as weighted costs to get an unconstrained problem) is more
useful in practice

min
b

γ‖bT c‖1 + 0.5‖y −Ab‖22 + 0.5λ‖bT − µ̂T ‖22 (19)

Regularized modified-CS is analyzed in detail in [21] and [20].

B. Modified-CS-residual

The idea of modified-CS-residual is to combine the modified-CS idea with the CS-residual idea. One solves modified-CS
on the observation residual computed usingx̂init = µ̂. Once again the following unconstrained version is most useful:

min
b

‖bT c‖1 + 0.5α‖(y −Aµ̂−Ab‖22 (20)

For recursive reconstruction, one again usesT = N̂t−1. For µ̂, one can either usêµ = x̂t−1, or, in certain situations where
the signal values do not change much w.r.t. the first frame, using µ̂ = x̂0 is a better idea.For practical problems, e.g. real
functional MRI sequences [19], modified-CS-residual withµ̂ = x̂0 turns out to be the most promising approach to use.

As we explain next, in recursive reconstruction problems, if a model on signal value change is available, one can also obtain
µ̂ by using a Kalman filter.

C. Kalman Filtered CS-residual (KF-CS) and Kalman FilteredModified-CS-residual (KalMoCS)

Kalman Filtered CS (KF-CS) was introduced in the context of recursive reconstruction in [14]. The key idea is to replace
the initial LS step of LS-CS by a regularized LS step. One thencomputes the observation residual, followed by solving the`1
problem on this residual, exactly as in LS-CS. In KalMoCS, one replaces thè1 problem on this residual by the modified-`1.

Regularized LS becomes the KF in case of recursive recovery.The extra piece of information needed for KF-CS or KalMoCS
is a model on signal value change. Typically, in most cases, one can assume a simple random walk model with equal change
variance in all directions [14]. We summarize KF-CS and KalMoCS in Algorithm 3. This will outperform LS-CS and modified-
CS when support changes occur every so often (allows the KF tostabilize to a small error before the next support change).

VI. T HEORETICAL RESULTS

We first summarize the exact reconstruction results for modified-CS and regularized modified-CS and their implications.
Next, we briefly discuss the error bounds for the noisy case. Finally, we address the most important question for recursive
recovery: when is the algorithm “stable” over time, i.e. when can we get time-invariant bounds on its error over time?

A. Exact Reconstruction in Noise-free case

As explained earlier, LS-CS and KF-CS cannot achieve exact recovery under weaker conditions than what is needed for
simple CS. However, modified-CS [17] and regularized modified-CS can [21]. We give below the RIC based exact recovery
conditions for modified-CS [17]:

Theorem 1 (Exact Recovery Conditions – Modified-CS):[17, Theorem 1] Given a sparse vector,x, whose support,N =
T ∪ ∆ \ ∆e, where∆ = N \ T and∆e = T \ N , consider reconstructing it fromy := Ax by solving (10). Letk := |T |,
u := |∆|, e := |∆e| ands := |N |. Then,x is the unique minimizer of (10) if

1) δk+u < 1 andδ2u + δk + θ2k,2u < 1 and

2) ak(2u, u) + ak(u, u) < 1 whereak(S, Š) :=
θŠ,S+

θ
Š,k

θS,k

1−δk

1−δS−
θ2
S,k

1−δk

The above conditions can also be rewritten in terms ofs, e, u by substitutingk = s+ e− u.
A simpler sufficient condition for modified-CS that uses onlythe RIC is [17, Corollary 1]:

2δ2u + δ3u + δs+e−u + δ2s+e + 2δ2s+e+u < 1.

Compare this with simple CS which requires [27], [65], [28]

δ2s <
√
2− 1 or δ2s + δ3s < 1.
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Algorithm 3 Kalman Filtered Modified-CS-residual (KalMoCS) and KF-CS

For t > 0 do,

1) SetT = N̂t−1.
2) Initial KF.

Pt|t−1 =Pt−1 + Q̂t, whereQ̂t := σ2
sysIT

Kt =Pt|t−1A
′(APt|t−1A

′ + σ2I)−1

Pt =(I −KtA)Pt|t−1

x̂t,init =(I −KtA)x̂t−1 +Ktyt (21)

3) CS-residual or Modified-CS-residual.

a) Compute the KF residual,̃yt, using ỹt = yt −Ax̂t,init

b) KalMoCS: Solve modified-̀1 on the residual: computêβt as the solution of

min
b

‖bT c‖1 s.t. ‖ỹt −Ab‖2 ≤ ε

• In case of KF-CS: replace‖bT c‖1 by ‖b‖1.
c) Computex̂t = x̂t,init + β̂t

4) Support Estimation via Add-LS-Del.

Tadd=T ∪ {i ∈ T c : |(x̂t)i| > αadd}
(x̂add)Tadd =ATadd

†y, (x̂add)T c
add

= 0

N̂t =Tadd\ {i ∈ T : |(x̂add)i| ≤ αdel} (22)

5) Final Estimate: If N̂t is equal toT , set
x̂t,final = x̂t,init

else, compute an LS estimate usinĝNt and updatePt as follows.

(x̂t,final)N̂t
=A

N̂t

†yt, (x̂t,final)N̂c
t
= 0

(Pt)N̂t,N̂t
=(A

N̂t

′A
N̂t

)−1σ2, (Pt)N̂c
t ,[1,m] = 0, (Pt)[1,m],N̂c

t
= 0 (23)

To compare these conditions numerically, we can useu = e = 0.02s which is typical for time series applications (see Fig. 1).
Using δcr ≤ cδ2r [31, Corollary 3.4], it can be show that modified-CS only requires δ2u < 0.004. On the other hand, simple
CS requiresδ2u < 0.008 which is clearly stronger.

Exact recovery conditions for regularized modified-CS in the noise-free case, i.e. for (18) withε = 0 are obtained in
[21, Theorem 1]. These are weaker than those for modified-CS if xi − µ̂i = ±ρ for somei ∈ T (some of the constraints
‖bT − µ̂T ‖∞ ≤ ρ are active for the true signal,x) and some elements of this active set satisfy the condition given in [21,
Theorem 1]. One set of practical applications wherexi − µ̂i = ±ρ with nonzero probability is when dealing with quantized
signals and quantized signal estimates.

B. Error Bounds for the Noisy case

When measurements are noisy, one cannot get exact recovery,but can only bound the reconstruction error. We give here
the error bounds for both LS-CS [15] and modified-CS [22]. TheLS-CS-residual step error can be bounded as follows. The
proof follows in exactly the same way as that given in [15] where CS is done using the Dantzig selector instead of constrained
BPDN as in (8).

Theorem 2 (LS-CS-residual error bound):[15, Lemma 1] Letx be a sparse vector with supportN and lety := Ax + w
with ‖w‖ ≤ ε. Also, let∆ := N \ T and∆e := T \N . Let x̂ be computed as in (9). Ifδ2|∆| < (

√
2− 1)/2 andδ|T | < 1/2,

‖x− x̂‖ ≤ C′(|T |, |∆|)ε+ θ|T |,|∆|C
′′(|T |, |∆|)‖x∆‖ (24)

whereC′(|T |, |∆|) := C1(2|∆|)+
√
2C2(2|∆|)

√

|T |
|∆| , C

′′(|T |, |∆|) := 2C2(2|∆|)
√

|T |, C1(S) :=
4
√
1+δS

1−(
√
2+1)δS

, andC2(S) :=

2 1+(
√
2−1)δS

1−(
√
2+1)δS

.

By adapting the approach of [27], the error of modified-CS canbe bounded as a function of|T | = |N |+ |∆e| − |∆| and
|∆|. This was done by Jacques in [66] and by us in [22].
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Theorem 3 (modified-CS error bound):[22, Lemma 1] Letx be a sparse vector with supportN and lety := Ax+w with
‖w‖ ≤ ε. Also, let∆ := N \ T and∆e := T \N . Let x̂ denote the solution of (11). Ifδ|T |+3|∆| < (

√
2− 1)/2, then

‖x− x̂‖≤C1(|T |+ 3|∆|)ε ≤ 9.8ε, whereC1(S) :=
4
√
1 + δS

1− (
√
2 + 1)δS

(25)

For both LS-CS and modified-CS, the error after the final LS step can be bounded in terms of̃T := N̂ and ∆̃ := N̂ \N
as follows.

‖x− x̂final‖ ≤ (1 +
θ|T̃ |,|∆̃|
1− δ|T̃ |

)‖x∆̃‖2 +
1

√

1− δ|T̃ |
ε (26)

C. Recursive Reconstruction: Time-Invariant Error Bounds(Stability)

Let T̃ := N̂ , ∆̃ := N̂ \N and ∆̃e := N \ N̂ . So far we bounded the LS-CS-residual error or the modified-CS error as a
function of |T |, |∆|. The bound is small as long as|∆e| and |∆| are small. Similarly the bound on the error of the final LS
estimate, given in (26), is small if|∆̃| and |∆̃e| are small. However for recursive reconstruction, what we need is conditions
under which we can get a time invariant bound on|∆e| and|∆| as well as on|∆̃| and |∆̃e|. Otherwise, it can happen that the
support errors keep adding up and become large and the same will happen to the reconstruction errors.

The study of error stability over time requires a signal change model. We assume the following simple deterministic model
[15, Signal Model 1]. (a) There is nonzero delay,d, between new coefficient addition and removal times; (b) at mostSa additions
and removals occur at every change time; (c) new coefficients’ magnitudes increase gradually from zero for sometime and
finally reach a constant value; and (d) coefficients’ magnitudes decrease gradually before becoming zero (getting removed from
support). Under this model, one can show the following. The actual conditions in the final result are somewhat messy and so
we skip them. We only state a qualitative version here.

Theorem 4 (Time-invariant error bounds):[15, Theorem 2] Assume the above signal change model. If
1) the initial simple CS step is accurate enough,
2) the noise is bounded and the number of measurements,n, is large enough so that certain conditions on the RIC and

ROC hold,
3) the addition and deletion thresholds are appropriately set,
4) for a givenn and noise bound,

a) the smallest constant coefficient magnitude is large enough,
b) the rates of coefficient magnitude increase and decrease are large enough, and
c) the delay between addition times,d, is larger than the “worst case detection delay” plus coefficient decrease time,

then,
1) the number of final misses|∆̃t| and extras|∆̃e,t| as well as the initial misses|∆t| and extras|∆e,t| are bounded bySa

or by a quantity slightly larger thanSa,
2) within a finite delay, all new additions get detected and not falsely deleted, i.e.|∆̃t| = 0, and all the extras get deleted,

i.e. |∆̃e,t| = 0,
3) and the reconstruction error is bounded by a time-invariant and small values at all times.
As long as the number of new additions or removals,Sa � |Nt| (slow support change), the above result shows that the

worst case number of misses or extras is also small compared to the support size. This makes it a meaningful result. Similarly,
we can argue that the reconstruction error bound is small compared to the signal energy.

The above result was proved for LS-CS in [15, Theorem 2]. It ispossible to prove an exactly analogous result for modified-
CS as well. The key ideas in obtaining this result are as follows. (i) One needs to ensure that within a finite delay of a new
addition time, all new additions definitely get detected andnot false deleted (this delay is the “worst case detection delay”).
(ii) This needs to be done while ensuring that there are no false deletions of the constant coefficients. (iii) Also, the deletion
threshold needs to be high enough to definitely delete all theextras every-so-often (ensure|T̃t| is bounded). (iv) Finally, the
“worst case detection delay” plus the coefficient decrease time need to be smaller than the delay between two addition times.

The above result assumes support change everyd frames. One can also show stability under a more general signal model
that allows support changes at every time. This has been donefor both modified-CS and LS-CS in [22].

VII. E XPERIMENTS

We briefly describe three sets of experiments here. The first set consists of simulation experiments that demonstrate that
modified-CS achieves exact reconstruction using significantly fewer measurements than what simple CS needs. The secondset
consists of simulation experiments that compare the reconstruction errors of LS-CS, KF-CS, modified-CS (actually modified-
BPDN) and regularized modified-BPDN with each other and withother existing work in literature (CS-diff and weighted`1).
The third set of experiments studies recursive recovery fora simulated dynamic MRI experiment. Here we took actual (not
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Fig. 2. The N-RMSE for reg-mod-BPDN, mod-BPDN, BPDN, LS-CS, KF-CS,weighted`1, CS-residual, CS-mod-residual and modified-
CS-residual are plotted against|∆|/|N |.

sparsified) larynx or cardiac image sequences and simulatedMRI by taking a randomly selected set of their partial Fourier
measurements. In this case, we did not add measurement noise, however since the signal sequence is not exact sparse, one
could think of the compressible coefficients as “noise” (this noise is correlated with the signal, but none of our analysis uses
any probability model, so the correlation does not matter).We demonstrate error stability over time of modified-CS and LS-CS
and we also show that modified-CS has lower error than LS-CS.

A. Exact Reconstruction Probability Computation via MonteCarlo

In Sec VI-A, we only compared sufficient conditions for CS andmodified-CS. However, this does not mean that the required
number of measurements,n, for CS is definitely smaller than what modified-CS needs. To actually compare this, we need to
use Monte Carlo. We obtained a Monte Carlo estimate of the probability of exact reconstruction for CS and for modified-CS,
for a givenA (i.e. we averaged over the joint distribution ofx and y givenA) as follows [17]. Fix signal length,m = 256
and its support size,s = 0.1m = 26. In the experiment we describe here we also fixedu = e = 0.08m. We variedn. For
eachn, we generated an×m random-Gaussian matrix,A once. We then repeated the following 500 times. (i) Generatethe
support,N , of sizes, uniformly at random from[1,m] and generate(x)N ∼ N (0, 100I). Set (x)Nc = 0. (ii) Set y := Ax.
(iii) Generate∆ of sizeu uniformly at random from the elements ofN . (iv) Generate∆e of sizee, uniformly at random from
the elements of[1,m] \N . (v) SetT = N ∪∆e \∆. (vi) Solve modified-CS, i.e. solve (10). Call the solutionx̂modCS . (vii)
Solve simple CS, i.e. solve (10) withT being the empty set. Call the solution̂xCS .

At the end, estimate the probability of exact reconstruction using modified-CS by counting the number of timesx̂modCS

was equal tox (“equal” was defined as‖x̂modCS − x‖2/‖x‖2 < 10−5) and dividing by500. Do the same for CS usinĝxCS .
In this experiment, we observed the following.

1) With 19% measurements, modified-CS gives exact recovery with probability (w.p.) 99.8%, while CS does this w.p. zero.
2) With 25% measurements, modified-CS gives exact recovery with probability (w.p.) 100%, while CS does this w.p. 0.2%.
3) CS requires 40% measurements to work “reliably”, i.e. to give exact recovery w.p. at least 98%.

More detailed simulation results for various choices ofu ande are summarized in [17, Table 1].

B. Reconstruction Error Comparisons

In Fig. 2, we compare the Monte Carlo average of the reconstruction error of reg-mod-BPDN given in (19) with that of
modified-BPDN given in (12), modified-CS-residual given in (20), BPDN [24], weighted̀ 1 [46], CS-residual [67] and CS-
mod-residual. Weighted̀1 solvesminb γ‖bT c‖1+ γ′‖bT ‖1+ 1

2‖y−Ab‖22. CS-residual is an improved version of CS-diff [67].
It computesx̂ = µ̂+ b̂ whereb̂ solvesminb γ‖b‖1 + 1

2‖y −Aµ̂−Ab‖22
The simulation model used is as specified in [20]. The measurements were random-Gaussian projections corrupted by zero

mean i.i.d. Gaussian noise with varianceσ2
w. We usedm = 256, support size|N | = 0.1m = 26 and support extras size,

|∆e| = 0.1|N | = 3. We plot the errors against|∆|/|N |. The parameters, e.g.γ, λ, γ′, used in each of the minimizations were
selected as explained in [20]. Notice that withn = 30% measurements and a bad signal prior (largeσ2

p), reg-mod-BPDN,
mod-BPDN and weighted̀1 have similar performance. LS-CS is worse than either of these, but better than simple CS and
CS-residual. Withn = 13% in (b) and (c), reg-mod-BPDN significantly outperforms all the others. In (b), the signal prior is
good (smallσ2

p) and so CS-residual is better than modified-CS or weighted`1 (which do not use signal value knowledge at
all) whereas all three of them have similar performance in (c) when the signal prior is bad.
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Fig. 3. Reconstructing a 256x256actual (compressible)vocal tract (larynx) image sequence fromsimulated MRImeasurements. Both figures
usedn = 0.19m for t > 0 but used different values ofn0. Image size,m = 2562 = 65536. 99% energy support size,|Nt| ≈ 0.07m;
support change size|Nt \Nt−1| ≈ 0.001m.

C. Recursive reconstruction: simulated dynamic MRI

We now show comparisons for recursively reconstructing an actual (compressible) vocal tract image sequence from simulated
dynamic MRI measurements [17]. The original image sequenceis shown in Fig. 1. In Fig. 3, we show normalized root mean
squared error (N-RMSE) comparisons of modified-CS and LS-CSwith simple CS [24], [10] and CS-diff [67]. In the plot
shown, the LS-CS error is close to that of modified-CS becausewe implemented LS estimation using conjugate gradient and
did not allow the solution to converge (forcibly ran it with areduced number of iterations). Without this, LS-CS error was
much higher, since the computed initial LS estimate itself was inaccurate. Notice from the figure that modified-CS and LS-CS
significantly outperform CS and CS-diff. Also, modified-CS has smaller error than LS-CS. In Fig 3(b), CS-diff performs so
poorly, because the initial error att = 0 is itself very large (since we use onlyn0 = 0.19m). As a result the difference signal
at t = 1 is not compressible enough, making its error large and so on.But even whenn0 is larger and the initial error is small,
as in Fig. 3(a), the CS-diff error is still unstable, i.e. it increases over time.

VIII. C ONCLUSIONS

In this chapter, we summarized our recent work on algorithmsfor recursive reconstruction of sparse signal sequences. The
key ideas we used are that in many such sequences, the sparsity pattern changes slowly over time, and, in certain cases, the
same is true also for signal value change. Using just the firstassumption, the recursive recovery problem can be reformulated
as one of sparse recovery in the presence of partial support knowledge. We discussed two solutions to this problem, the first is
called least squares CS-residual (LS-CS), and the second and more powerful one is called Modified-CS. Modified-CS achieves
provably exact recovery under weaker conditions (using fewer measurements) than what simple CS needs whenever the support
knowledge is accurate enough. When measurements are noisy,the errors are provably bounded. For recursive recovery with
noisy measurements, the most important question is, when can we obtain time-invariant bounds on the reconstruction errors,
i.e. when can we show error stability over time? We showed that this can be done under fairly mild assumptions for both
LS-CS and modified-CS. For problems where both slow support and signal value change hold, we introduced Kalman filtered
CS-residual (KF-CS) or its improved versions, Kalman filtered Modified-CS-residual (KalMoCS). Their performance analysis
is still mostly a part of ongoing work.Among all the ideas introduced in this chapter, we think Modified-CS, explained in Sec
IV-B, and Modified-CS-residual, explained in Sec V-B, are the most promising approaches.

Ongoing work is looking at how to utilize correlated, but notnecessarily slow, support change to design recursive
reconstruction algorithms [4]. Another line of work is exploring the problem of recursive reconstruction in the presence
of (potentially) very large but correlated noise [68], [5].
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