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Abstract

In this chapter, we describe our recent work on the designamadlysis of recursive algorithms for causally reconsingce
time sequence of (approximately) sparse signals from atlgre=duced number of linear projection measurements. Tdweaks
are sparse in some transform domain referred to as the typhasiis and their sparsity patterns (support set of thesgpdrasis
coefficients) can change with time. By “recursive”, we meaa anly the previous signal’s estimate and the current meamnts
to get the current signal’'s estimate. We also briefly summeadur exact reconstruction results for the noise-free easeour
error bounds and error stability results (conditions ungeich a time-invariant and small bound on the reconstracéioor holds
at all times) for the noisy case. Connections with relatedkvare also discussed.

A key example application where the above problem occursyigmhic magnetic resonance imaging (MRI) for real-time
medical applications such as interventional radiology &fl-guided surgery, or in functional MRI to track brain aetiion
changes. Cross-sectional images of the brain, heart, daoynother human organ images are piecewise smooth, and thus
approximately sparse in the wavelet domain. In a time sezpjetheir sparsity pattern changes with time, but quite lslow
The same is also often true for the nonzero signal values Sitiiple fact, which was first observed in our work, is the legson
that our proposed recursive algorithms can achieve prgvatdct or accurate reconstruction from very few measurésnen

I. INTRODUCTION

In this chapter, we describe our recent work on the desigraaatlsis of recursive algorithms for causally reconsingca
time sequence of (approximately) sparse signals from algneaduced number of linear projection measurements. idreats
are sparse in some transform domain referred to as the gphesis and their sparsity patterns (support set of thesipar
basis coefficients) can change with time. The most imporé@aimple of the above problem occurs in dynamic magnetic
resonance imaging (MRI) for real-time medical applicasicuch as interventional radiology, MR image guided surgery
functional MRI to track brain activation changes. MRI is aheique for cross-sectional imaging that sequentiallytwas
the 2D Fourier projections of the cross-section to be reitooted. Cross-sectional images of the brain, heart, Japmother
human organ images are usually piecewise smooth, e.g. ged,Fand thus approximately sparse in the wavelet domain. In
a time sequence, the sparsity pattern changes with timesloowty. Often, the signal values also change gradually owvee.

We demonstrate this for a larynx and a cardiac MRI sequenégéginl.

Since MR data acquisition is sequential, the ability to aately reconstruct with fewer measurements directly tedas to
reduced scan times. Shorter scan times along with onlinesédpand fast (recursive) reconstruction allow the paddyitof
real-time imaging of fast changing physiological phenomedther example applications where real-time imaging ided
include real-time single-pixel video imaging [1], real& video compression/decompression, real-time sensaorebased
sensing of time-varying fields [2], or real-time extractmfithe foreground image sequence (sparse image) from a slanging
background image sequence (well modeled as lying in a lemedsional space [3]) using recursive projected compressiv
sensing (CS) [4], [5]. For other potential applicationse §&], [7].

Since the recent introduction of compressive sensing (85)[9], [10], the static sparse reconstruction problem basn
thoroughly studied. However most existing algorithms foe dynamic problem just use CS to jointly reconstruct therent
time sequence in one go [11], [12], [13]. This is an offline d&lch solution with very high complexity. The alternative -
doing CS at each time separately (simple CS) - is online asidhfat requires many more measurements. The question then
is: for a time sequence of sparse signals, how can we obtain asieeusolution that improves the accuracy of simple CS by
using past observations, and does this while keeping thepatational complexity only as much as that of simple CS (and
thus much lower than that of the batch methods)? In particilew can we use slow or correlated sparsity pattern change,
and in certain cases also slow signal value change, to d@tBis“recursive”, we mean a solution that uses only the previous
signal estimate and the current observation vector at themrutime.

This problem was first studied in [14] which proposed a solugalled Kalman Filtered Compressed Sensing (KF-CS). In
later work, a simpler special case of KF-CS, called LeastaBsgICS-residual (LS-CS) was analyzed in detail [15]; andemo
powerful approaches such as Modified-CS [16], [17], Mod{&s+residual [18], [19] and regularized modified-CS [2Q1]
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were introduced. Performance guarantees — exact recowadjtons in the noise-free case [16], [17], [21] and timeariant
error bounds (stability) in the noisy case [15], [22] — welsoaobtained. We describe all of these ideas in the next few
sections. We first begin by providing a short background carssp recovery and compressed sensing, followed by giving a
formal problem definition for our problem and discussingtetl work.

Il. NOTATION AND SPARSERECOVERY BACKGROUND
A. Notation

We useT* to denote the complement af w.r.t. [1,m] :=[1,2,...m], i.e. T¢ := {i € [1,m] : i ¢ T}. The notation|T|
denotes the size (cardinality) of the §ét The set operations, N, and\ have the usual meanings.

For a vectorp, and a set]’, v; denotes theéT'| length sub-vector containing the elements aforresponding to the indices
in the setT'. Also, ||v||; denotes the,, norm of a vectow. Whenk = 0, ||v||o counts the number of nonzero elements in the
vectorv. If just ||v|| is used, it refers tdv||s.

For a matrixM, | M ||, denotes its induceé-norm, while just||M|| refers to||M||2. M’ denotes the transpose &f and
M denotes its Moore-Penrose pseudo-inverse. For a tallxmathi MT := (M’'M)~'M’. For a fat matrix4, A7 denotes
the sub-matrix obtained by extracting the columnsdo€orresponding to the indices if.

The restricted isometry constant (RIC) [10);, for a matrix A, is the smallest real number satisfying

(1= ds)lell* < [lAze]? < (1 + bs)][c]® 1)

for all subsets” C [1,m] of cardinality|7'| < S and all real vectors of length|T'|. It is easy to see thatAr’' Ar|| < (1+6s),

I(Az" A7)~ < 1/(1 —ds) and[|A7"|| < 1/,/(1 = ds).

The restricted orthogonality constant (ROC) [1€4,s/, for a matrix A, is the smallest real number satisfying
et A" Az, c2] < 05,50 el lez|l (2

for all disjoint setsT’, T> C [1,m] with |T1| < S, |T5| < S, S + 5" <m, and for all vectors:, ¢, of length|T}|, |T5|.

B. Background on Sparse Recovery

The sparse recovery problem has been studied for a very iloeg €.9. see [23], [24], [25]. The goal in sparse recovery, o
what is now interchangeably referred to as compressivarggii€S), is to recover a sparse signal from a reduced nuniber o
its linear projection measurements. To be precise, we wlkedto recover ann length sparse vectos;, with support size,

s, from y := Az, or, in the noisy case, from := Az + w, when A4 is a fat matrix (a matrix with more columns than rows).
Consider the noise-free case. The sparse recovery problesolved if we can find the sparsest vecioamong all vectors
satisfyingy = Ab, i.e. if we can solve

mbin Ibllo s.t.y = Ab

and if A is such that every set &fs columns of A are linearly independent [24], [10]. Finding the sparsestter requires a
combinatorial search and thus has complexity of the orden®{10]. The exponential complexity in makes it impractical

to directly solve this for any reasonable sized problemctral (polynomial complexity) approaches to this proble@lude

(i) ¢, minimization methods (replace thig norm by the/; norm which is the closest norm ) that makes the problem
convex) such as basis pursuit [24] and its noisy relaxatiobasis pursuit denoising (BPDN) [24], [26], [27], Dantzigjexctor

[28] and others; (ii) greedy methods such as matching pufa8], orthogonal matching pursuit [29] and many other régce
works [30], [31]; and (iii) various other more recent appioes. While these approaches have been proposed and used sin
the 1990s, the recent work on compressed sensing providewgberformance guarantees for them: exact recovery tonsli

[8], [9], [10] and bounds on reconstruction error when exacbvery is not possible [26], [28], [27].

IIl. PROBLEM DEFINITION, CHAPTER ORGANIZATION AND RELATED WORK
A. Problem Definition and Chapter Organization

The recursive reconstruction problem explained here was ifitroduced in the ICIP 2008 paper on Kalman filtered
compressed sensing (KF-CS) [14]. Let)..x1 denote the spatial signal at timeand (y;),x1, With n < m, denote its
noise-corrupted measurements’ vector,ate. vy, = Hz; + w; wherew; is measurement noise ard is the measurement
matrix. The signalz,, is sparse in a given sparsity basis (e.g. wavelet) withomhmal basis matrix®,,, x.m,, i.€. z; := &'z,
is a sparse vector. Thus the observation model can be waten

yr = Axy +wy, A:=HO 3)

We assume thatl has unit norm columns. We study both the noise-free casewj.e- 0, and the bounded noise case, i.e.
||we|l2 < e. We useN; to denote the support of;, i.e.

Ny :=supfz;) = {i: (x1); # 0}.



The goal is to recursively estimate (or equivalently the signal;; = ®x;) usingy,...y;. By recursively we mean, use
only y; and the estimate from— 1, ;_1, to compute the estimate atThis is done under one or both of the following two
assumptions.

1) Slow Support ChangeThe support additiongN; \ N;_1| < S, < |N¢| and the removalgN;_1 \ NV¢| < S, < | V| at
all timest. This assumption is verified for MRI sequences in Fig. 1.

2) Slow Signal Value ChangeThe magnitude of the nonzero signal values also changedysisith time, i.e. ||(z; —
zi—1)N, |2 < ||(x1) N, ||2- This assumption is also verified in Fig. 1.

Consider first the class of problems for which only the firstumsption holds. Under this assumption, the above problem
can be reformulated as one of sparse recovery in the presémaatial support knowledge. We can use the support egtimat
obtained from the previous time instai¥f,_;, as the “partial support knowledge”. We describe this peoband the proposed
solutions for it in Sec. IV. If both assumptions hold, the ed@roblem can be reformulated as one of sparse recovery with
partial support and signal value knowledge. This is disediss Sec. V. Performance guarantees (exact reconstruetsutts,
error bounds, and conditions for time-invariant error bag)rare briefly discussed in Sec. VI and some interestingranpatal
results are shown in Sec. VII. Conclusions are given in Séi. V

B. Related Work

The recursive reconstruction problem was first studied #j.[Before this, the only works that dealt with time sequence
of sparse signals were batch methods [11], [12], [13].

A maodification of KF-CS was introduced in [32]. Recent work Bayesian or other model-based approaches to recursive
sparse estimation with time-varying supports include$,[&}], [35], [36], [37]. The work of [13] gives an approxirt@batch
solution for dynamic MRI that is quite fast, but is offline. |[Red work on model-based and Bayesian approaches for ke sing
signal includes [38], [39], [40], [41], [42], [43], [44].

The problem of sparse reconstruction with partial knoweed§the support was simultaneously addressed in [16], [fd] a
in [45], [46], [47]. The work of [46] obtains exact recovetyrésholds for weighted,;, similar to those in [48], for the case
when a probabilistic prior on the signal support is avagal3ome later work motivated by modified-CS includes modified
OMP [49], modified CoSaMP [50], modified block CS [51], erraumds on modified BPDN [52], [22], [53], [20], better
conditions for modified-CS based exact recovery [54], arategupport recovery conditions for multiple measurementors
(MMV) based recursive recovery [33].

There is other recent work that may also be referred to agsieusparse reconstruction, but whose goals are quiterdift
from the problem that we discuss in this chapter. This inetufl) homotopy methods, e.g. [55], [56], whose goal is toyonl
speed up the optimization algorithm using homotopy or watants and the previous reconstructed signal, but not toaedu
the number of measurements required; (i) [57], [55], [48R] which reconstruct a single signal from sequentiallyivamg
measurements; and (iii) [60], [61], [62], which iteratiyéinprove support estimation for a single sparse signal.tA@orecent
work [63] proposes causal but batch methods. This can bipieted as a causal approach to solve the multiple measatgme
vector (MMV) problem.

We should note that none of the above works obtain conditiovder which a time-invariant bound on the reconstruction
error (i.e. stability) holds. Except [46] and [62], none b&se obtain exact reconstruction conditions either.

IV. SPARSERECOVERY WITH PARTIAL SUPPORT KNOWLEDGE

This problem was first formulated in [16], [17]. The goal isrecover a sparse vectar, with support setV, either from
noise-free undersampled measurements= Az, or from noisy measurementg, := Ax + w, when partial and possibly
erroneous support knowleddg, is available. The true suppol can be rewritten as

N=TUA\A., where A:=N\T, A,: =T\ N

It is easy to see that
NI =T+ |A] = |A|

Here we refer to the seh as themissesin the support knowledge and the s&t is the extrasin it. We say thesupport
knowledge is accurate jA| < |N| and|A.| < |N].

Least Squares CS-residual (LS-CS) introduced in [64], (@5} be interpreted as the first solution to the above problem.
We describe this next. The first solution that gives exacbvery under weaker conditions (using fewer measuremeinés) t
what simple CS needs was Modified-CS [16], [17]. We explais i Sec. IV-B. For using either LS-CS or modified-CS for
recursive reconstruction, we use the support estimate fhenprevious time instant as the partial knowledgelseSupport
estimation approaches are discussed in Sec. IV-C and LS-@®dified-CS for recursive reconstruction is given in S&eDL
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Fig. 1. In (a), we show two MRI image sequences (a cardiac and a lasggxence). In (b)y: is the two-level Daubechies-4 2D discrete
wavelet transform (DWT) of the cardiac or the larynx imagéimae ¢t and the setV; is its 99% energy support (the smallest set containing
99% of the vector’'s energy). The support size was betwee¥ &f7the image size. In (c) we plot signal value change. As @sden from

the plots, all support changes (both additions and rempeaés less than 2% of the support size. Also, almost all sigakle changes are
are less than 4% of(z¢)w, ||2-

Algorithm 1 Dynamic LS-CS: LS-CS for recursive reconstruction

Simple CS.At ¢ = 0, setT = () and computet, as the solution ofnin, ||b]|1 s.t. [|[y — Ab|2 < e
Fort¢ >0, do

1) SetT = N,_;.
2) Initial LS.

a) Compute the initial LS estimatg, init)r = (A7'Ar) "t Ar"ye, (Z4init) e =0
3) CS-residual.

a) Compute the observation residugl,= y; — Aj?t,initA

b) Solve thel; problem for the residual, i.e. compute as the solution ofniny, [|b[[1 S.t. [|§; — Ab|l2 < €
c) Computet; = & nit + Bt

4) Support Estimation via Add-LS-Del.

Taga=T U {i € T : |(&4)i] > add}
(Zadd) Tags = Alags Yt (Fadd)T, = 0
Ny =Taga\ {i € T : |(Zadd)i| < ader} 4)
5) Final LS Estimate.

(24 final) 5, = ANtTyta (%4 finat) e = 0 %)

A. Least Squares CS-residual (LS-CS)

The key idea of LS-CS is as follows [64], [15]. Usifigas the support set, compute an initial estimate &fy computing
an LS estimate of’ and setting all other elements to zero, i.e. compute

(Zinit)r = (A7’ Ar) "' Ar'ye,  (&init)7e =0 (6)
Compute the observation residugl,
§ =y — Aini (7)
followed by solving the/; minimization problem for this residual, i.e. complﬁaas the solution of
argmin [|bl|1 S.t.[|7 — Ab][2 < ¢ ©)

Then, the estimate of is computed as

& = Zinit + B 9



Algorithm 2 Dynamic Modified-CS: Modified-CS for recursive reconstrucion
1) In Algorithm 1, replace steps 2 and 8 by the followikipdified-CS step.
a) Computez, as the solution ofniny, ||bre||1 S.t. [Jyr — Ab|l2 < e.

This is followed by support estimation and computing a fin8l éstimate on the estimated support as described in Sec IV-C.
Notice that, the signal residuas,:= x — Zinit, IS supported o’ U A and satisfies
0 1
Br = (A7’ Ar) " A (Aaza +w), |IBrllz € TEEELlaa s + ————c
Bre =xA

If |A]'is small enoughg is small. If|A.| is small enough|T’| < |[N|+|A.| is not too large and sb/(1 —d;p) is only a little
more than one. Finally if the noise is also small, the abovgligs that||3r|2 < ||zall2. Thus, if T is a good estimate of the
true support,NV; the measurement matriA is incoherent enough; and the noise is small enough; thesnsmall on the sef".
Or, in other words3 is approximately supported only ak. SinceT is a good estimate of the true suppdft] < |N| and so
the ¢, problem that we need to solve in this case is much easier thaase of simple CS. As a result, it is possible to show
that LS-CS results in small reconstruction error using migeter measurements than what simple CS needs [15, Theorem 1]
We summarize LS-CS for recursive reconstruction in Aldontl.

However, notice that the exact sparsity size (total numiberomzero components) of the signal residual,is |T'| + |A|
and this is equal to or larger than that of the sighal|. Since the number of measurements required for exact reaatien
is governed by the exact sparsity size, LS-CS is not able liteae exact reconstruction using fewer noiseless measmsm
than those needed by simple CS. The search for such a soletiars to our next and more powerful idea called Modified-CS.

B. Modified-CS

The key idea of Modified-CS is as follows [16], [17]. SupposstfthatA, is empty, i.e.N = T'U A. Thus, the sparse
recovery problem now becomes one of trying to find the spanrsssor whose support contails among all vectors that
satisfy the data constraint. Or in other words, we would li&efind the vector that is sparsest outside the’Betmong all
vectors that satisfy the data constraint. In the noise-fe, this can be written as

Inbin lbre]lo s-t.y = Ab

The above also works i\, is not empty. It is easy to show that it can exactly recowef w = 0 (noise-free case) and if
every set of|T'| + 2|A| = |N| + |A] + |A.| columns of A are linearly independent [17, Proposition 1]. In comparjsthe
original £, problem given in Sec. 1I-B requires every set2fV| columns ofA to be linearly independent [10]. This is much
stronger whenA| =~ |A.| < |N|.

The abovel, problem also has exponential complexity, and hence as i@ cB€S, we replace it by thé problem ¢;
norm is the closest norm t& that makes the optimization problem convex). Thusdified-CSsolves

min ||bpe
b

and we denote its solution by, Once again, this works, and can provably achieve exacveggoeven when\, is not empty.
We give the exact recovery conditions in Sec VI-A. For noisgasurements, one can relax the data constraint as follows.

1Sty — Ablla <€ (11)

min || bpe
b

We summarize modified-CS for recursive reconstruction igofithm 2. In practice, for large scale problems, one alvwayds
the data term as a soft constraint and solves the followirgpustrained problem (which is less expensive to solve ams$ do
not require knowledge of the noise bound). We refer to thismadified-BPDN [53], [20].

L+ 0.5]ly — Ab3 (12)

mbin'yHch

C. Support Estimation: thresholding and add-LS-del

In order to use either LS-CS or modified-CS for recursive nstmiction, we use the support estimate from the previoos ti
as the sefl". Thus, we need to estimate the support of the signal at eaeh fihe simplest way to do this is by thresholding,
i.e. we compute R

N = {Z : |(i‘)1| > CY}

wherea > 0 is the zeroing threshold. In cases of exact reconstructienif & = x, we can usex = 0. In other situations,
we need a nonzero value. In cases of very accurate recotistruwe can setv to be slightly smaller than the magnitude of



the smallest nonzero element ®f(assuming its rough estimate is available) [17]. This wilsere close to zero misses and
few false additions. In general, should depend on both the noise level and the magnitude ddrttedlest nonzero element

of z. For compressible signals, one should do the above but wilpport” replaced by thé%-energy support. For a given

number of measurementscan be chosen to be the largest value so that all elementg é¥#tfenergy support can be exactly
reconstructed [17].

Single step thresholding as above means that the threshoteieds to be large enough to ensure that most missed elements
from T" are correctly deleted while ensuring that there are fewefdlstections. However, notice that, in both modified-CS and
LS-CS, z is a biased estimate aof Consider modified-CS. Along\ C 7, the values ofi are biased towards zero (because
we minimize||(8)r||1), while, alongA. C T, they may be biased away from zero (since there is no conswai(53)r).
The same also happens for LS-CS although the reasoning isdifferent [15, Sec II-A]. Since the estimates aloAgare
biased towards zero, one needs a smaller threshold to db&unt whereas, since those aloAg may be biased away from
zero, one may need a higher threshold to delete them. Onialpsotution to this problem is to use the following threepste
Add-LS-Del approach:

Taga=1 U {’L : |(i)1| > aadd} (13)
($add)Taea = ATuss Y5 (Fadd)1e, =0 (14)
N =Tada\ {i : |(Zadd)i| < gel} (15)

The above add-LS-del procedure involves a support addstiep, that uses a smaller threshaldgq, as in (13); followed by
LS estimation on the new support estimdfgqyy as in (14); and then a deletion step that thresholds the Lifa@s, as in
(15). The addition step thresholdaqg needs to be just large enough to ensure that the matrix wesddSfestimation A, is

well-conditioned. Ifagqq is chosen properly and if the number of measurementss large enough, the LS estimate Gxyq

will have smaller error, and will be less biased, tharfmodified-CS or LS-CS output). As a result, deletion will berm
accurate when done using this estimate. This also meansitleatan use a larger deletion threshalgy;, which will ensure
deletion of more extras.

A similar issue for noisy CS, and a possible solution (Gdbastzig selector), was first discussed in [28]. The add-e5-d
idea was first introduced in the KF-CS and LS-CS papers [14], [22] for recursive reconstruction and simultaneowsbo
in [30], [31] for greedy algorithms for static sparse redomstion.

Support estimation is usually followed by LS estimation be final support estimate, in order to get a solution with oedu
bias (Gauss-Dantzig selector idea), i.e. one computes

(Zfnal) 5 = Ag 'y, (Zfinal) g =0 (16)

D. Recursive Recovery

For recursive recovery, in case of slow support change, aneusel’ = N,_;. We summarize the complete algorithm for
LS-CS in Algorithm 1 and that for Modified-CS in Algorithm 2eRent work [4] has introduced solutions for the more general
case where the support change may not be slow, but is sthilyhizprrelated over time.

V. SPARSERECOVERY WITH PARTIAL SUPPORT AND SIGNAL VALUE KNOWLEDGE

So far we only talked about the case where prior support im&bion is available. In certain applications, one may also
have partial signal value knowledge. In recursive recoygnblems, it often happens that signal values also charoydysl
over time. In this case the problem can be formulated asvislid’he goal is to recover a sparse vectomwith support set
N, either from noise-free undersampled measuremenis, Ax, or from noisy measurementg,:= Ax + w, when partial
erroneous support knowledgdé, is available and partial erroneous signal value knowlealyd’, /i, is available. The true
supportN can be written as

N=TUA\A., where A:=N\T, A,: =T\ N
and the true signal can be written as

(z)Nvur = () NuT + €
(x)ne =0, ()7 =0 (17)

The errore in the prior signal estimate is assumed to be small,|jie.< || z]|.



A. Regularized Modified-CS
Regularized modified-CS adds the slow signal value changsti@nt to modified-CS and solves the following [21], [20].

min [[bre[li s.t. ly — Abllz < €, and|[br — firllec < p (18)

As before, the following Lagrangian version (constraindsled as weighted costs to get an unconstrained problem)iie mo
useful in practice

min y[bre |1 + 0.5y — Abl[3 + 0.5]|br — jir I3 (19)

Regularized modified-CS is analyzed in detail in [21] and].[20

B. Modified-CS-residual

The idea of modified-CS-residual is to combine the modifi&lidea with the CS-residual idea. One solves modified-CS
on the observation residual computed usiig = ji. Once again the following unconstrained version is mosfulise

min [ |y + 050l (y — Ajt — Ab]3 (20)

For recursive reconstruction, one again uges- N,_1. For i, one can either usg = %, 1, or, in certain situations where
the signal values do not change much w.r.t. the first framigus = Z, is a better ideaFor practical problems, e.g. real
functional MRI sequences [19], modified-CS-residual wiite- 3 turns out to be the most promising approach to use.

As we explain next, in recursive reconstruction problering,model on signal value change is available, one can alsgrobt
i1 by using a Kalman filter.

C. Kalman Filtered CS-residual (KF-CS) and Kalman Filtefgiddified-CS-residual (KalMoCS)

Kalman Filtered CS (KF-CS) was introduced in the contextesfursive reconstruction in [14]. The key idea is to replace
the initial LS step of LS-CS by a regularized LS step. One tbemputes the observation residual, followed by solving#the
problem on this residual, exactly as in LS-CS. In KalMoCSe oeplaces thé, problem on this residual by the modifiéd-

Regularized LS becomes the KF in case of recursive recoVleyextra piece of information needed for KF-CS or KalMoCS
is a model on signal value change. Typically, in most cases,aan assume a simple random walk model with equal change
variance in all directions [14]. We summarize KF-CS and Ka@& in Algorithm 3. This will outperform LS-CS and modified-
CS when support changes occur every so often (allows the Ktatulize to a small error before the next support change).

VI. THEORETICAL RESULTS

We first summarize the exact reconstruction results for firemiCS and regularized modified-CS and their implications.
Next, we briefly discuss the error bounds for the noisy casmlly, we address the most important question for recersiv
recovery: when is the algorithm “stable” over time, i.e. wiean we get time-invariant bounds on its error over time?

A. Exact Reconstruction in Noise-free case

As explained earlier, LS-CS and KF-CS cannot achieve examivery under weaker conditions than what is needed for
simple CS. However, modified-CS [17] and regularized modhfxs can [21]. We give below the RIC based exact recovery
conditions for modified-CS [17]:

Theorem 1 (Exact Recovery Conditions — Modified-g$};, Theorem 1] Given a sparse vecter, whose supportN. =
TUA\ A, whereA = N\ T andA. = T\ N, consider reconstructing it from := Az by solving (10). Letk := |T},
u:=|A|, e:=|A.| ands := |N|. Then,z is the unique minimizer of (10) if

1) Okyu <1 anddyy, + oy + 63 5, < 1 and

- 0 s +M
2) aj(2u,u) + ax(u,u) < 1 whereay(S, 9) == —— 1k
176571552

The above conditions can also be rewritten in terms,ef « by substitutingk = s + ¢ — u.
A simpler sufficient condition for modified-CS that uses otilg RIC is [17, Corollary 1]:

2090 4 030 + Oste—u + 0o + 200404y < 1.
Compare this with simple CS which requires [27], [65], [28]
o5 < V2 —1 0Or g5+ 035 < 1.



Algorithm 3 Kalman Filtered Modified-CS-residual (KalMoCS) and KF-CS
For ¢ > 0 do,

1) SetT = N,_;.

2) Initial KF.

Pyji—1="Pi_1 + Qs, WhereQ; := o2, I
Ky =Py 1A' (AP A +0*1)7!
Py=(I — KA) Py
Teinit = (I — Kt A) i1 + Ky (21)
3) CS-residual or Modified-CS-residual.
a) Compute the KF residuad;, usingg: = y: — Ay init X
b) KalMoCS: Solve modified; on the residual: computé; as the solution of

mbin HchHl S.t. Hgt — Ab||2 <e

« In case of KF-CS: replacgbre||1 by [|b]:.
c) Computed; = ¢ i + 5
4) Support Estimation via Add-LS-Del.
Taga=T U{i € T¢: |(&¢):| > agd}
(Zadd) Tags = Aluss ¥»  (Fadd) e, =0
Ny =Taga\ {i € T : |(add)i| < ager} (22)
5) Final Estimate: If N, is equal toT’, set
Tt final = Lt,init
else, compute an LS estimate usiVg and update?, as follows.
(4,fina) 7, = A, "y, (&4 final) e = 0
(P, 5, = (Ag, Ag) 7 0% (P genm =05 (P e =0 (23)

To compare these conditions numerically, we canwsee = 0.02s which is typical for time series applications (see Fig. 1).
Using d. < cda, [31, Corollary 3.4], it can be show that modified-CS only regsid2,, < 0.004. On the other hand, simple
CS requiresiz,, < 0.008 which is clearly stronger.

Exact recovery conditions for regularized modified-CS ie tinise-free case, i.e. for (18) with= 0 are obtained in
[21, Theorem 1]. These are weaker than those for modifiedtGS + i, = +p for somei € T (some of the constraints
llbr — fir|lec < p are active for the true signak) and some elements of this active set satisfy the conditieengin [21,
Theorem 1]. One set of practical applications wheye- i, = +p with nonzero probability is when dealing with quantized
signals and quantized signal estimates.

B. Error Bounds for the Noisy case

When measurements are noisy, one cannot get exact recowergan only bound the reconstruction error. We give here
the error bounds for both LS-CS [15] and modified-CS [22]. T!$eCS-residual step error can be bounded as follows. The
proof follows in exactly the same way as that given in [15] v¢h€S is done using the Dantzig selector instead of constiain
BPDN as in (8).

Theorem 2 (LS-CS-residual error boundt5, Lemma 1] Letz be a sparse vector with suppawt and lety := Ax + w
with [|w]| < e. Also, letA := N\ T andA, := T\ N. Let & be computed as in (9). Hya| < (V2 —1)/2 anddr| < 1/2,

[z =& < C'(IT1, |ADe + Oy 1o C7 (IT], |AD 24l (24)

whereC'(|T|, |A[) := C1(2|A]) + V2Co(2|A])y /{77, C" (T, |A]) = 2C22IANV/TT, C1(S) = 15557, andCa(S) :=
214’(\/5*1)55

1—(v24+1)ds *

By adapting the approach of [27], the error of modified-CS barbounded as a function ¢f'| = |N| + |A.| — |A] and
|A|. This was done by Jacques in [66] and by us in [22].



Theorem 3 (modified-CS error boundR2, Lemma 1] Letx be a sparse vector with suppayt and lety := Az + w with
[w]| < e. Also, letA:= N\ T andA. := T\ N. Let & denote the solution of (11). 7434 < (V2 —1)/2, then

4T 0s
1 (V2+1)ds

For both LS-CS and modified-CS, the error after the final L s@n be bounded in terms @f:= N andA := N \ N
as follows.

|z — 2| <CL(|IT| + 3|A])e < 9.8¢, whereCy(S) : (25)

0,7, A 1
|z — Zanaill < (1+ 2120 ||z | + —mee (26)

1—46,7 s
|7 1 5\T\

C. Recursive Reconstruction: Time-Invariant Error Bouig8&ability)

LetT:= N, A:=N\N andA, := N\ N. So far we bounded the LS-CS-residual error or the modifi§de@or as a
function of |T|,|A|. The bound is small as long &4.| and|A| are small. Similarly the bound on the error of the final LS
estimate, given in (26), is small |;A| and|A,| are small. However for recursive reconstruction, what wednis conditions
under which we can get a time invariant bound|dn| and|A| as well as ofA| and|A.|. Otherwise, it can happen that the
support errors keep adding up and become large and the sdhteppen to the reconstruction errors.

The study of error stability over time requires a signal demodel. We assume the following simple deterministic rhode
[15, Signal Model 1]. (a) There is nonzero deldybetween new coefficient addition and removal times; (b) @trfl, additions
and removals occur at every change time; (c) new coefficienégnitudes increase gradually from zero for sometime and
finally reach a constant value; and (d) coefficients’ magletudecrease gradually before becoming zero (getting rednfoom
support). Under this model, one can show the following. Ttiia@ conditions in the final result are somewhat messy and so
we skip them. We only state a qualitative version here.

Theorem 4 (Time-invariant error bounds15, Theorem 2] Assume the above signal change model. If

1) the initial simple CS step is accurate enough,

2) the noise is bounded and the number of measurements, large enough so that certain conditions on the RIC and

ROC hold,
3) the addition and deletion thresholds are appropriatetly s
4) for a givenn and noise bound,
a) the smallest constant coefficient magnitude is large gmou
b) the rates of coefficient magnitude increase and decreasarge enough, and
c) the delay between addition timeg, is larger than the “worst case detection delay” plus caefiicdecrease time,
then,
1) the number of final missee\;| and extragA. ;| as well as the initial misselg\;| and extragA. ;| are bounded bys,,
or by a quantity slightly larger thaf,,
2) within a finite delay, all new additions get detected andfatsely deleted, i.elA;| = 0, and all the extras get deleted,
i.e. |Ae,t| - O,

3) and the reconstruction error is bounded by a time-inma@ad small values at all times.

As long as the number of new additions or removals,< |V;| (slow support change), the above result shows that the
worst case number of misses or extras is also small compauthe tsupport size. This makes it a meaningful result. Shigjla
we can argue that the reconstruction error bound is smallpeoed to the signal energy.

The above result was proved for LS-CS in [15, Theorem 2]. ptdssible to prove an exactly analogous result for modified-
CS as well. The key ideas in obtaining this result are asva@ldi) One needs to ensure that within a finite delay of a new
addition time, all new additions definitely get detected aodl false deleted (this delay is the “worst case detectidayde
(ii) This needs to be done while ensuring that there are rsefdkletions of the constant coefficients. (iii) Also, théetien
threshold needs to be high enough to definitely delete aletties every-so-often (ensu@| is bounded). (iv) Finally, the
“worst case detection delay” plus the coefficient decrese heed to be smaller than the delay between two additioastim

The above result assumes support change evdrgmes. One can also show stability under a more generadlsigndel
that allows support changes at every time. This has been fdormth modified-CS and LS-CS in [22].

VIl. EXPERIMENTS

We briefly describe three sets of experiments here. The fitstansists of simulation experiments that demonstrate tha
modified-CS achieves exact reconstruction using signifigdewer measurements than what simple CS needs. The sasebtnd
consists of simulation experiments that compare the réngi®on errors of LS-CS, KF-CS, modified-CS (actually nfisdi-
BPDN) and regularized modified-BPDN with each other and wither existing work in literature (CS-diff and weightégd).

The third set of experiments studies recursive recoveryafgimulated dynamic MRI experiment. Here we took actual (not
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Fig. 2. The N-RMSE for reg-mod-BPDN, mod-BPDN, BPDN, LS-CS, KF-@&ighted/;, CS-residual, CS-mod-residual and modified-
CS-residual are plotted againgk|/|N|.

sparsified) larynx or cardiac image sequences and simulMiidby taking a randomly selected set of their partial Fourie
measurements. In this case, we did not add measurement hoisever since the signal sequence is not exact sparse, one
could think of the compressible coefficients as “noise”qthoise is correlated with the signal, but none of our analyses

any probability model, so the correlation does not mati&).demonstrate error stability over time of modified-CS agdd@S

and we also show that modified-CS has lower error than LS-CS.

A. Exact Reconstruction Probability Computation via Mo@i&rlo

In Sec VI-A, we only compared sufficient conditions for CS anddified-CS. However, this does not mean that the required
number of measurements, for CS is definitely smaller than what modified-CS needs. dinaly compare this, we need to
use Monte Carlo. We obtained a Monte Carlo estimate of thbgiitity of exact reconstruction for CS and for modified-CS,
for a given A (i.e. we averaged over the joint distribution ;ofand iy given A) as follows [17]. Fix signal lengthym = 256
and its support sizes = 0.1m = 26. In the experiment we describe here we also fixed ¢ = 0.08m. We variedn. For
eachn, we generated a x m random-Gaussian matrixy once. We then repeated the following 500 times. (i) Gendfae
support,N, of size s, uniformly at random from{1,m| and generatéz)x ~ N(0,1001). Set(z)y- = 0. (i) Sety := Ax.

(iii) GenerateA of sizew uniformly at random from the elements 8f. (iv) GenerateA, of sizee, uniformly at random from
the elements ofl, m] \ N. (v) SetT = N U A, \ A. (vi) Solve modified-CS, i.e. solve (10). Call the solutid cqcs. (Vii)
Solve simple CS, i.e. solve (10) with being the empty set. Call the solutidi:s.

At the end, estimate the probability of exact reconstrurctising modified-CS by counting the number of timgs,.cs
was equal tor (“equal” was defined a§,,oacs — x||2/|z|l2 < 107°) and dividing by500. Do the same for CS usingcs.
In this experiment, we observed the following.

1) With 19% measurements, modified-CS gives exact recovéhyprobability (w.p.) 99.8%, while CS does this w.p. zero.

2) With 25% measurements, modified-CS gives exact recovihyprobability (w.p.) 100%, while CS does this w.p. 0.2%.

3) CS requires 40% measurements to work “reliably”, i.e. it ggexact recovery w.p. at least 98%.

More detailed simulation results for various choicesucdind e are summarized in [17, Table 1].

B. Reconstruction Error Comparisons

In Fig. 2, we compare the Monte Carlo average of the recoctiru error of reg-mod-BPDN given in (19) with that of
modified-BPDN given in (12), modified-CS-residual given 20), BPDN [24], weighted’; [46], CS-residual [67] and CS-
mod-residual. Weighted solvesmin, y||bre||1 +~'||br |1 + 5 |ly — Abl|3. CS-residual is an improved version of CS-diff [67].
It computesi: = /i + b whereb solves min, v||b||; + Ty — A — Ab|)3

The simulation model used is as specified in [20]. The measemés were random-Gaussian projections corrupted by zero
mean i.i.d. Gaussian noise with varianeg. We usedm = 256, support sizg N| = 0.1m = 26 and support extras size,
|A.| = 0.1|N| = 3. We plot the errors againgi\|/|N|. The parameters, e.g, A, 7/, used in each of the minimizations were
selected as explained in [20]. Notice that with= 30% measurements and a bad signal prior (Iam@é: reg-mod-BPDN,
mod-BPDN and weighted,; have similar performance. LS-CS is worse than either ofehbst better than simple CS and
CS-residual. Withn = 13% in (b) and (c), reg-mod-BPDN significantly outperforms &letothers. In (b), the signal prior is
good (smallo?) and so CS-residual is better than modified-CS or weiglite@vhich do not use signal value knowledge at

p
all) whereas all three of them have similar performance Jna{een the signal prior is bad.
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C. Recursive reconstruction: simulated dynamic MRI

We now show comparisons for recursively reconstructingcina (compressible) vocal tract image sequence from sited|
dynamic MRI measurements [17]. The original image sequénhsbown in Fig. 1. In Fig. 3, we show normalized root mean
squared error (N-RMSE) comparisons of modified-CS and LSA@B simple CS [24], [10] and CS-diff [67]. In the plot
shown, the LS-CS error is close to that of modified-CS becawsénplemented LS estimation using conjugate gradient and
did not allow the solution to converge (forcibly ran it withraduced number of iterations). Without this, LS-CS erroswa
much higher, since the computed initial LS estimate itsel6wnaccurate. Notice from the figure that modified-CS andCISS-
significantly outperform CS and CS-diff. Also, modified-C&shsmaller error than LS-CS. In Fig 3(b), CS-diff performs so
poorly, because the initial error at= 0 is itself very large (since we use onhy = 0.19m). As a result the difference signal
att = 1 is not compressible enough, making its error large and s®@onheven whemy, is larger and the initial error is small,
as in Fig. 3(a), the CS-diff error is still unstable, i.e.ntieases over time.

VIII. CONCLUSIONS

In this chapter, we summarized our recent work on algoritfongecursive reconstruction of sparse signal sequendes. T
key ideas we used are that in many such sequences, the ppatérn changes slowly over time, and, in certain cases, th
same is true also for signal value change. Using just thedgstimption, the recursive recovery problem can be refatea!
as one of sparse recovery in the presence of partial suppowtledge. We discussed two solutions to this problem, tis¢iir
called least squares CS-residual (LS-CS), and the secahcthare powerful one is called Modified-CS. Modified-CS ach&v
provably exact recovery under weaker conditions (usingefaweasurements) than what simple CS needs whenever thersupp
knowledge is accurate enough. When measurements are tiwsgrrors are provably bounded. For recursive recovery wit
noisy measurements, the most important question is, whemweaobtain time-invariant bounds on the reconstructioonrsrr
i.e. when can we show error stability over time? We showed ttia can be done under fairly mild assumptions for both
LS-CS and modified-CS. For problems where both slow suppattséignal value change hold, we introduced Kalman filtered
CS-residual (KF-CS) or its improved versions, Kalman fédteModified-CS-residual (KalIMoCS). Their performance gsial
is still mostly a part of ongoing workAmong all the ideas introduced in this chapter, we think MiediCS, explained in Sec
IV-B, and Modified-CS-residual, explained in Sec V-B, arertiost promising approaches.

Ongoing work is looking at how to utilize correlated, but noécessarily slow, support change to design recursive
reconstruction algorithms [4]. Another line of work is eaphg the problem of recursive reconstruction in the presen
of (potentially) very large but correlated noise [68], [5].
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