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Abstract—We study the problem of recursively reconstructing
a time sequence of sparse vectors St from measurements of the
form Mt = ASt+BLt where A and B are known measurement
matrices, and Lt lies in a slowly changing low dimensional
subspace. We assume that the signal of interest (St) is sparse,
and has support which is correlated over time. We introduce a
solution which we call Recursive Projected Modified Compressed
Sensing (ReProMoCS), which exploits the correlated support
change of St. We show that, under weaker assumptions than
previous work, with high probability, ReProMoCS will exactly
recover the support set of St and the reconstruction error of St

is upper bounded by a small time-invariant value. A motivating
application where the above problem occurs is in functional MRI
imaging of the brain to detect regions that are “activated” in
response to stimuli. In this case both measurement matrices are
the same (i.e. A = B). The active region image constitutes the
sparse vector St and this region changes slowly over time. The
background brain image changes are global but the amount of
change is very little and hence it can be well modeled as lying in
a slowly changing low dimensional subspace, i.e. this constitutes
Lt.

I. INTRODUCTION

We study the problem of recursively reconstructing a time
sequence of sparse vectors St from under-sampled mea-
surements corrupted by (possibly) large magnitude but low-
dimensional noise. By low-dimensional we mean that the Lt’s
all lie in a low-dimensional subspace, which is allowed to
change slowly over time. Specifically we observe

Mt := ASt +BLt

where A and B are known matrices, and Lt is (potentially)
large but low-dimensional and non-sparse noise. If we let
L̃t := BLt then Mt can also be expressed as ASt + L̃t. This
problem has applications in fMRI imaging where the “active”
region of the brain is the sparse signal of interest, and the
background brain image is slowly changing low dimensional
background. In this case, B = A is the partial Fourier
matrix. Another application is separating the foreground and
background of a sequence of single-pixel images. Some ex-
periments are available in [1].

A. Related Work and Contribution

This work is related to [2], [3] which study the problem of
decomposing an observed matrix M = [M1 · · ·Mt] into the
sum of a sparse matrix S = [S1 · · ·St] and a low rank matrix
L = [L1 · · ·Lt]. These papers can all be viewed as batch

solutions to the problem studied here. A limitation of these
works is that they either require independence over time of the
support of S [2] or stronger restrictions on the sparsity pattern
of S [3], [4]. A more detailed discussion is provided in [5].
Both of these are not practical assumptions for image analysis
because foreground objects often move in a correlated fashion
over time. This can result in some rows of S having many non-
zero entries, while other rows have very few or no non-zero
entries. These papers also do not consider the case where the
sparse vectors are undersampled. Other related works, some of
which consider the under-sampled case, include [4], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16].

The problem of recursively reconstructing sparse vectors in
large but low-dimensional noise was studied in [17], where
the solution called Recursive Projected CS (ReProCS) was
presented and analyzed. This work extends these results in
two ways. First, we study the case where the sparse and low
rank vectors may be under-sampled (multiplied by the matrices
A and B). To the best of our knowledge this is the first work
that analyzes recursive sparse recovery from undersampled
measurements in the presence of large but structured (low-
dimensional) noise. Second, we modify the algorithm in [17]
by using modified-CS [18] in place of the simple `1 minimiza-
tion (basis pursuit denoising) step in ReProCS. This allows
us to prove the same performance guarantees under weaker
assumptions as long as the support of St changes slowly over
time.

A key difference of our work compared with most existing
work analyzing finite sample PCA, e.g. [19], and references
therein, is that in these works the noise/error in the observed
data is independent of the true (noise-free) data. However,
in our case, because of how ̂̃Lt is computed, the error et =

L̃t− ̂̃Lt is correlated with L̃t. As a result the tools developed in
these earlier works cannot be used for our problem. This is the
main reason we need to develop and analyze projection-PCA
based approaches for subspace addition.

B. Notation

For a matrix M, M ′ denotes its transpose and M† denotes
is Moore-Penrose pseudo-inverse. For an Hermitian matrix H,
we use H EVD

= UΛU ′ to mean the eigenvalue decomposition
where U is a unitary matrix, and Λ is diagonal with entries
arranged in decreasing order. For an indexing set T and matrix



M, MT is the matrix formed by retaining the columns of M
indexed by T . We use range(M) to refer to the subspace
spanned by the columns of M .

Definition 1.1. We refer to a matrix P as a basis matrix if
P ′P = I .

Definition 1.2. For a matrix C we use the notation Q =
basis(C) to mean: Q is a matrix such that the columns of Q
form an orthonormal basis for range(C) i.e. Q′Q = I and
range(Q) = range(C).

Definition 1.3. The s-restricted isometry constant (RIC) [20]
δs for an n×m matrix Ψ is the smallest real number satisfying
(1−δs)‖x‖22 ≤ ‖Ψx‖22 ≤ (1+δs)‖x‖22 for all s-sparse vectors
x.

II. PROBLEM FORMULATION AND MODEL ASSUMPTIONS

The measurement vector at time t, Mt, is an m-dimensional
vector which is constituted as Mt = ASt+BLt. A and B are
known m× n matrices where n can be greater than m. St is
a sparse vector in Rn with support size at most s and whose
non-zero entries have magnitude at least Smin. Furthermore,
the number of elements that enter the support and the number
of elements that exit the support at a given time are both
bounded by sa. Lt is a dense vector which lies in a slowly
changing low-dimensional subspace of Rn. Since all of the
Lt’s lie in a low dimensional subspace so do the vectors BLt.
Therefore let L̃t = BLt, then the observed vector can be
expressed as Mt = ASt + L̃t.

We assume that we have access to an accurate estimate of
the subspace in which the first ttrain vectors L̃t lie. That is we
have a basis matrix Q̂0 such that ‖(I −Q′0Q0)Q̂0‖2 is small.
Here Q0 = basis([L̃1, L̃2, . . . , L̃ttrain ]). Our goal is to estimate
St at every time t > ttrain.

Notation for St. Let Tt := {i ∈ {1, . . . , n}|(St)i 6= 0} be
the support of St. At each time t > ttrain Tt changes as: Tt =
(Tt−1∪Tadd,t)\Tdel,t where Tadd,t are the newly added elements
of the support, and Tdel,t are the elements deleted from the
support at time t. Define s := maxt |Tt| and and sa :=
maxt max {|Tadd,t|, |Tdel,t|} Let Smin := min

t
min
i∈Tt

|(St)i|.

A. Model on Lt
1) The Lt’s lie in a low-dimensional subspace that changes

every so often. Let P(t) be a basis matrix for this
subspace at time t. Then Lt = P(t)at where P(t) changes
every so often. Denote the subspace change times by
tj , j = 0, 1, 2, · · · , J . (There are a maximum of J
subspace change times.) For tj ≤ t ≤ tj+1, P(t) = Pj
where Pj is an m × rj basis matrix with rj � m and
rj � (tj+1 − tj).

2) At the change times, tj , Pj changes as Pj =
[Pj−1 Pj,new] where Pj,new is an m × cj,new basis
matrix with columns orthogonal to the columns of Pj−1.
Therefore rj = rj−1 + cj,new. We can then write

at =

[
at,∗
at,new

]
conformal with the partition of Pj .

3) There exists a constant cmx such that 0 ≤ cj,new ≤ cmx.

4) The vector of coefficients at = P ′(t)Lt is a zero mean
bounded random variable. That is E(at) = 0 and there
is a constant γ∗ such that ‖at‖∞ ≤ γ∗ for all t.
The covariance matrix Λt := Cov[at] = E(ata

′
t) is

diagonal with λ− := mint λmin(Λt) > 0 and λ+ :=
maxt λmax(Λt) < ∞. Thus the condition number of
any Λt is bounded by f := λ+

λ− .
5) Finally, the at’s are mutually independent over time.

Definition 2.1. Define Qj = basis(BPj), and Qj,new =
basis

(
(I −Qj−1Qj−1

′)BPj
)
.

Notice that Q′j−1Qj,new = 0.

B. Slow Subspace Change

By slow subspace change we mean all of the following:
1) The delay between consecutive subspace change times

(tj+1 − tj) is large enough.
2) The vector of coefficients for the new directions, at,new

is initially small. That is max
tj≤t<tj+α

‖at,new‖∞ ≤ γnew

with γnew � γ∗ and γnew � Smin, but can increase
gradually. This is modeled as follows. Split the in-
terval [tj , tj+1 − 1] into α length periods. We as-
sume that maxj maxt∈[tj+(k−1)α,tj+kα−1] ‖at,new‖∞ ≤
min(vk−1γnew, γ∗) for a v > 1 but not too large.

3) The number of newly added directions is small i.e.
cj,new ≤ cmx � r0.

C. Matrix Coherence Parameter and its Relation with RIC

Definition 2.2. For an m× n matrix C and m× p matrix A
define the incoherence coefficient κs,A(C) by

κs,A(C) := max
|T |≤s

‖AT ′ basis(C)‖2

and let κs(C) := κs,I(C).

κs,A(C) can be thought of as a measure of the coherence
between range(AT ) and range(C) for any set T of size
less than or equal to s. When A = I , κs(C) measures
the denseness of columns of basis(C) and hence in [17]
it was referred to as the denseness coefficient. Notice that,
‖AT ′C‖2 ≤ κs,A(C)‖C‖2 for any set T such that |T | ≤ s.

Lemma 2.3. For a basis matrix P (P ′P = I) and matrix A.
δs((I − PP ′)A) ≤ δs(A) + (κs,A(P ))2.

III. RECURSIVE PROJECTED MODIFIED CS

The Recursive Projected Modified CS algorithm is summa-
rized in Algorithm 2. First we need the following definition

Definition 3.1. Define the time interval Ij,k := [tj + (k −
1)α, tj + kα − 1] for k = 1, . . .K and Ij,K+1 := [tj +
Kα, tj+1 − 1] where K is the algorithm parameter in Al-
gorithm 1.

A. The Projection-PCA algorithm

Given a data matrix D, a basis matrix P and an integer
r, projection-PCA (proj-PCA) applies PCA on Dproj := (I −
PP ′)D.



Algorithm 2 Recursive Projected Modified CS (ReProMoCS)
Parameters: algorithm parameters: ξ, ω, α, K, model parameters: tj , r0, cj,new (set as in Theorem 4.1 or as in [17, Sec X-B]
when the model is not known)
Input: Mt, Output: Ŝt,

̂̃Lt, Q̂(t)

Initialization: Compute Q̂0 ← proj-PCA
(

[L̃1, L̃2, · · · , L̃ttrain ], [.], r0

)
, and set Q̂(t) ← Q̂0.

Let T̂ttrain+1 = ∅, and let j ← 1, k ← 1.
For t > ttrain, do the following:

1) Estimate Nt and St via Projected Modified CS:
a) Nullify most of L̃t: compute Φ(t) ← I − Q̂(t−1)Q̂

′
(t−1), compute yt ← Φ(t)Mt

b) Sparse Recovery: compute Ŝt,modcs as the solution of minx ‖xT̂ c
t
‖1 s.t. ‖yt − Φ(t)Ax‖2 ≤ ξ

c) Support Estimate: compute N̂t = {i : |(Ŝt,modcs)i| > ω}, and set T̂t+1 = N̂t
d) LS Estimate of St: compute (Ŝt)N̂t

= ((Φ(t)A)N̂t
)†yt, (Ŝt)N̂c

t
= 0

2) Estimate L̃t:
̂̃Lt = Mt −AŜt.

3) Update Q̂(t) by K Projection PCA steps.
a) If t = tj + kα− 1,

i) Q̂j,new,k ← proj-PCA
([̂̃Ltj+(k−1)α, . . . ,

̂̃Ltj+kα−1

]
, Q̂j−1, cj,new

)
,

ii) set Q̂(t) ← [Q̂j−1 Q̂j,new,k]; increment k ← k + 1.
Else
i) set Q̂(t) ← Q̂(t−1).

b) If t = tj +Kα− 1, then set Q̂j ← [Q̂j−1 Q̂j,new,K ]. Increment j ← j + 1. Reset k ← 1.
4) Increment t← t+ 1 and go to step 1.

Algorithm 1 projection-PCA: Q← proj-PCA(D, P, r)
1) Projection: compute Dproj ← (I − PP ′)D

2) PCA: 1
αD
DprojDproj

′ EVD
=

[
QQ⊥

] [Λ 0
0 Λ⊥

] [
Q′

Q⊥
′

]
where Q is an n× r basis matrix and αD is the number
of columns in D.

B. ReProMoCS

The idea behind ReProMoCS (Algorithm 2 ) is as follows.
Assume that the current basis matrix, Q̂(t−1) is an accurate
estimate of the current subspace where the L̃t’s lie. We
project the measurement Mt perpendicular to range Q̂(t−1)

in order to nullify most of L̃t and obtain yt := Φ(t)Mt where
Φ(t) = I − Q̂(t−1)Q̂

′
(t−1). Since the projection matrix only

has rank n − r∗ where r∗ = rank(Q̂(t−1)), there are only
n − r∗ “effective” linear measurements. Recovering the n
dimensional sparse vector St now becomes a sparse recovery
problem in small noise. Using the support estimate from the
previous time we use the modified-CS algorithm to recover
Ŝt,modcs and estimate its support by thresholding on the
recovered vector. By computing a least squares (LS) estimate
of St on the estimated support and setting it to zero everywhere
else (step 1d), we can get a more accurate final estimate, Ŝt.
This Ŝt is used to estimate L̃t as ̂̃Lt = Mt − AŜt (step
2). The sparse recovery error is then et := St − Ŝt. SincễLt = Mt − AŜt, et also satisfies Aet = ̂̃Lt − BLt. Thus,
a small et means that L̃t is also recovered accurately. The

estimated ̂̃Lt’s are used to obtain new estimates of Qj,new every
α frames for a total of Kα frames via a modification of the
standard PCA procedure, which we call projection PCA (step
3).

IV. PERFORMANCE GUARANTEES

This result says that if (a) the algorithm parameters are set
appropriately; (b) The RIC of A is small enough; (c) the basis
matrices for the previous subspace, the newly added subspace,
and the unestimated part of the newly added subspace are
sufficiently incoherent with A; (d) the low-dimensional sub-
space changes slowly enough; (e) the condition number of the
covariance matrix of at,new is small enough, then with high
probability, the algorithm exactly recovers the support of St
at all times t. A detailed discussion of the assumptions and
how they compare with other results is available in [5].

Theorem 4.1. Consider Algorithm 2. Let c := cmx and r :=
r0 + (J − 1)c. Assume that Lt obeys the model given in Sec.
II-A and there are a total of J change times. Assume also that
the initial subspace estimate is accurate enough, i.e. ‖(I −
Q̂0Q̂

′
0)Q0‖ ≤ r0ζ, for a ζ that satisfies

ζ ≤ min

(
10−4

r2
,

1.5× 10−4

r2f
,

1

r3γ2
∗

)
where f :=

λ+

λ−

If the following conditions hold:
1) the algorithm parameters are set as ξ =

ξ0(ζ), %√
s∆

7.50ξ ≤ ω < Smin − %√
s∆

7.50ξ, K =

K(ζ), α ≥ αadd,A = 1.05αadd(ζ), where



ξ0(ζ), %,K(ζ), αadd(ζ) are defined in Definition
4.2.

2) A, Pj−1, Pj,new,
Dj,new,k := (I − Q̂j−1Q̂

′
j−1 − Q̂j,new,kQ̂

′
j,new,k)Qj,new,

and Gj,new,k := (I − Pj,newPj,new
′)P̂j,new,k

satisfy δs+3s∆(A) ≤ 0.05, κs+3s∆,A(QJ−1) ≤
0.22, maxj κs+3s∆,A(Qj,new) ≤ 0.14,
maxj max0≤k≤K κs+3s∆,A(Dj,new,k) ≤ 0.15,
maxj max0≤k≤K κs+3s∆,A(Gj,new,k) ≤ 0.14,
maxj max0≤k≤K κs+3s∆,A(Dj,∗,k) ≤ 1 with
P̂j,new,0 = [.] (empty matrix).

3) for a given value of Smin, the subspace change
is slow enough, i.e. minj(tj+1 − tj) > Kα,
maxj maxt∈Ij,k ‖at,new‖∞ ≤ min(1.2k−1γnew, γ∗),
14ρξ0(ζ) ≤ Smin,

4) the condition number of the covariance matrix of at,new

is bounded, i.e. λmax[Cov(at,new)]
λmin[Cov(at,new)] ≤

√
2

then, with probability at least (1− n−10),
1) at all times, t, T̂t = Tt and ‖et‖2 = ‖Ŝt − St‖2 ≤

0.18
√
cγnew + 1.2

√
ζ(
√
r + 0.06

√
c).

2) the subspace error SE(t) := ‖(I − Q̂(t)Q̂
′
(t))Q(t)‖2

satisfies the bounds given in [17, Theorem 18].

The proof can be found in [5].

Definition 4.2. 1) Define K(ζ) :=
⌈

log(0.6cζ)
log 0.6

⌉
2) Define ξ0(ζ) :=

√
cγnew +

√
ζ(
√
r +
√
c)

3) Define % to be the smallest real number such that ‖St−
Ŝt,modcs‖∞ ≤ %√

s∆
‖St − Ŝt,modcs‖2 for all t. Notice

that % ≤ √s∆ because the infinity norm is always less
than or equal to the two norm.

4) Let K = K(ζ). Define

αadd =

⌈
4608(log 6KJ+11 logn)

ζ2(λ−)2

max
(

min(1.24Kγ4
new, γ

4
∗),

16
c2 , 4(0.186γ2

new +

0.0034γnew + 2.3)2
)⌉

.

In words, αadd is the smallest value of the number of
data points, α, needed for one projection PCA step to
ensure that Theorem 4.1 holds w.p. at least (1− n−10).

V. PROOF OUTLINE

The proof of Theorem 4.1 essentially follows from two main
lemmas. The first Lemma gives an exponentially decaying
upper bound on a high probability1 upper bound for the
subspace error under the assumptions of the Theorem. The
other main lemma says that if, during the time interval Ij,k−1,
the algorithm has worked well (recovered the support of St
exactly and recovered the background subspace with small
enough error), then it will also work well in Ij,k w.h.p.. The
proof of this lemma requires two lemmas: one for the projected
CS step and one for the projection PCA step of the algorithm.
The proof the CS lemma is fairly strightforward and uses the
ModCS error bound in [18]. The proof of the subspace lemma

1We choose αadd (the amount of time between projection-PCA steps) so
that the conclusions of Theorem 4.1 hold with probability at least 1−n−10).

is longer and uses the sin θ theorem [21] and matrix Hoeffding
inequalities [22].
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