
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014 5007

Recursive Robust PCA or Recursive Sparse
Recovery in Large but Structured Noise

Chenlu Qiu, Member, IEEE, Namrata Vaswani, Senior Member, IEEE,
Brian Lois, Graduate Student Member, IEEE, and Leslie Hogben

Abstract— This paper studies the recursive robust principal
components analysis problem. If the outlier is the signal-of-
interest, this problem can be interpreted as one of recursively
recovering a time sequence of sparse vectors, St , in the presence
of large but structured noise, Lt . The structure that we assume
on Lt is that Lt is dense and lies in a low-dimensional subspace
that is either fixed or changes slowly enough. A key application
where this problem occurs is in video surveillance where the goal
is to separate a slowly changing background (Lt) from moving
foreground objects (St) on-the-fly. To solve the above problem,
in recent work, we introduced a novel solution called recursive
projected CS (ReProCS). In this paper, we develop a simple
modification of the original ReProCS idea and analyze it. This
modification assumes knowledge of a subspace change model on
the Lt ’s. Under mild assumptions and a denseness assumption
on the unestimated part of the subspace of Lt at various times,
we show that, with high probability, the proposed approach
can exactly recover the support set of St at all times, and the
reconstruction errors of both St and Lt are upper bounded by
a time-invariant and small value. In simulation experiments, we
observe that the last assumption holds as long as there is some
support change of St every few frames.

Index Terms— Robust PCA, sparse recovery, compressive
sensing, robust matrix completion.

I. INTRODUCTION

PRINCIPAL Components Analysis (PCA) is a widely used
dimension reduction technique that finds a small num-

ber of orthogonal basis vectors, called principal components
(PCs), along which most of the variability of the dataset
lies. It is well known that PCA is sensitive to outliers.
Accurately computing the PCs in the presence of outliers is
called robust PCA [4]–[7]. Often, for time series data, the
PCs space changes gradually over time. Updating it on-the-fly
(recursively) in the presence of outliers, as more data comes

Manuscript received March 4, 2013; revised December 17, 2013; accepted
May 11, 2014. Date of publication June 17, 2014, date of current version
July 10, 2014. This work was supported by the National Science Foundation
under Grant CCF-0917015 and Grant CCF-1117125. This paper was presented
at the 2010 Allerton Conference on Communication, Control, and Comput-
ing, 2013 IEEE International Conference on Acoustics, Speech, and Signal
Processing, and 2013 International Symposium on Information Theory.

C. Qiu and N. Vaswani are with the Department of Electrical and Com-
puter Engineering, Iowa State University, Ames, IA 50011 USA (e-mail:
chenlu@iastate.edu; namrata@iastate.edu).

B. Lois and L. Hogben are with the Department of Mathematics,
Iowa State University, Ames, IA 50011 USA (e-mail: blois@iastate.edu;
lhogben@iastate.edu).

Communicated by Y. Ma, Associate Editor for Signal Processing.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2014.2331344

in is referred to as online or recursive robust PCA [8]–[10].
“Outlier” is a loosely defined term that refers to any corruption
that is not small compared to the true data vector and that
occurs occasionally. As suggested in [6] and [11], an outlier
can be nicely modeled as a sparse vector whose nonzero values
can have any magnitude.

A key application where the robust PCA problem occurs
is in video analysis where the goal is to separate a slowly
changing background from moving foreground objects [5], [6].
If we stack each frame as a column vector, the background
is well modeled as being dense and lying in a low dimen-
sional subspace that may gradually change over time, while
the moving foreground objects constitute the sparse outliers
[6], [11]. Other applications include detection of brain acti-
vation patterns from functional MRI (fMRI) sequences (the
“active” part of the brain can be interpreted as a sparse outlier),
detection of anomalous behavior in dynamic social networks
and sensor networks based detection and tracking of abnormal
events such as forest fires or oil spills. Clearly, in all these
applications, an online solution is desirable.

The moving objects or the active regions of the brain or the
oil spill region may be “outliers” for the PCA problem, but in
most cases, these are actually the signals-of-interest whereas
the background image is the noise. Also, all the above signals-
of-interest are sparse vectors. Thus, this problem can also be
interpreted as one of recursively recovering a time sequence
of sparse signals, St , from measurements Mt := St + Lt that
are corrupted by (potentially) large magnitude but dense and
structured noise, Lt . The structure that we require is that Lt

be dense and lie in a low dimensional subspace that is either
fixed or changes “slowly enough” in the sense quantified in
Sec III-B.

A. Related Work

There has been a large amount of work on robust
PCA, see [4]–[7], [12]–[14], and recursive robust PCA see
[8]–[10]. In most of these works, either the locations of the
missing/corruped data points are assumed known [8] (not a
practical assumption); or they first detect the corrupted data
points and then replace their values using nearby values [9]; or
weight each data point in proportion to its reliability (thus soft-
detecting and down-weighting the likely outliers) [5], [10]; or
just remove the entire outlier vector [13], [14]. Detecting or
soft-detecting outliers (St) as in [5], [9], [10] is easy when the
outlier magnitude is large, but not otherwise. When the signal

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

of interest is St , the most difficult situation is when nonzero
elements of St have small magnitude compared to those of Lt

and in this case, these approaches do not work.
In recent works [6] and [7], a new and elegant solution to

robust PCA called Principal Components’ Pursuit (PCP) has
been proposed, that does not require a two step outlier location
detection/correction process and also does not throw out the
entire vector. It redefines batch robust PCA as a problem
of separating a low rank matrix, Lt := [L1, . . . , Lt], from
a sparse matrix, St := [S1, . . . , St], using the measurement
matrix, Mt := [M1, . . . , Mt] = Lt + St . Other recent works
that also study batch algorithms for recovering a sparse St and
a low-rank Lt from Mt := Lt + St or from undersampled
measurements include [15]–[24].

Let ‖A‖∗ be the nuclear norm of A (sum of singular values
of A) while ‖A‖1 is the �1 norm of A seen as a long vector.
It was shown in [6] that, with high probability (w.h.p.), one
can recover Lt and St exactly by solving PCP:

min
L,S
‖L‖∗ + λ‖S‖1 subject to L+ S =Mt (1)

provided that (a) the left and right singular vectors of Lt are
dense; (b) any element of the matrix St is nonzero w.p. �, and
zero w.p. 1− �, independent of all others; and (c) the rank of
Lt is bounded by a small enough value.

As described earlier, many applications where robust PCA
is required, such as video surveillance, require an online
(recursive) solution. Even for offline applications, a recursive
solution is typically faster than a batch one. In recent
work [1], [25], and [26], we introduced a novel solution
approach, called Recursive Projected Compressive Sensing
(ReProCS), that recursively recovered St and Lt at each
time t . In simulation and real data experiments (see [26] and
http://www.ece.iastate.edu/∼chenlu/ReProCS/ReProCS_main.
htm), it was faster than batch methods such as PCP and
also significantly outperformed them in situations where
the support changes were correlated over time (as long as
there was some support change every few frames) or when
the background subspace dimension was large (for a given
support size). In this work we develop a simple modification
of the original ReProCS idea and analyze it. This modification
assumes knowledge of the subspace change model on the Lt ’s.

B. Our Contributions

We show that (i) if an estimate of the subspace of Lt at the
initial time is available; (ii) if Lt , lies in a slowly changing
low dimensional subspace as defined in Sec III-B, (iii) if this
subspace is dense, if (iv) the unestimated part of the changed
subspace is dense at all times, and (v) if the subspace change
model is known to the algorithm, then, w.h.p., ReProCS can
exactly recover the support set of St at all times; and the
reconstruction errors of both St and Lt are upper bounded
by a time invariant and small value. Moreover, after every
subspace change time, w.h.p., the subspace error decays to a
small enough value within a finite delay. Because (iv) depends
on an algorithm estimate, our result, in its current form, cannot
be interpreted as a correctness result but only a useful step
towards it. From simulation experiments, we have observed

that (iv) holds for correlated support changes as long as the
support changes every few frames. This connection is being
quantified in ongoing work. Assumption (v) is also restrictive
and we explain in Sec IV-D how it can possibly be removed
in future work.

We also develop and analyze a generalization of ReProCS
called ReProCS with cluster-PCA (ReProCS-cPCA) that is
designed for a more general subspace change model, and that
needs an extra clustering assumption. Its main advantage is
that it does not require a bound on the number of subspace
changes, J , as long as the separation between the change
points is allowed to grow logarithmically with J . Equivalently,
it does not need a bound on the rank of Lt .

If Lt is the signal of interest, then ReProCS is a solution
to recursive robust PCA in the presence of sparse outliers.
To the best of our knowledge, this is the first analysis of
any recursive (online) robust PCA approach. If St is the
signal of interest, then ReProCS is a solution to recursive
sparse recovery in large but low-dimensional noise. To our
knowledge, this work is also the first to analyze any recursive
(online) sparse plus low-rank recovery algorithm. Another
online algorithm that addresses this problem is given in [27],
however, it does not contain any performance analysis. Our
results directly apply to the recursive version of the matrix
completion problem [28], [29] as well since it is a simpler
special case of the current problem (the support set of St is
the set of indices of the missing entries and is thus known) [6].

The proof techniques used in our work are very differ-
ent from those used to analyze other recent batch robust
PCA works [6], [7], [12]–[16], [20]–[24]. The works of
[13] and [14] also study a different case: that where an
entire vector is either an outlier or an inlier. Our proof
utilizes (a) sparse recovery results [30]; (b) results from matrix
perturbation theory that bound the estimation error in com-
puting the eigenvectors of a perturbed Hermitian matrix with
respect to eigenvectors of the original Hermitian matrix (the
famous sin θ theorem of Davis and Kahan [31]) and (c) high
probability bounds on eigenvalues of sums of independent
random matrices (matrix Hoeffding inequality [32]).

A key difference of our approach to analyzing the subspace
estimation step compared with most existing work analyzing
finite sample PCA, see [33] and references therein, is that it
needs to provably work in the presence of error/noise that is
correlated with Lt . Most existing works, including [33] and the
references it discusses, assume that the noise is independent of
(or at least uncorrelated with) the data. However, in our case,
because of how the estimate L̂t is computed, the error et :=
Lt − L̂t is correlated with Lt . As a result, the tools developed
in these earlier works cannot be used for our problem. This is
also the reason why simple PCA cannot be used and we need
to develop and analyze projection-PCA based approaches for
subspace estimation (see Appendix B for details).

The ReProCS approach is related to that of [34]–[36] in
that all of these first try to nullify the low dimensional
signal by projecting the measurement vector into a subspace
perpendicular to that of the low dimensional signal, and then
solve for the sparse “error” vector (outlier). However, the
big difference is that in all of these works the basis for the

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5009

subspace of the low dimensional signal is perfectly known.
Our work studies the case where the subspace is not known.
We have an initial approximate estimate of the subspace, but
over time it can change significantly. In this work, to keep
things simple, we use �1 minimization done separately for
each time instant (also referred to as basis pursuit denoising
(BPDN)) [30], [37]. However, this can be replaced by any
other sparse recovery algorithm, either recursive or batch,
as long as the batch algorithm is applied to α frames at a
time, e.g. one can replace BPDN by modified-CS or support-
predicted modified-CS [38].

C. Paper Organization

The rest of the paper is organized as follows. We give the
notation and background required for the rest of the paper
in Sec II. The problem definition and the model assumptions
are given in Sec III. We explain the ReProCS algorithm and
give its performance guarantees (Theorem 4.2) in Sec IV. The
terms used in the proof are defined in Sec V. The proof is
given in Sec VI. A more general subspace change model and
ReProCS-cPCA which is designed to handle this model are
given in Sec. VII. We also give the main result for ReProCS-
cPCA in this section and discuss it. A discussion with respect
to the result for PCP [6] is also provided here. Section VIII
contains the proof of this theorem. In Sec IX-A, we show that
our slow subspace change model indeed holds for real videos.
In Sec IX-B, we show numerical experiments demonstrating
Theorem 4.2, as well as comparisons of ReProCS with PCP.
Conclusions and future work are given in Sec X.

II. NOTATION AND BACKGROUND

A. Notation

For a set T ⊂ {1, 2, . . . , n}, we use |T | to denote its
cardinality, i.e., the number of elements in T . We use T c

to denote its complement w.r.t. {1, 2, . . . n}, i.e. T c := {i ∈
{1, 2, . . . n} : i /∈ T }.

We use the interval notation, [t1, t2], to denote the set of all
integers between and including t1 to t2, i.e. [t1, t2] := {t1, t1+
1, . . . , t2}. For a vector v, vi denotes the i th entry of v and vT

denotes a vector consisting of the entries of v indexed by T .
We use ‖v‖p to denote the �p norm of v. The support of v,
supp(v), is the set of indices at which v is nonzero, supp(v) :=
{i : vi �= 0}. We say that v is s-sparse if |supp(v)| ≤ s.

For a matrix B , B ′ denotes its transpose, and B† its pseudo-
inverse. For a matrix with linearly independent columns,
B† = (B ′B)−1 B ′. We use ‖B‖2 := maxx �=0 ‖Bx‖2/‖x‖2 to
denote the induced 2-norm of the matrix. Also, ‖B‖∗ is the
nuclear norm (sum of singular values) and ‖B‖max denotes the
maximum over the absolute values of all its entries. We let
σi (B) denotes the i th largest singular value of B . For a

Hermitian matrix, B , we use the notation B
EV D= U�U ′

to denote the eigenvalue decomposition of B . Here U is an
orthonormal matrix and � is a diagonal matrix with entries
arranged in decreasing order. Also, we use λi (B) to denote
the i th largest eigenvalue of a Hermitian matrix B and we
use λmax(B) and λmin(B) denote its maximum and minimum

eigenvalues. If B is Hermitian positive semi-definite (p.s.d.),
then λi (B) = σi (B). For Hermitian matrices B1 and B2, the
notation B1
 B2 means that B2 − B1 is p.s.d. Similarly,
B1 � B2 means that B1 − B2 is p.s.d.

For a Hermitian matrix B , ‖B‖2 =√
max(λ2

max(B), λ2
min(B)) and thus, ‖B‖2 ≤ b implies

that −b ≤ λmin(B) ≤ λmax(B) ≤ b.
We use I to denote an identity matrix of appropriate size.

For an index set T and a matrix B , BT is the sub-matrix of
B containing columns with indices in the set T . Notice that
BT = B IT . Given a matrix B of size m × n and B2 of size
m × n2, [B B2] constructs a new matrix by concatenating
matrices B and B2 in the horizontal direction. Let Brem be a
matrix containing some columns of B . Then B \ Brem is the
matrix B with columns in Brem removed.

For a tall matrix P , span(P) denotes the subspace spanned
by the column vectors of P .

The notation [.] denotes an empty matrix.
Definition 2.1: We refer to a tall matrix P as a basis matrix

if it satisfies P ′P = I .
Definition 2.2: We use the notation Q = basis(B) to mean

that Q is a basis matrix and span(Q) = span(B). In other
words, the columns of Q form an orthonormal basis for the
range of B.

Definition 2.3: The s-restricted isometry constant
(RIC) [34], δs , for an n × m matrix
 is the smallest real
number satisfying (1 − δs)‖x‖22 ≤ ‖
T x‖22 ≤ (1 + δs)‖x‖22
for all sets T ⊆ {1, 2, . . . n} with |T | ≤ s and all real vectors
x of length |T |.

It is easy to see that maxT :|T |≤s ‖(
T
′
T)−1‖2 ≤

1
1−δs(
) [34].

Definition 2.4: We give some notation for random variables
in this definition.

1) We let E[Z] denote the expectation of a random variable
(r.v.) Z and E[Z |X] denote its conditional expectation
given another r.v. X.

2) Let B be a set of values that a r.v. Z can take. We use
Be to denote the event Z ∈ B, i.e. Be := {Z ∈ B}.

3) The probability of any event Be can be expressed
as [39],

P(Be) := E[IB(Z)].
where

IB(Z) :=
{

1 if Z ∈ B
0 otherwise

is the indicator function on the set B.
4) For two events Be, B̃e, P(Be|B̃e) refers to the condi-

tional probability of Be given B̃e, i.e. P(Be|B̃e) :=
P(Be, B̃e)/P(B̃e).

5) For a r.v. X, and a set B of values that the r.v. Z can
take, the notation P(Be|X) is defined as

P(Be|X) := E[IB(Z)|X].
Notice that P(Be|X) is a r.v. (it is a function of the r.v.
X) that always lies between zero and one.

5010 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Finally, RHS refers to the right hand side of an equation or
inequality; w.p. means “with probability”; and w.h.p. means
“with high probability”.

B. Compressive Sensing Result

The error bound for noisy compressive sensing (CS) based
on the RIC is as follows [30].

Theorem 2.5 ([30]): Suppose we observe

y :=
x + z

where z is the noise. Let x̂ be the solution to following problem

min
x
‖x‖1 subject to ‖y −
x‖2 ≤ ξ (2)

Assume that x is s-sparse, ‖z‖2 ≤ ξ , and δ2s(
) < b(
√

2−1)
for some 0 ≤ b < 1. Then the solution of (2) obeys

‖x̂ − x‖2 ≤ C1ξ

with C1 = 4
√

1+ δ2s(
)

1− (
√

2 + 1)δ2s(
)
≤ 4

√
1+ b(

√
2− 1)

1− b
.

Remark 2.6: Notice that if b is small enough, C1 is a small
constant but C1 > 1. For example, if δ2s(
) ≤ 0.15, then
C1 ≤ 7. If C1ξ > ‖x‖2, the normalized reconstruction error
bound would be greater than 1, making the result useless.
Hence, (2) gives a small reconstruction error bound only for
the small noise case, i.e., the case where ‖z‖2 ≤ ξ � ‖x‖2.

C. Results From Linear Algebra

Davis and Kahan’s sinθ Theorem [31] studies the rotation
of eigenvectors by perturbation.

Theorem 2.7 (sin θ theorem [31]): Given two Hermitian
matrices A and H satisfying

A = [
E E⊥

] [A 0
0 A⊥

] [
E ′

E⊥′
]

,

H = [
E E⊥

] [H B ′
B H⊥

] [
E ′

E⊥′
]

(3)

where [E E⊥] is an orthonormal matrix. The two ways of
representing A+H are

A+H = [
E E⊥

] [A + H B ′
B A⊥ + H⊥

] [
E ′

E⊥′
]

= [
F F⊥

] [� 0
0 �⊥

] [
F ′

F⊥′
]

where [F F⊥] is another orthonormal matrix. Let R :=
(A+H)E −AE = HE. If λmin(A) > λmax(�⊥), then

‖(I − F F ′)E‖2 ≤ ‖R‖2
λmin(A)− λmax(�⊥)

The above result bounds the amount by which the two sub-
spaces span(E) and span(F) differ as a function of the norm
of the perturbation ‖R‖2 and of the gap between the minimum
eigenvalue of A and the maximum eigenvalue of �⊥. Next,
we state Weyl’s theorem which bounds the eigenvalues of a
perturbed Hermitian matrix, followed by Ostrowski’s theorem.

Theorem 2.8 (Weyl [40]): Let A and H be two n × n
Hermitian matrices. For each i = 1, 2, . . . , n we have

λi (A)+ λmin(H) ≤ λi (A+H) ≤ λi (A)+ λmax(H)

Theorem 2.9 (Ostrowski [40]): Let H and W be n × n
matrices, with H Hermitian and W nonsingular. For each
i = 1, 2 . . . n, there exists a positive real number θi such that
λmin(W W ′) ≤ θi ≤ λmax(W W ′) and λi (W H W ′) = θiλi (H).
Therefore,

λmin(W H W ′) ≥ λmin(W W ′)λmin(H)

The following lemma proves some simple linear algebra
facts.

Lemma 2.10: Suppose that P, P̂ and Q are three basis
matrices. Also, P and P̂ are of the same size, Q′P = 0 and
‖(I − P̂ P̂ ′)P‖2 = ζ∗. Then,

1) ‖(I − P̂ P̂ ′)P P ′‖2 = ‖(I − P P ′)P̂ P̂ ′‖2 = ‖(I − P P ′)
P̂‖2 = ‖(I − P̂ P̂ ′)P‖2 = ζ∗

2) ‖P P ′ − P̂ P̂ ′‖2 ≤ 2‖(I − P̂ P̂ ′)P‖2 = 2ζ∗
3) ‖P̂ ′Q‖2 ≤ ζ∗
4)

√
1− ζ 2∗ ≤ σi ((I − P̂ P̂ ′)Q) ≤ 1

Further, if P is an n × r1 basis matrix and P̂ is an n ×
r2 basis matrix with r2 ≥ r1, then ‖(I − P̂ P̂ ′)P P ′‖2 ≤ ‖
(I − P P ′)P̂ P̂ ′‖2

The proof is in the Appendix.

D. High Probability Tail Bounds for Sums of
Independent Random Matrices

The following lemma follows easily using Definition 2.4.
We will use this at various places in the paper.

Lemma 2.11: Suppose that B is the set of values that the
r.v.s X, Y can take. Suppose that C is a set of values that the
r.v. X can take. For a 0 ≤ p ≤ 1, if P(Be|X) ≥ p for all
X ∈ C, then P(Be|Ce) ≥ p as long as P(Ce) > 0.

The proof is in the Appendix.
The following lemma is an easy consequence of the chain

rule of probability applied to a contracting sequence of events.
Lemma 2.12: For a sequence of events Ee

0, Ee
1, . . . Ee

m that
satisfy Ee

0 ⊇ Ee
1 ⊇ Ee

2 · · · ⊇ Ee
m, the following holds

P(Ee
m |Ee

0) =
m∏

k=1

P(Ee
k |Ee

k−1).

Proof: P(Ee
m|Ee

0) = P(Ee
m, Ee

m−1, . . . Ee
0|Ee

0) =∏m
k=1 P(Ee

k |Ee
k−1, Ee

k−2, . . . Ee
0) =

∏m
k=1 P(Ee

k |Ee
k−1).

Next, we state the matrix Hoeffding inequality [32, Th. 1.3]
which gives tail bounds for sums of independent random
matrices.

Theorem 2.13 (Matrix Hoeffding for a Zero Mean
Hermitian Matrix [32]): Consider a finite sequence {Zt } of
independent, random, Hermitian matrices of size n × n, and
let {At} be a sequence of fixed Hermitian matrices. Assume
that each random matrix satisfies (i) P(Z2

t
 A2
t)=1 and (ii)

E(Zt)=0. Then, for all ε > 0,

P

(
λmax

(∑
t

Zt

)
≤ ε

)
≥ 1− n exp

(−ε2

8σ 2

)
,

where σ 2 =
∥∥∥∑t A2

t

∥∥∥
2
.

The following two corollaries of Theorem 2.13 are easy to
prove. The proofs are given in Appendix A.

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5011

Corollary 2.14 (Matrix Hoeffding Conditioned on Another
Random Variable for a Nonzero Mean Hermitian Matrix):
Given an α-length sequence of random matrices {Zt } of size
n×n, a r.v. X, and a set C of values that X can take. Assume
that, for all X ∈ C, (i) Zt ’s are conditionally independent
given X; (ii) P(b1 I
 Zt
 b2 I |X) = 1 and (iii) b3 I

1
α

∑
t E(Zt |X)
 b4 I . Then for all ε > 0,

P

(
λmax

(
1

α

∑
t

Zt

)
≤ b4 + ε

∣∣∣X
)

≥ 1− n exp

(−αε2

8(b2 − b1)2

)
for all X ∈ C

P

(
λmin

(
1

α

∑
t

Zt

)
≥ b3 − ε

∣∣∣X
)

≥ 1− n exp

(−αε2

8(b2 − b1)2

)
for all X ∈ C

The proof is in Appendix A.
Corollary 2.15 (Matrix Hoeffding Conditioned on Another

Random Variable for an Arbitrary Nonzero Mean Matrix):
Given an α-length sequence {Zt } of random Hermitian matri-
ces of size n × n, a r.v. X, and a set C of values that
X can take. Assume that, for all X ∈ C, (i) Zt ’s are
conditionally independent given X; (ii) P(‖Zt‖2 ≤ b1|X) = 1
and (iii) ‖ 1

α

∑
t E(Zt |X)‖2 ≤ b2. Then, for all ε > 0,

P

(∥∥∥∥
1

α

∑
t

Zt

∥∥∥∥
2
≤ b2 + ε

∣∣∣X
)

≥ 1− (n1 + n2) exp

(
−αε2

32b2
1

)
for all X ∈ C

The proof is in Appendix A.

III. PROBLEM DEFINITION AND MODEL ASSUMPTIONS

We give the problem definition below followed by the model
and then describe the two key assumptions.

A. Problem Definition

The measurement vector at time t , Mt , is an n dimensional
vector which can be decomposed as

Mt = Lt + St (4)

Here St is a sparse vector with support set size at most s and
minimum magnitude of nonzero values at least Smin. Lt is
a dense but low dimensional vector, i.e. Lt = P(t)at where
P(t) is an n × r(t) basis matrix with r(t) < n, that changes
every so often according to the model given below. We are
given an accurate estimate of the subspace in which the initial
ttrain Lt ’s lie, i.e. we are given a basis matrix P̂0 so that
‖(I − P̂0 P̂ ′0)P0‖2 is small. Here P0 is a basis matrix for
span(Lttrain), i.e. span(P0) = span(Lttrain). Also, for the first
ttrain time instants, St is zero. The goal is

1) to estimate both St and Lt at each time t > ttrain, and
2) to estimate span(Lt) every so often, i.e. compute

P̂(t) so that the subspace estimation error, SE(t) :=
‖(I − P̂(t) P̂ ′(t))P(t)‖2 is small.

Fig. 1. The subspace change model explained in Sec III-A. Here
t0 = 0 and 0 < ttrain < t1.

We assume a subspace change model that allows the
subspace to change at certain change times t j rather than
continuously at each time. It should be noted that this is
only a model for reality. In practice there will typically be
some changes at every time t ; however this is difficult to
model in a simple fashion. Moreover the analysis for such
a model will be a lot more complicated. However, we do
allow the variance of the projection of Lt along the subspace
directions to change continuously. The projection along the
new directions is assumed to be small initially and allowed to
gradually increase to a large value (see Sec III-B).

Signal Model 3.1 (Model on Lt):

1) We assume that Lt = P(t)at with P(t) = Pj for all
t j ≤ t < t j+1, j = 0, 1, 2 · · · J . Here Pj is an n × r j

basis matrix with r j < min(n, (t j+1 − t j)) that changes
as

Pj = [Pj−1 Pj,new]

where Pj,new is a n × c j,new basis matrix with
P ′j,new Pj−1 = 0. Thus

r j = rank(Pj) = r j−1 + c j,new.

We let t0 = 0. Also tJ+1 can be the length of the
sequence or tJ+1 = ∞. This model is illustrated in
Figure 1.

2) The vector of coefficients, at := P(t)
′Lt , is a zero

mean random variable (r.v.) with mutually uncorrelated
entries, i.e. E[at] = 0 and E[(at)i (at) j] = 0 for i �= j .

Definition 3.2: Define the covariance matrix of at to be
the diagonal matrix

�t := Cov[at] = E(at a
′
t).

Define For t j ≤ t < t j+1, at is an r j length vector which can
be split as

at = Pj
′Lt =

[
at,∗

at,new

]

where at,∗ := Pj−1
′Lt and at,new := Pj,new

′Lt . Thus, for this
interval, Lt can be rewritten as

Lt =
[
Pj−1 Pj,new

] [at,∗
at,new

]
= Pj−1at,∗ + Pj,newat,new

Also, �t can be split as

�t =
[

(�t)∗ 0
0 (�t)new

]

5012 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

where (�t)∗ = Cov[at,∗] and (�t)new = Cov[at,new] are
diagonal matrices. Define

λ− := inf
t

λmin(�t), λ+ := sup
t

λmax(�t),

and

λ−new := inf
t

λmin((�t)new), λ+new := sup
t

λmax((�t)new).

Also let,

f := λ+

λ−
and

g := λ+new

λ−new
.

The above simple model only allows new additions to
the subspace and hence the rank of Pj can only grow over
time. The ReProCS algorithm designed for this model can be
interpreted as a recursive algorithm for solving the robust PCA
problem studied in [6] and other batch robust PCA works.
At time t we estimate the subspace spanned by L1, L2, . . . Lt .
For the above model, the subspace dimension is bounded by
r0+ Jcmax. Thus a bound on J is needed to keep the subspace
dimension small at all times. We remove this limitation in
Sec VII where we also allow for subspace deletions and
correspondingly design a ReProCS algorithm that does the
same thing. For that algorithm, as we will see, we will not
need a bound on the number of changes, J , as long as
the separation between the subspace change times is allowed
to grow logarithmically with J and a clustering assumption
holds.

Define the following quantities for the sparse part.
Definition 3.3: Let Tt := {i : (St)i �= 0} denote the

support of St . Define

Smin := min
t>ttrain

min
i∈Tt
|(St)i |, and s := max

t
|Tt |.

B. Slow Subspace Change

By slow subspace change we mean all of the following.
First, the delay between consecutive subspace change times

is large enough, i.e., for a d large enough,

t j+1 − t j ≥ d (5)

Second, the magnitude of the projection of Lt along the newly
added directions, at,new, is initially small but can increase
gradually. We model this as follows. Assume that for an
α > 01 the following holds

‖at,new‖∞ ≤ min
(
v

t−t j
α −1γnew, γ∗

)
(6)

when t ∈ [t j , t j+1− 1] for a v > 1 but not too large and with
γnew < γ∗ and γnew < Smin. Clearly, the above assumption
implies that

‖at,new‖∞ ≤ γnew,k := min(vk−1γnew, γ∗)

for all t ∈ [t j + (k − 1)α, t j + kα − 1]. This assumption is
verified for real video data in Sec. IX-A.

1As we will see in the algorithm α is the number of previous frames used
to get a new estimate of Pj,new.

Third, the number of newly added directions is small, i.e.
c j,new ≤ cmax � r0. This is also verified in Sec. IX-A.

Remark 3.4 (Large f): Since our problem definition allows
large noise, Lt , but assumes slow subspace change, thus the
maximum condition number of Cov[Lt], which is bounded
by f , cannot be bounded by a small value. The reason is
as follows. Slow subspace change implies that the projection
of Lt along the new directions is initially small, i.e. γnew is
small. Since λ− ≤ γnew, this means that λ− is small. Since
E[‖Lt‖2] ≤ rmaxλ

+ and rmax is small (low-dimensional),
thus, large Lt means that λ+ needs to be large. As a result
f = λ+/λ− cannot be upper bounded by a small value.

C. Measuring Denseness of a Matrix and
Its Relation With RIC

Before we can state the denseness assumption, we need to
define the denseness coefficient.

Definition 3.5 (Denseness Coefficient): For a matrix or a
vector B, define

κs(B) = κs(span(B)) := max|T |≤s
‖IT
′basis(B)‖2 (7)

where ‖.‖2 is the vector or matrix �2-norm.
Clearly, κs(B) ≤ 1. First consider an n-length vector B .

Then κs measures the denseness (non-compressibility) of B .
A small value indicates that the entries in B are spread out,
i.e. it is a dense vector. A large value indicates that it is
compressible (approximately or exactly sparse). The worst
case (largest possible value) is κs(B) = 1 which indicates
that B is an s-sparse vector. The best case is κs(B) = √s/n
and this will occur if each entry of B has the same magnitude.
Similarly, for an n × r matrix B , a small κs means that most
(or all) of its columns are dense vectors.

Remark 3.6: The following facts should be noted about
κs(.):

1) For a given matrix B, κs(B) is an non-decreasing
function of s.

2) κs([B1]) ≤ κs([B1 B2]) i.e. adding columns cannot
decrease κs .

3) A bound on κs(B) is κs(B) ≤ √sκ1(B). This follows
because ‖B‖2 ≤

∥∥[‖b1‖2 . . . ‖br‖2
]∥∥

2 where bi is the
i th column of B.

The lemma below relates the denseness coefficient of a basis
matrix P to the RIC of I−P P ′. The proof is in the Appendix.

Lemma 3.7: For an n× r basis matrix P (i.e P satisfying
P ′P = I),

δs(I − P P ′) = κ2
s (P).

In other words, if P is dense enough (small κs), then the RIC
of I − P P ′ is small.

In this work, we assume an upper bound on κ2s(Pj) for all
j , and a tighter upper bound on κ2s(Pj,new), i.e., there exist
κ+2s,∗ < 1 and a κ+2s,new < κ+2s,∗ such that

max
j

κ2s(Pj−1) ≤ κ+2s,∗ (8)

max
j

κ2s(Pj,new) ≤ κ+2s,new (9)

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5013

Additionally, we also assume denseness of another matrix,
D j,new,k , whose columns span the currently unestimated part
of span(Pj,new) (see Theorem 4.2).

The denseness coefficient κs(B) is related to the denseness
assumption required by PCP [6]. That work uses κ1(B) to
quantify denseness.

IV. RECURSIVE PROJECTED CS (REPROCS) AND

ITS PERFORMANCE GUARANTEES

In this section we introduce the ReProCS algorithm and
state the performance guarantee for it. We begin by first stating
the result in IV-A, and then describe and explain the algorithm
in Section IV-C. In Section IV-B we describe the projection-
PCA algorithm that is used in the ReProCS algorithm. The
assumptions used by the result are discussed in Section IV-D.

A. Performance Guarantees

We state the main result here and then discuss it in
Section IV-D. Definitions needed for the proof are given in
Section V and the actual proof is given in Section VI.

Definition 4.1: We define here the parameters that will be
used in Theorem 4.2.

1) Let c := cmax and r := r0 + (J − 1)c.
2) Define K = K (ζ) :=

⌈
log(0.6cζ)

log 0.6

⌉

3) Define ξ0(ζ) := √cγnew +√ζ (
√

r +√c)
4) Define

αadd(ζ) : =
⌈
(log 6K J + 11 log n)

8 · 242

ζ 2(λ−)2 ·

max

(
min(1.24K γ 4

new, γ 4∗),
16

c2 ,

4(0.186γ 2
new + 0.0034γnew + 2.3)2

)⌉

We note that αadd is the number of data points, α, used
for one projection PCA step and is chosen to ensure that
the conclusions of Theorem 4.2 hold with probability
at least (1 − n−10). If γ∗ is large enough (γ∗4 > 16),
a simpler but larger value for αadd(ζ) is

αadd(ζ) =
⌈
(log 6K J + 11 log n)

8 · 242γ 4∗
ζ 2(λ−)2

⌉

Theorem 4.2: Consider Algorithm 2. Pick a ζ that satisfies

ζ ≤ min

(
10−4

r2 ,
1.5× 10−4

r2 f
,

1

r3γ 2∗

)

Assume that the initial subspace estimate is accurate enough,
i.e. ‖(I − P̂0 P̂ ′0)P0‖ ≤ r0ζ . If the following conditions hold:

1) The algorithm parameters are set as ξ = ξ0(ζ), 7ξ ≤
ω ≤ Smin − 7ξ, K = K (ζ), α ≥ αadd(ζ)

2) Lt satisfies Signal Model 3.1 with

a) 0 ≤ c j,new ≤ cmax for all j (thus r j ≤ rmax :=
r0 + Jcmax),

b) the at ’s mutually independent over t,
c) ‖at‖∞ ≤ γ∗ for all t (at ’s bounded);,
d) 0 < λ− ≤ λ+ <∞, and
e) g ≤ g+ = √2;

Algorithm 1 Projection-PCA: Q← proj-PCA(D, P, r)

1) Projection: compute Dproj← (I − P P ′)D
2) PCA: compute 1

αDprojDproj
′ EV D=

[
Q Q⊥

] [� 0
0 �⊥

] [
Q′

Q⊥′
]

where Q is an n × r

basis matrix and α is the number of columns in D.

3) slow subspace change holds: (5) holds with d = Kα;
(6) holds with v = 1.2; and c and γnew are small enough
so that 14ξ0(ζ) ≤ Smin.

4) denseness holds: equation (8) holds with κ+2s,∗ = 0.3
and equation (9) holds with κ+2s,new = 0.15

5) the matrices

D j,new,k : = (I − P̂j−1 P̂ ′j−1 − P̂j,new,k P̂ ′j,new,k)Pj,new

and

Q j,new,k : = (I − Pj,new Pj,new
′)P̂j,new,k

satisfy

max
j

max
1≤k≤K

κs(D j,new,k) ≤ κ+s := 0.152

max
j

max
1≤k≤K

κ2s(Q j,new,k) ≤ κ̃+2s := 0.15

then, with probability at least (1 − n−10), at all times, t, all
of the following hold:

1) at all times, t,

T̂t = Tt and

‖et‖2 = ‖Lt − L̂t‖2 = ‖Ŝt − St‖2
≤ 0.18

√
cγnew + 1.2

√
ζ (
√

r + 0.06
√

c).

2) the subspace error SE(t) := ‖(I− P̂(t) P̂ ′(t))P(t)‖2 satisfies

SE(t) ≤
⎧
⎨
⎩

(r0 + (j − 1)c)ζ + 0.4cζ + 0.6k−1

if t ∈ I j,k, k = 1, 2 . . . K
(r0 + jc)ζ if t ∈ I j,K+1

≤
⎧
⎨
⎩

10−2√ζ + 0.6k−1

if t ∈ I j,k, k = 1, 2 . . . K
10−2√ζ if t ∈ I j,K+1

3) the error et = Ŝt − St = Lt − L̂t satisfies the following
at various times

‖et‖2 ≤

⎧
⎪⎪⎨
⎪⎪⎩

0.18
√

c0.72k−1γnew+
1.2(
√

r + 0.06
√

c)(r0 + (j − 1)c)ζ γ∗
if t ∈ I j,k, k = 1, 2 . . . K

1.2(r0 + jc)ζ
√

rγ∗ if t ∈ I j,K+1

≤
⎧
⎨
⎩

0.18
√

c0.72k−1γnew + 1.2(
√

r + 0.06
√

c)
√

ζ
if t ∈ I j,k, k = 1, 2 . . . K

1.2
√

r
√

ζ if t ∈ I j,K+1

Remark 4.3: Consider the last assumption. We actually
also need a similar denseness of κs(D j,new) where D j,new =
D j,new,0 = (I − P̂j−1 P̂ ′j−1)Pj,new. Conditioned on the fact
that span(Pj−1) has been accurately estimated, this follows
easily from the denseness of Pj,new (see Lemma 6.10).

The above result says the following. Consider Algorithm 2.
Assume that the initial subspace error is small enough. If the
algorithm parameters are appropriately set, if slow subspace

5014 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Algorithm 2 Recursive Projected CS (ReProCS)
Parameters: algorithm parameters: ξ , ω, α, K , model parameters: t j , c j,new
(set as in Theorem 4.2)
Input: Mt , Output: Ŝt , L̂t , P̂(t)

Initialization: Compute P̂0 ← proj-PCA
([L1, L2, · · · , Lttrain], [.], r0

)
where r0 = rank([L1, L2, · · · , Lttrain]).

Set P̂(t)← P̂0, j ← 1, k ← 1.
For t > ttrain, do the following:

1) Estimate Tt and St via Projected CS:

a) Nullify most of Lt : compute �(t)← I − P̂(t−1) P̂ ′(t−1), compute yt ← �(t)Mt

b) Sparse Recovery: compute Ŝt,cs as the solution of minx ‖x‖1 s.t . ‖yt −�(t)x‖2 ≤ ξ

c) Support Estimate: compute T̂t = {i : |(Ŝt,cs)i | > ω}
d) LS Estimate of St : compute (Ŝt)T̂t

= ((�t)T̂t
)† yt , (Ŝt)T̂ c

t
= 0

2) Estimate Lt : L̂t = Mt − Ŝt .
3) Update P̂(t): K Projection PCA steps.

a) If t = t j + kα − 1,

i) P̂j,new,k ← proj-PCA
([

L̂t j+(k−1)α, . . . , L̂t j+kα−1

]
, P̂j−1, c j,new

)
.

ii) set P̂(t)← [P̂j−1 P̂j,new,k]; increment k ← k + 1.

Else

i) set P̂(t)← P̂(t−1).

b) If t = t j + Kα − 1, then set P̂j ← [P̂j−1 P̂j,new,K]. Increment j ← j + 1. Reset k ← 1.

4) Increment t ← t + 1 and go to step 1.

change holds, if the subspaces are dense, if the condition
number of Cov[at,new] is small enough, and if the currently
unestimated part of the newly added subspace is dense enough
(this is an assumption on the algorithm estimates), then, w.h.p.,
we will get exact support recovery at all times. Moreover, the
sparse recovery error will always be bounded by 0.18

√
cγnew

plus a constant times
√

ζ . Since ζ is very small, γnew < Smin,
and c is also small, the normalized reconstruction error for
recovering St will be small at all times. In the second conclu-
sion, we bound the subspace estimation error, SE(t). When a
subspace change occurs, this error is initially bounded by one.
The above result shows that, w.h.p., with each projection PCA
step, this error decays exponentially and falls below 0.01

√
ζ

within K projection PCA steps. The third conclusion shows
that, with each projection PCA step, w.h.p., the sparse recovery
error as well as the error in recovering Lt also decay in a
similar fashion.

As we explain in Section IV-D, the most important limita-
tion of our result is that it requires an assumption on Dnew,k

and Qnew,k which depend on algorithm estimates. Moreover,
it studies an algorithm that requires knowledge of model
parameters.

B. Projection-PCA Algorithm for ReProCS

Given a data matrix D, a basis matrix P and an inte-
ger r , projection-PCA (proj-PCA) applies PCA on Dproj :=
(I − P P ′)D, i.e., it computes the top r eigenvectors (the
eigenvectors with the largest r eigenvalues) of 1

αDprojDproj
′.

Here α is the number of column vectors in D. This is
summarized in Algorithm 1.

If P = [.], then projection-PCA reduces to standard PCA,
i.e. it computes the top r eigenvectors of 1

αDD′.

The reason we need projection PCA algorithm in step 3 of
Algorithm 2 is because the error et = L̂t − Lt = St − Ŝt

is correlated with Lt ; and the maximum condition number
of Cov(Lt), which is bounded by f , cannot be bounded by
a small value (see Remark 3.4). This issue is explained in
detail in Appendix X. Most other works that analyze standard
PCA, see [33] and references therein, do not face this issue
because they assume uncorrelated-ness of the noise/error and
the true data vector. With this assumption, one only needs
to increase the PCA data length α to deal with the larger
condition number.

We should mention that the idea of projecting perpendicular
to a partly estimated subspace has been used in other different
contexts in past work [14] and [41].

C. Recursive Projected CS (ReProCS)

We summarize the Recursive Projected CS (ReProCS) algo-
rithm in Algorithm 2. It uses the following definition.

Definition 4.4: Define the time interval I j,k := [t j +
(k − 1)α, t j + kα − 1] for k = 1, . . . K and I j,K+1 :=
[t j + Kα, t j+1 − 1].

The key idea of ReProCS is as follows. First, consider a time
t when the current basis matrix P(t) = P(t−1) and this has been
accurately predicted using past estimates of Lt , i.e. we have
P̂(t−1) with ‖(I − P̂(t−1) P̂ ′(t−1))P(t)‖2 small. We project the

measurement vector, Mt , into the space perpendicular to P̂(t−1)

to get the projected measurement vector yt := �(t)Mt where
�(t) = I − P̂(t−1) P̂ ′(t−1) (step 1a). Since the n × n projection

matrix, �(t) has rank n−r∗ where r∗ = rank(P̂(t−1)), therefore
yt has only n− r∗ “effective” measurements2, even though its

2i.e. some r∗ entries of yt are linear combinations of the other n−r∗ entries.

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5015

Fig. 2. The K projection PCA steps.

length is n. Notice that yt can be rewritten as yt = �(t)St +βt

where βt := �(t)Lt . Since ‖(I − P̂(t−1) P̂ ′(t−1))P(t−1)‖2 is
small, the projection nullifies most of the contribution of
Lt and so the projected noise βt is small. Recovering the
n dimensional sparse vector St from yt now becomes a
traditional sparse recovery or CS problem in small noise [34],
[37], [42]–[45]. We use �1 minimization to recover it (step
1b). If the current basis matrix P(t), and hence its estimate,
P̂(t−1), is dense enough, then, by Lemma 3.7, the RIC of �(t)
is small enough. Using Theorem 2.5, this ensures that St can be
accurately recovered from yt . By thresholding on the recovered
St , one gets an estimate of its support (step 1c). By computing
a least squares (LS) estimate of St on the estimated support
and setting it to zero everywhere else (step 1d), we can get a
more accurate final estimate, Ŝt , as first suggested in [46]. This
Ŝt is used to estimate Lt as L̂t = Mt− Ŝt . As we explain in the
proof of Lemma 6.4, if Smin is large enough and the support
estimation threshold, ω, is chosen appropriately, we can get
exact support recovery, i.e. T̂t = Tt . In this case, the error
et := Ŝt − St = Lt − L̂t has the following simple expression:

et = ITt (�(t))Tt
†βt = ITt [(�(t))

′
Tt

(�(t))Tt]−1 ITt
′�(t)Lt (10)

The second equality follows because (�(t))T
′�(t) =

(�(t) IT)′�(t) = IT
′�(t) for any set T.

Now consider a time t when P(t) = Pj = [Pj−1, Pj,new] and
Pj−1 has been accurately estimated but Pj,new has not been
estimated, i.e. consider a t ∈ I j,1. At this time, P̂(t−1) = P̂j−1

and so �(t) = � j,0 := I − P̂j−1 P̂ ′j−1. Let r∗ := r0 + (j −
1)cmax (We remove subscript j for ease of notation.) , and
c := cmax. Assume that the delay between change times is
large enough so that by t = t j , P̂j−1 is an accurate enough
estimate of Pj−1, i.e. ‖� j,0 Pj−1‖2 ≤ r∗ζ � 1. It is easy
to see using Lemma 2.10 that κs(�0 Pnew) ≤ κs(Pnew)+ r∗ζ ,
i.e. �0 Pnew is dense because Pnew is dense and because P̂j−1
is an accurate estimate of Pj−1 (which is perpendicular to
Pnew). Moreover, using Lemma 3.7, it can be shown that φ0 :=
max|T |≤s ‖[(�0)

′
T (�0)T]−1‖2 ≤ 1

1−δs(�0)
≤ 1

1−(κs(Pj−1)+r∗ζ)2 .
The error et still satisfies (10) although its magnitude is not
as small. Using the above facts in (10), we get that

‖et‖2 ≤ κs(Pnew)
√

cγnew + r∗ζ(
√

r∗γ∗ + √cγnew)

1− (κs(Pj−1)+ rζ)2

If
√

ζ < 1/γ∗, all terms containing ζ can be ignored and
we get that the above is approximately upper bounded by

κs (Pnew)
1−κ2

s (Pj−1)

√
cγnew. Using the denseness assumption, this quan-

tity is a small constant times
√

cγnew, e.g. with the numbers
assumed in Theorem 4.2 we get a bound of 0.18

√
cγnew.

Since γnew � Smin and c is assumed to be small, thus,
‖et‖2 = ‖St − Ŝt‖2 is small compared with ‖St‖2, i.e. St

is recovered accurately. With each projection PCA step, as we
explain below, the error et becomes even smaller.

Since L̂t = Mt − Ŝt (step 2), et also satisfies et =
Lt − L̂t . Thus, a small et means that Lt is also recovered
accurately. The estimated L̂t ’s are used to obtain new estimates
of Pj,new every α frames for a total of Kα frames via a
modification of the standard PCA procedure, which we call
projection PCA (step 3). We illustrate the projection PCA
algorithm in Figure 2. In the first projection PCA step, we
get the first estimate of Pj,new, P̂j,new,1. For the next α frame
interval, P̂(t−1) = [P̂j−1, P̂j,new,1] and so �(t) = � j,1 =
I − P̂j−1 P̂ ′j−1 − P̂new,1 P̂ ′new,1. Using this in the projected CS
step reduces the projection noise, βt , and hence the recon-
struction error, et , for this interval, as long as γnew,k increases
slowly enough. Smaller et makes the perturbation seen by the
second projection PCA step even smaller, thus resulting in
an improved second estimate P̂j,new,2. Within K updates (K
chosen as given in Theorem 4.2), it can be shown that both
‖et‖2 and the subspace error drop down to a constant times√

ζ . At this time, we update P̂j as P̂j = [P̂j−1, P̂j,new,K].

D. Discussion

First consider the choices of α and of K . Notice that
K = K (ζ) is larger if ζ is smaller. Also, αadd is inversely
proportional to ζ . Thus, if we want to achieve a smaller
lowest error level, ζ , we need to compute projection PCA over
larger durations α and we need more number of projection
PCA steps K . This means that we also require a larger delay
between subspace change times, i.e. larger t j+1 − t j .

Now consider the assumptions used in the result. We assume
slow subspace change, i.e. the delay between change times is
large enough, ‖at,new‖∞ is initially below γnew and increases
gradually, and 14ξ0 ≤ Smin which holds if cmax and γnew
are small enough. Small cmax, small initial at,new (i.e. small
γnew) and its gradual increase are verified for real video data

5016 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

in Section IX-A. As explained there, one cannot estimate
the delay between change times unless one has access to
an ensemble of videos of a given type and hence the first
assumption cannot be verified.

We also assume denseness of Pj−1 and Pj,new. This is a
subset of the denseness assumptions used in earlier work [6].
As explained there, this is valid for the video application
because typically the changes of the background sequence are
global, e.g. due to illumination variation affecting the entire
image or due to textural changes such as water motion or
tree leaves’ motion etc. We quantify this denseness using the
parameter κs . The way it is defined, bounds on κs simultane-
ously place restrictions on denseness of Lt , r = rank(PJ),
and s (the maximum sparsity of any St). To compare our
assumptions with those of Candès et. al. in [6], we could

assume κ1(PJ) ≤
√

μr
n , where μ is any value between 1

and n
r . Using the bound κs(P) ≤ √sκ1(P), we see that if

2sr
n ≤ μ−1(0.3)2, then our assumption of κ2s(PJ) ≤ 0.3

will be satisfied. Up to differences in the constants, this is
the same requirement found in [47], even though [47] studies
a batch approach (PCP) while we study an online algorithm.
From this we can see that if s grows linearly with n, then r
must be constant. Similarly, if r grows linearly with n, then s
must be constant. This is a stronger assumption than required
by [6] where s is allowed to grow linearly with n, and r
is simultaneously allowed to grow as n

log(n)2 . However, the
comparison with [6] is not direct because we do not need
denseness of the right singular vectors or a bound on the vector
infinity norm of U V ′. The reason for the stronger requirement
on the product sr is because we study an online algorithm that
recovers the sparse vector St at each time t rather than in a
batch or a piecewise batch fashion. Because of this the sparse
recovery step does not use the low dimensional structure of
the new (and still unestimated) subspace.

We assume the independence of at ’s, and hence of Lt ’s,
over time. This is typically not valid in practice; however, it
allows us to simplify the problem and hence the derivation of
the performance guarantees. In particular it allows us to use the
matrix Hoeffding inequality to bound the terms in the subspace
error bound. In ongoing work by Zhan and Vaswani [48], we
are seeing that, with some more work, this can be replaced by
a more realistic assumption: an autoregressive model on the
at ’s, i.e. assume at = bat−1 + νt where νt ’s are independent
over time and b < 1. We can work with this model in two
ways. If we assume b is known, then a simple change to the
algorithm (in the subspace update step, replace L̂t by L̂t −
bL̂t−1 everywhere) allows us to get a result that is almost
the same as the current one using exactly the same approach.
Alternatively if b is unknown, as long as b is bounded by a
b∗ < 1, we can use the matrix Azuma inequality to still get
a result similar to the current one. It will require a larger α
though and some other changes.

The most limiting assumption is the assumption on D j,new,k

and Q j,new,k because these are functions of algorithm esti-
mates. The denseness assumption on Q j,new,k is actually not
essential, it is possible to prove a slightly more complicated
version of Theorem 4.2 without it. We use this assumption

only in Lemma 6.6. However, if we use tighter bounds on
other quantities such as g and κs(Pj,new), and if we analyze
the first projection-PCA step differently from the others, we
can get a tighter bound on ζ j,1 (and hence ζ j,k for k ≥ 1) and
then we will not need this assumption.

Consider denseness of D j,new,k . Our proof actually
only needs smallness of maxt∈I j,k+1 dt where dt =
‖ITt
′D j,new,k‖2/‖D j,new,k‖2 for t ∈ I j,k+1 for k = 1, 2 . . . K .

Since this quantity is upper bounded by κs(D j,new,k), we have
just assumed a bound on this for simplicity. Note also that
densenss of D j,new,0 does not need to be assumed, this follows
from denseness of Pj,new conditioned on the fact that Pj−1
has been accurately estimated. We attempted to verify the
smallness of dt in simulations done with a dense Pj and Pj,new
and involving correlated support change of St ’s. We observed
that, as long as there was a support change every few frames,
this quantity was small. For example, with n = 2048, s = 20,
r0 = 36, cnew = 1, support change by one index every 2 frames
was sufficient to ensure a small dt at all times (see Sec IX-B).
Even one index change every 50 frames was enough to ensure
that the errors decayed down to small enough values, although
in this case dt was large at certain times and the decay of
the subspace error was not exponential. It should be possible
to use a similar idea to modify our result as well. The first
thing to point out is that the max of dt can be replaced by
its average over t ∈ I j,k with a minor change to the proof
of Lemma 6.11. Moreover, if we try to show linear decay of
the subspace error (instead of exponential decay), and if we
analyze the first projection-PCA interval differently from the
others, we will need a looser bound on the dt ’s, which will be
easier to obtain under a certain support change assumption.
In the first interval, the subspace error is large since Pnew
has not been estimated but Dnew,0 is dense (see Remark 4.3).
In the later intervals, the subspace error is lower but Dnew,k

may not be as dense.
Finally, Algorithm 2 assumes knowledge of certain model

parameters and these may not always be available. It needs
to know c j,new, which is the number of new directions added
at subspace change time j , and it needs knowledge of γnew
(in order to set ξ and ω), which is the bound on the infinity
norm of the projection of at along the new directions for the
first α frames. It also needs to know the subspace change
times t j , and this is the most restrictive.

A practical version of Algorithm 2 (that provides reasonable
heuristics for setting its parameters without model knowledge)
is given in [26]. As explained there, t̂ j+α−1 can be estimated
by taking the last set of α estimates L̂t , projecting them
perpendicular to P̂j−1 and checking if any of the singular

values of the resulting matrix is above
√

λ̂− . It should be
possible to prove in future work that this happens only after
an actual change and within a short delay of it.

Lastly, note that, because the subspace change model only
allows new additions to the subspace, the rank of the subspace
basis matrix Pj can only grow over time. The same is true for
its ReProCS estimate. Thus, max j κ2s(Pj) = κ2s(PJ) and a
bound on this imposes a bound on the number of allowed
subspace change times, J , or equivalently on the maximum

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5017

rank of Lt for any t . A similar bound is also needed by PCP [6]
and all batch approaches. In Sec VII, we explain how we can
remove the bound on J and hence on the rank of Lt if an
extra clustering assumption holds.

V. DEFINITIONS NEEDED FOR PROVING THEOREM 4.2

A few quantities are already defined in the model
(Section III-A), Definition 4.4, Algorithm 2, and Theorem 4.2.
Here we define more quantities needed for the proofs.

Definition 5.1: In the sequel, we let

1) r := rmax = r0 + Jcmax and c := cmax = max j c j,new,
2) κs,∗ := max j κs(Pj−1), κs,new := max j κs(Pj,new),

κs,k := max j κs(D j,new,k), κ̃s,k := max j κs((I −
Pj,new Pj,new

′)P̂j,new,k),
3) κ+2s,∗ := 0.3, κ+2s,new := 0.15, κ+s := 0.152, κ̃+2s := 0.15

and g+ := √2 are the upper bounds assumed in
Theorem 4.2 on max j κ2s(Pj), max j κ2s(Pj,new),
max j maxk κs(D j,new,k), max j κ2s(Q j,new,k) and g
respectively.

4) φ+ := 1.1735
5) γnew,k := min(1.2k−1γnew, γ∗) (recall that this is defined

in Sec III-B).
Definition 5.2: Define the following:

1) ζ+j,∗ := (r0 + (j − 1)c)ζ
2) Define the sequence {ζ j,k

+}k=0,1,2,...,K recursively as
follows:

ζ+j,0 : = 1

ζ+j,k : =
b + 0.125cζ

1− (ζ+j,∗)2 − (ζ+j,∗)2 f − 0.125cζ − b
for k ≥ 1,

(11)

where

b : = Cκ+s g+ζ+j,k−1 + C̃(κ+s)2g+(ζ+k−1)
2 + C ′ f (ζ+j,∗)

2

C : = 2κ+s φ+√
1− (ζ+j,∗)2

+ φ+,

C ′ : = (φ+)2 + 2φ+√
1− (ζ+j,∗)2

+ 1+

φ+ + κ+s φ+√
1− (ζ+j,∗)2

+ κ+s (φ+)2
√

1− (ζ+j,∗)2
,

C̃ : = (φ+)2 + κ+s (φ+)2
√

1− (ζ+j,∗)2
.

As we will see, ζ+j,∗ and ζ+j,k are the high probability upper
bounds on ζ j,∗ and ζ j,k (defined in Definition 5.4) under the
assumptions of Theorem 4.2.

Definition 5.3: We define the noise seen by the sparse
recovery step at time t as

βt := (I − P̂(t−1) P̂ ′(t−1))Lt .

Also define the reconstruction error of St as

et := Ŝt − St .

Here Ŝt is the final estimate of St after the LS step in
Algorithm 2. Notice that et also satisfies et = Lt − L̂t .

Definition 5.4: We define the subspace estimation errors
as follows. Recall that P̂j,new,0 = [.] (empty matrix).

SE(t) : = ‖(I − P̂(t) P̂ ′(t))P(t)‖2,
ζ j,∗ : = ‖(I − P̂j−1 P̂ ′j−1)Pj−1‖2
ζ j,k : = ‖(I − P̂j−1 P̂ ′j−1 − P̂j,new,k P̂ ′j,new,k)Pj,new‖2

Remark 5.5: Recall from the model given in Sec III-A and
from Algorithm 2 that

1) P̂j,new,k is orthogonal to P̂j−1, i.e. P̂ ′j,new,k P̂j−1 = 0

2) P̂j−1 := [P̂0, P̂1,new,K , . . . P̂j−1,new,K] and Pj−1 :=
[P0, P1,new, . . . Pj−1,new]

3) for t ∈ I j,k+1, P̂(t) = [P̂j−1, P̂j,new,k] and P(t) = Pj =
[Pj−1, Pj,new].

4) �(t) := I − P̂(t−1) P̂ ′(t−1)

Then it is easy to see that

1) ζ j,∗ ≤ ζ j−1,∗ + ζ j,K = ζ1,∗ +∑ j−1
j ′=1 ζ j ′,K

2) SE(t) ≤ ζ j,∗ + ζ j,k ≤ ζ1,∗ + ∑ j−1
j ′=1 ζ j ′,K + ζ j,k

for t ∈ I j,k+1.
Definition 5.6: Define the following

1) � j,k, � j,0 and φk

a) � j,k := I − P̂j−1 P̂ ′j−1 − P̂j,new,k P̂ ′j,new,k is the
CS matrix for t ∈ I j,k+1, i.e. �(t) = � j,k for this
duration.

b) � j,0 := I− P̂j−1 P̂ ′j−1 is the CS matrix for t ∈ I j,1,
i.e. �(t) = � j,0 for this duration. � j,0 is also the
projection matrix used in all of the projection PCA
steps for t ∈ [t j , t j+1 − 1].

c) φk := max j maxT :|T |≤s ‖((� j,k)T
′(� j,k)T)−1‖2.

It is easy to see that φk ≤ 1
1−max j δs (� j,k)

[34].

2) D j,new,k , D j,new, D j,∗,k and D j,∗
a) D j,new,k := � j,k Pj,new. span(D j,new,k) is the unes-

timated part of the newly added subspace for any
t ∈ I j,k+1.

b) D j,new := D j,new,0 = � j,0 Pj,new. span(D j,new) is
interpreted similarly for any t ∈ I j,1.

c) D j,∗,k := � j,k Pj−1. span(D j,∗,k) is the unes-
timated part of the existing subspace for any
t ∈ I j,k

d) D j,∗ := D j,∗,0 = � j,0 Pj−1. span(D j,∗,k) is
interpreted similarly for any t ∈ I j,1

e) Notice that ζ j,0 = ‖D j,new‖2, ζ j,k = ‖D j,new,k‖2,
ζ j,∗ = ‖D j,∗‖2. Also, clearly, ‖D j,∗,k‖2 ≤ ζ j,∗.

Definition 5.7:

1) Let D j,new
Q R= E j,new R j,new denote its reduced QR

decomposition, i.e. let E j,new be a basis matrix for
span(D j,new) and let R j,new = E ′j,new D j,new.

2) Let E j,new,⊥ be a basis matrix for the orthogonal com-
plement of span(E j,new) = span(D j,new). To be precise,
E j,new,⊥ is a n× (n− c j,new) basis matrix that satisfies
E ′j,new,⊥E j,new = 0.

5018 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

3) Using E j,new and E j,new,⊥, define A j,k, A j,k,⊥, H j,k,
H j,k,⊥ and B j,k as

A j,k := 1

α

∑

t∈I j,k

E j,new
′� j,0Lt Lt

′� j,0 E j,new

A j,k,⊥ := 1

α

∑

t∈I j,k

E j,new,⊥′� j,0 Lt Lt
′� j,0 E j,new,⊥

H j,k := 1

α

∑

t∈I j,k

E j,new
′� j,0

(et et
′ − Lt et

′ − et Lt
′)� j,0 E j,new

H j,k,⊥ := 1

α

∑

t∈I j,k

E j,new,⊥′� j,0

(et et
′ − Lt et

′ − et Lt
′)� j,0 E j,new,⊥

B j,k := 1

α

∑

t∈I j,k

E j,new,⊥′� j,0 L̂t L̂ ′t� j,0 E j,new

= 1

α

∑

t∈I j,k

E j,new,⊥′� j,0(Lt − et)

(Lt
′ − et

′)� j,0 E j,new

4) Define

A j,k :=
[

E j,new E j,new,⊥
] [A j,k 0

0 A j,k,⊥

] [
E j,new

′
E j,new,⊥′

]

H j,k :=
[

E j,new E j,new,⊥
] [H j,k B j,k

′
B j,k H j,k,⊥

] [
E j,new

′
E j,new,⊥′

]

Remark 5.8: 1) From the above, it is easy to see that

A j,k +H j,k = 1

α

∑

t∈I j,k

� j,0 L̂t L̂ ′t� j,0.

2) Recall from Algorithm 2 that

A j,k +H j,k
EV D=

[
P̂j,new,k P̂j,new,k,⊥

] [�k 0
0 �k,⊥

][
P̂ ′j,new,k

P̂ ′j,new,k,⊥

]

is the EVD of A j,k +H j,k .
3) Using the above, A j,k+H j,k can be decomposed in two

ways as follows:

A j,k +H j,k

= [
P̂j,new,k P̂j,new,k,⊥

] [�k 0
0 �k,⊥

] [
P̂ ′j,new,k

P̂ ′j,new,k,⊥

]

= [
E j,new E j,new,⊥

]
[

A j,k + H j,k B ′j,k
B j,k A j,k,⊥ + H j,k,⊥

] [
E j,new

′
E j,new,⊥′

]

Definition 5.9: Define the random variable X j,k :=
{a1, a2, · · · , at j+kα−1}.

Recall that the at ’s are mutually independent over t , hence
X j,k and {at j+kα, . . . , at j+(k+1)α−1} are mutually independent.

Definition 5.10: Define the set �̌ j,k as follows:

�̌ j,k : = {X j,k : ζ j,k ≤ ζ+k and T̂t = Tt for all t ∈ I j,k}
�̌ j,K+1 : = {X j+1,0 : T̂t = Tt for all t ∈ I j,K+1}

Definition 5.11: Recursively define the sets � j,k as
follows:

�1,0 : = {X1,0 : ζ1,∗ ≤ rζ

and T̂t = Tt for all t ∈ [ttrain + 1 : t1 − 1]}
� j,0 : = {X j,0 : ζ j ′,∗ ≤ ζ+j ′,∗ for all j ′ = 1, 2, . . . , j

and T̂t = Tt for all t ≤ t j−1}
� j,k : = � j,k−1 ∩ �̌ j,k k = 1, 2, . . . K + 1

Remark 5.12: Whenever T̂t = Tt we have an exact expres-
sion for et :

et = ITt [(�(t))
′
Tt

(�(t))Tt]−1 ITt
′�(t)Lt (12)

Recall that Lt = Pj at = Pj−1at,∗ + Pj,newat,new.
Definition 5.13: Define Pj,∗ := Pj−1 and P̂j,∗ := P̂j−1.
Remark 5.14: Notice that the subscript j always appears

as the first subscript, while k is the last one. At many places in
the rest of the paper, we remove the subscript j for simplicity,
e.g., �0 refers to � j,0, P̂new,k refers to P̂j,new,k , P∗ refers to
Pj,∗ := Pj−1 and so on.

VI. PROOF OF THEOREM 4.2

A. Two Main Lemmas and Proof of Theorem 4.2

The proof of Theorem 4.2 essentially follows from two main
lemmas that we state below. Lemma 6.1 gives an exponentially
decaying upper bound on ζ+k defined in Definition 5.2. ζ+k will
be shown to be a high probability upper bound for ζk under the
assumptions of the Theorem. Lemma 6.2 says that conditioned
on X j,k−1 ∈ � j,k−1, X j,k will be in � j,k w.h.p.. In words this
says that if, during the time interval I j,k−1, the algorithm has
worked well (recovered the support of St exactly and recovered
the background subspace with subspace recovery error below
ζ+k−1 + ζ+∗), then it will also work well in I j,k w.h.p..

Lemma 6.1 (Exponential Decay of ζ+k): Assume that the
bounds on ζ from Theorem 4.2 hold. Define the sequence ζ+k
as in Definition 5.2. Then

1) ζ+0 = 1 and ζ+k ≤ 0.6k + 0.4cζ for all k = 1, 2, . . . , K ,
2) the denominator of ζ+k is positive for all k =

1, 2, . . . , K .
We prove this lemma in Section VI-B.
Lemma 6.2: Assume that all the conditions of Theorem 4.2

hold. Also assume that P(�e
j,k−1) > 0. Then

P(�e
j,k|�e

j,k−1) ≥ pk(α, ζ) ≥ pK (α, ζ)

for all k = 1, 2, . . . , K , and

P(�e
j,K+1|�e

j,K) = 1

where pk(α, ζ) is defined in equation (13).
We prove this lemma in Section VI-C.
Remark 6.3: Using Lemma 6.1 and Remark 5.5 and the

value of K given in the theorem, it is easy to see that, under
the assumptions of Theorem 4.2,

� j,0 ∩ (∩K+1
k=1 �̌ j,k) ⊆ � j+1,0.

Thus P(�e
j+1,0|�e

j,0) ≥ P(�̌e
j,1, . . . �̌

e
j,K+1|�e

j,0).

Proof of Theorem 4.2:
The theorem is a direct consequence of Lemmas 6.1,

6.2, and Lemma 2.12. From Remark 6.3, P(�e
j+1,0|�e

j,0) ≥

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5019

P(�̌e
j,1, . . . �̌

e
j,K+1|�e

j,0) =
∏K+1

k=1 P(�̌e
j,k |�e

j,k−1). Also, since
� j+1,0 ⊆ � j,0, using Lemma 2.12, P(�e

J+1,0|�e
1,0) =∏J

j=1 P(�e
j+1,0|�e

j,0). Thus,

P(�e
J+1,0|�e

1,0) ≥
J∏

j=1

K+1∏

k=1

P(�̌e
j,k|�e

j,k−1)

Using Lemma 6.2, and the fact that pk(α, ζ) ≥ pK (α, ζ) (see
their respective definitions in Lemma 6.11 and equation (13)
and observe that pk(α, ζ) is decreasing in k), we get

P(�e
J+1,0|�1,0) ≥ pK (α, ζ)K J.

Also, P(�e
1,0) = 1. This follows by the assumption on P̂0 and

Lemma 6.4. Thus, P(�e
J+1,0) ≥ pK (α, ζ)K J .

Using the definition of αadd, and α ≥ αadd, we get that

P(�e
J+1,0) ≥ pK (α, ζ)K J ≥ 1− n−10

The event �e
J+1,0 implies that T̂t = Tt and et satisfies (10)

for all t < tJ+1. Using Remarks 5.5 and 6.3, �e
J+1,0 implies

that all the bounds on the subspace error hold. Using these,
‖at,new‖2 ≤ √cγnew,k , and ‖at‖2 ≤ √rγ∗, �e

J+1,0 implies
that all the bounds on ‖et‖2 hold (the bounds are obtained in
Lemma 6.4).

Thus, all conclusions of the the result hold w.p. at least
1− n−10.

B. Proof of Lemma 6.1

Proof: First recall the definition of ζ+k (Definition 5.2).
Recall from Definition 5.1 that κ+s := 0.15 , φ+ := 1.1735,
and g+ := √2. So we can make these substitutions directly.
Notice that ζ+k is an increasing function of ζ+∗ , ζ, c, and f .
Therefore we can use upper bounds on each of these quantities
to get an upper bound on ζ+k . From the definition of ζ in
Theorem 4.2 and ζ+j,∗ := (r0 + (j − 1)c)ζ we get

• ζ+j,∗ ≤ 10−4

• ζ+j,∗ f ≤ 1.5× 10−4

• cζ ≤ 10−4

•
ζ+j,∗
cζ
= (r0 + (j − 1)c)ζ

cζ
≤ r0 + (J − 1)c

c
= r

c
≤ r

(Without loss of generality we can assume that c =
cmax ≥ 1 because if c = 0 then there is no subspace
estimation problem to be solved. c = 0 is the trivial case
where all conclusions of Theorem 4.2 will hold just using
Lemma 6.4.)

• ζ+j,∗ f r ≤ r2 f ζ ≤ 1.5× 10−4

First we prove by induction that ζ+k ≤ ζ+k−1 ≤ 0.6 for all
k ≥ 1. Notice that ζ+0 = 1 by definition.

• Base case (k = 1): Using the above bounds we get that
ζ+1 < 0.5985 < 1 = ζ+0 .

• For the induction step, assume that ζ+k−1 ≤ ζ+k−2. Then
because ζ+k is increasing in ζ+k−1 (denote the increasing
function by finc) we get that ζ+k = finc(ζ

+
k−1) ≤

finc(ζ
+
k−2) = ζ+k−1.

1) To prove the first claim, first rewrite ζ+k as

ζ+k = ζ+k−1

Cκ+s g+ + C̃(κ+s)2g+(ζ+k−1)

1− (ζ+∗)2 − (ζ+∗)2 f − 0.125cζ − b

+cζ
C(ζ+∗ f)

(ζ+∗)
cζ + .125

1− (ζ+∗)2 − (ζ+∗)2 f − 0.125cζ − b

where C, C̃, and b are as in Definition 5.2. Using the
above bounds including ζ+k−1 ≤ .6 we get that

ζ+k ≤ ζ+k−1(0.6)+ cζ(0.16)

= ζ+0 (0.6)k +
k−1∑

i=0

(0.6)k(0.16)cζ

≤ ζ+0 (0.6)k +
∞∑

i=0

(0.6)k(0.16)cζ

≤ 0.6k + 0.4cζ

2) To see that the denominator is positive, observe that
the denominator is decreasing in all of its arguments:
ζ+j,∗, ζ

+
j,∗ f, cζ , and b. Using the same upper bounds as

before, we get that the denominator is greater than or
equal to 0.78 > 0.

C. Proof of Lemma 6.2

The proof of Lemma 6.2 follows from two lemmas. The
first, Lemma 6.4, is the final conclusion for the projected
CS step for t ∈ I j,k . Its proof follows using Lemmas 6.1,
3.7, 2.10, the CS error bound (Theorem 2.5) and some
straightforward steps. The second, Lemma 6.5, is the final
conclusion for one projection PCA step, i.e. for t ∈ I j,k .
Its proof is much longer. It first uses a lemma based on
the sin θ and Weyl theorems (Theorems 2.7 and 2.8) to
get a bound on ζk . This is Lemma 6.9. Next we bound
κs(Dnew) in Lemma 6.10. Finally in Lemma 6.11, we use
the expression for et from Lemma 6.4, the matrix Hoeffding
inequalities (Corollaries 2.14 and 2.15) and the bound from
Lemma 6.10 to bound each of the terms in the bound on ζk

to finally show that, conditioned on �e
j,k−1, ζk ≤ ζ+k w.h.p..

We state the two lemmas first and then proceed to prove them
in order.

Lemma 6.4 (Projected CS Lemma): Assume that all condi-
tions of Theorem 4.2 hold.

1) For all t ∈ I j,k , for any k = 1, 2, . . . K , if X j,k−1 ∈
� j,k−1,

a) the projection noise βt satisfies ‖βt‖2 ≤
ζ+k−1
√

cγnew,k + ζ+∗
√

rγ∗ ≤ √c0.72k−1γnew +
1.06
√

ζ ≤ ξ0.
b) the CS error satisfies ‖Ŝt,cs − St‖2 ≤ 7ξ0.
c) T̂t = Tt

d) et satisfies (10) and ‖et‖2 ≤
φ+[κ+s ζ+k−1

√
cγnew,k + ζ+∗

√
rγ∗] ≤ 0.18 ·

0.72k−1√cγnew + 1.17 · 1.06
√

ζ . Recall that (10)
is

ITt (�(t))Tt
†βt = ITt [(�(t))

′
Tt

(�(t))Tt]−1 ITt
′�(t)Lt

5020 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

2) For all k = 1, 2, . . . K , P(T̂t =
Tt and et satisfies (10) for all t ∈ I j,k |X j,k−1) = 1 for
all X j,k−1 ∈ � j,k−1.

Lemma 6.5 (Projection PCA Lemma): Assume that all the
conditions of Theorem 4.2 hold. Then, for all k = 1, 2, . . . K ,

P(ζk ≤ ζ+k |�e
j,k−1) ≥ pk(α, ζ)

where ζ+k is defined in Definition 5.2 and pk(α, ζ) is defined
in (13).

Proof of Lemma 6.2: Observe that P(� j,k|� j,k−1) =
P(�̌ j,k|� j,k−1). The lemma then follows by combining
Lemma 6.5 and item 2 of Lemma 6.4 and
Lemma 2.11. �

D. Proof of Lemma 6.4

We begin by first bounding the RIC of the CS matrix �k .
Lemma 6.6 (Bounding the RIC of �k): Recall that ζ∗ :=
‖(I − P̂∗ P̂ ′∗)P∗‖2. The following hold.

1) Suppose that a basis matrix P can be split as P =
[P1, P2] where P1 and P2 are also basis matrices. Then
κ2

s (P) = maxT :|T |≤s ‖I ′T P‖22 ≤ κ2
s (P1)+ κ2

s (P2).
2) κ2

s (P̂∗) ≤ κ2
s,∗ + 2ζ∗

3) κs(P̂new,k) ≤ κs,new + κ̃s,kζk + ζ∗
4) δs(�0) = κ2

s (P̂∗) ≤ κ2
s,∗ + 2ζ∗

5) δs(�k) = κ2
s ([P̂∗ P̂new,k]) ≤ κ2

s (P̂∗) + κ2
s (P̂new,k) ≤

κ2
s,∗ + 2ζ∗ + (κs,new + κ̃s,kζk + ζ∗)2 for k ≥ 1

Proof:
1) Since P is a basis matrix, κ2

s (P) = max|T |≤s ‖IT
′P‖22.

Also, ‖IT
′P‖22 = ‖IT

′[P1, P2][P1, P2]′ IT ‖2 =
‖IT
′(P1 P ′1 + P2 P ′2)IT ‖2 ≤ ‖IT

′P1 P ′1 IT ‖2 +
‖IT
′P2 P ′2 IT ‖2. Thus, the inequality follows.

2) For any set T with |T | ≤ s, ‖IT
′ P̂∗‖22 =

‖IT
′ P̂∗ P̂ ′∗ IT ‖2 = ‖IT

′(P̂∗ P̂ ′∗ − P∗P∗′ + P∗P∗′)IT ‖2 ≤
‖IT
′(P̂∗ P̂ ′∗ − P∗P∗′)IT ‖2+‖IT

′P∗P∗′ IT ‖2 ≤ 2ζ∗ +κ2
s,∗.

The last inequality follows using Lemma 2.10 with
P = P∗ and P̂ = P̂∗.

3) By Lemma 2.10 with P = P∗, P̂ = P̂∗
and Q = Pnew, ‖Pnew

′ P̂∗‖2 ≤ ζ∗. By Lemma
2.10 with P = Pnew and P̂ = P̂new,k , ‖(I −
Pnew P ′new)P̂new,k‖2 = ‖(I − P̂new,k P̂ ′new,k)Pnew‖2.

For any set T with |T | ≤ s, ‖IT
′ P̂new,k‖2 ≤

‖IT
′(I − Pnew P ′new)P̂new,k‖2+‖IT

′Pnew P ′new P̂new,k‖2 ≤
κ̃s,k‖(I − Pnew Pnew

′)P̂new,k‖2+‖IT
′Pnew‖2 = κ̃s,k‖(I −

P̂new,k P̂ ′new,k)Pnew‖2 + ‖IT
′Pnew‖2 ≤ κ̃s,k‖Dnew,k‖2 +

κ̃s,k‖P̂∗ P̂ ′∗Pnew‖2 + ‖IT
′Pnew‖2 ≤ κ̃s,kζk + κ̃s,kζ∗ +

κs,new ≤ κ̃s,kζk + ζ∗ + κs,new. Taking max over |T | ≤ s
the claim follows.

4) This follows using Lemma 3.7 and the second claim of
this lemma.

5) This follows using Lemma 3.7 and the first three claims
of this lemma.

Corollary 6.7: If the conditions of Theorem 4.2 are satis-
fied, and X j,k−1 ∈ � j,k−1, then

1) δs(�0) ≤ δ2s(�0) ≤ κ+2s,∗
2 + 2ζ+∗ < 0.1 < 0.1479

2) δs(�k−1) ≤ δ2s(�k−1) ≤ κ+2s,∗
2 + 2ζ+∗ + (κ+2s,new +

κ̃+2s,k−1ζ
+
k−1 + ζ+∗)2 < 0.1479

3) φk−1 ≤ 1
1−δs(�k−1) < φ+

Proof: This follows using Lemma 6.6, the definition of
� j,k−1, and the bound on ζ+k−1 from Lemma 6.1.

The following are straightforward bounds that will be useful
for the proof of Lemma 6.4 and later.

Fact 6.8: Under the assumptions of Theorem 4.2:

1) ζγ∗ ≤
√

ζ
(r0+(J−1)c)3/2 ≤

√
ζ

2) ζ+j,∗ ≤ 10−4

(r0+(J−1)c) ≤ 10−4

3) ζ+j,∗γ 2∗ ≤ 1
(r0+(J−1)c)2 ≤ 1

4) ζ+j,∗γ∗ ≤
√

ζ√
r0+(J−1)c

≤ √ζ

5) ζ+j,∗ f ≤ 1.5×10−4

r0+(J−1)c ≤ 1.5× 10−4

6) ζ+k−1 ≤ 0.6k−1 + 0.4cζ (from Lemma 6.1)
7) ζ+k−1γnew,k ≤ (0.6 · 1.2)k−1γnew + 0.4cζγ∗ ≤

0.72k−1γnew + 0.4
√

ζ√
r0+(J−1)c

≤ 0.72k−1γnew + 0.4
√

ζ

8) ζ+k−1γ
2
new,k ≤ (0.6 · 1.22)k−1γ 2

new + 0.4cζγ 2∗ ≤
0.864k−1γ 2

new + 0.4
(r0+(J−1)c)2 ≤ 0.864k−1γ 2

new + 0.4

Proof of Lemma 6.4: Recall that X j,k−1 ∈ � j,k−1 implies
that ζ j,∗ ≤ ζ+j,∗ and ζk−1 ≤ ζ+k−1.

1) a) For t ∈ I j,k , βt := (I − P̂(t−1) P̂ ′(t−1))Lt =
D∗,k−1at,∗ + Dnew,k−1at,new. Thus, using Fact 6.8

‖βt‖2 ≤ ζ j,∗
√

rγ∗ + ζk−1
√

cγnew,k

≤ √
ζ
√

r + (0.72k−1γnew + .4
√

ζ)
√

c
= √c0.72k−1γnew +

√
ζ (
√

r + 0.4
√

c) ≤ ξ0.

b) By Corollary 6.7, δ2s(�k−1) < 0.15 <
√

2 − 1.
Given |Tt | ≤ s, ‖βt‖2 ≤ ξ0 = ξ , by Theorem 2.5,
the CS error satisfies

‖Ŝt,cs − St‖2 ≤ 4
√

1+ δ2s(�k−1)

1− (
√

2+ 1)δ2s(�k−1)
ξ0 < 7ξ0.

c) Using the above, ‖Ŝt,cs − St‖∞ ≤ 7ξ0.
Since mini∈Tt |(St)i | ≥ Smin and (St)T c

t
= 0,

mini∈Tt |(Ŝt,cs)i | ≥ Smin − 7ξ0 and
mini∈T c

t
|(Ŝt,cs)i | ≤ 7ξ0. If ω < Smin − 7ξ0,

then T̂t ⊇ Tt . On the other hand, if ω > 7ξ0, then
T̂t ⊆ Tt . Since Smin > 14ξ0 (condition 3 of the
theorem) and ω satisfies 7ξ0 ≤ ω ≤ Smin − 7ξ0
(condition 1 of the theorem), then the support of
St is exactly recovered, i.e. T̂t = Tt .

d) Given T̂t = Tt , the LS estimate of St satisfies
(Ŝt)Tt = [(�k−1)Tt]†yt = [(�k−1)Tt]†(�k−1St +
�k−1 Lt) and (Ŝt)T c

t
= 0 for t ∈ I j,k . Also,

(�k−1)Tt
′�k−1 = ITt

′�k−1 (this follows since
(�k−1)Tt = �k−1 ITt and �′k−1�k−1 = �k−1).
Using this, the LS error et := Ŝt − St satisfies
(10). Thus, using Fact 6.8 and condition 2 of the
theorem,

‖et‖2 ≤ φ+(ζ+j,∗
√

rγ∗ + κs,k−1ζ
+
k−1

√
cγnew,k)

≤ 1.2
(√

r
√

ζ +√c0.15(0.72)k−1

+ √c0.06
√

ζ
)

= 0.18
√

c0.72k−1γnew +
1.2

√
ζ (
√

r + 0.06
√

c).

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5021

2) The second claim is just a restatement of the first.

E. Proof of Lemma 6.5

The proof of Lemma 6.5 will use the next three lemmas
Lemma 6.9: If λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2 > 0, then

ζk ≤ ‖Rk‖2
λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2

≤ ‖Hk‖2
λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2

where Rk := Hk Enew and Ak, Ak,⊥, Hk are defined in
Definition 5.7.

Proof: Since λmin(Ak) − ‖Ak,⊥‖2 − ‖Hk‖2 > 0,
so λmin(Ak) > ‖Ak,⊥‖2. Since Ak is of size cnew × cnew
and λmin(Ak) > ‖Ak,⊥‖2, λcnew+1(Ak) = ‖Ak,⊥‖2. By
definition of EVD, and since �k is a cnew × cnew matrix,
λmax(�k,⊥) = λcnew+1(Ak + Hk). By Weyl’s theorem (The-
orem 2.8), λcnew+1(Ak + Hk) ≤ λcnew+1(Ak) + ‖Hk‖2 =
‖Ak,⊥‖2+‖Hk‖2. Therefore, λmax(�k,⊥) ≤ ‖Ak,⊥‖2+‖Hk‖2
and hence λmin(Ak) − λmax(�k,⊥) ≥ λmin(Ak) − ‖Ak,⊥‖2 −
‖Hk‖2 > 0. Apply the sin θ theorem (Theorem 2.7) with
λmin(Ak)− λmax(�k,⊥) > 0, we get

‖(I − P̂new,k P̂ ′new,k)Enew‖2 ≤ ‖Rk‖2
λmin(Ak)− λmax(�k,⊥)

≤ ‖Hk‖2
λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2

Since ζk = ‖(I − P̂new,k P̂ ′new,k)Dnew‖2 = ‖(I −
P̂new,k P̂ ′new,k)Enew Rnew‖2 ≤ ‖(I − P̂new,k P̂ ′new,k)Enew‖2, the
result follows. The last inequality follows because ‖Rnew‖2 =
‖E ′new Dnew‖2 ≤ 1.

Lemma 6.10: Assume that the assumptions of Theorem 4.2
hold. Conditioned on �e

j,k−1,

κs(Dnew) ≤ κs(Pnew)+ ζ+∗√
1− ζ+∗

≤ κ+2s,new + 0.0015√
1− 0.0015

≈ 0.1516 ≤ κ+s .

Proof: Recall that Dnew = Dnew,0 = (I − P̂j−1 P̂ ′j−1)

Pnew. Also Dnew
QR= Enew Rnew. By lemma 2.10 ‖Rnew

−1‖2 ≤
1√

1−ζ+∗
. κs(Dnew) = κs(Enew) = max|T |≤s ‖I ′T Dnew Rnew

−1‖2
≤ max|T |≤s ‖I ′T Dnew‖2‖Rnew

−1‖2 ≤ κs (Pnew)+ζ∗√
1−ζ+∗

. The event

�e
j,k−1 implies that ζ∗ ≤ ζ+∗ ≤ 0.0015. Thus, the lemma

follows.
Lemma 6.11 (High Probability Bounds for Each of the

Terms in the ζk Bound (6.9)): Assume the conditions of
Theorem 4.2 hold. Also assume that P(�e

j,k−1) > 0 for all
1 ≤ k ≤ K + 1. Then, for all 1 ≤ k ≤ K

1) P
(
λmin(Ak) ≥ λ−new,k

(
1− (ζ+j,∗)2 − cζ

12

) ∣∣�e
j,k−1

)
>

1− pa,k(α, ζ) where

pa,k(α, ζ) : = c exp

(−αζ 2(λ−)2

8 · 242 ·min(1.24kγ 4
new, γ 4∗)

)

+ c exp

(−αc2ζ 2(λ−)2

8 · 242 · 42

)

2) P
(
λmax(Ak,⊥) ≤ λ−new,k

(
(ζ+j,∗)2 f + cζ

24

) ∣∣�e
j,k−1

)
>

1− pb(α, ζ) where

pb(α, ζ) := (n − c) exp

(−αc2ζ(λ−)2

8 · 242

)

3) P
(
‖Hk‖2 ≤ λ−new,k(b + 0.125cζ)

∣∣�e
j,k−1

)
≥ 1 −

pc(α, ζ) where b is as defined in Definition 5.2 and

pc(α, ζ)

:= n exp

(−αζ 2(λ−)2

8 · 242(.0324γ 2
new + .0072γnew + .0004)2

)

+ n exp

(−αζ 2(λ−)2

32 · 242(.06γ 2
new + .0006γnew + .4)2

)

+ n exp

(−αζ 2(λ−)2ε2

32 · 242(.186γ 2
new + .00034γnew + 2.3)2

)
.

Proof: The proof is quite long and hence is given in
Appendix C. The first two claims are obtained by simplifying
the terms and then appropriately applying the Hoeffding
corollaries. The third claim first uses Lemma 6.4 to argue
that conditioned on X j,k−1 ∈ � j,k−1, et satisfies (10). It then
simplifies the resulting expressions and eventually uses the
Hoeffding corollaries. The simplification also uses the bound
on κs(Dnew) from Lemma 6.10.

Proof of Lemma 6.5: Lemma 6.5 now follows by combining
Lemmas 6.9 and 6.11 and defining

pk(α, ζ) := 1− pa,k(α, ζ)− pb(α, ζ)− pc(α, ζ). (13)

VII. ReProCS WITH CLUSTER PCA

The ReProCS approach studied so far is designed under the
assumption that the subspace in which Lt lies can only grow
over time. In practice, usually, the dimension of this subspace
typically remains roughly constant. A simple way to model
this is to assume that at every change time, t j , some new
directions can get added and some directions from the existing
subspace can get deleted and to assume an upper bound on
the difference between the total number of added and deleted
directions. We specify this model next.

Signal Model 7.1: Assume that Lt = P(t)at where P(t) =
Pj for all t j ≤ t < t j+1, j = 0, 1, 2 · · · J , Pj is an n × r j

basis matrix with r j � min(n, (t j+1− t j)). We let t0 = 0 and
tJ+1 equal the sequence length. This can be infinity also.

1) At the change times, t j , Pj changes as

Pj = [(Pj−1 R j \ Pj,old) Pj,new]
Here, R j is a rotation matrix, Pj,new is an n × c j,new
basis matrix with P ′j,new Pj−1 = 0 and Pj,old contains
c j,old columns of Pj−1 R j . Thus r j = r j−1 + c j,new −
c j,old. Also, 0 < ttrain ≤ t1. This model is illustrated in
Figure 3.

2) There exist constants cmax and cdif such that 0 ≤
c j,new ≤ cmax and

∑ j
i=1(ci,new − ci,old) ≤ cdif for all j .

Thus, r j = r0+∑ j
i=1(ci,new−ci,old) ≤ rmax := r0+cdif,

i.e., the rank of Pj is upper bounded by rmax.

5022 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Fig. 3. The subspace change model given in Signal Model 7.1. Here t0 = 0.

The ReProCS algorithm (Algorithm 2) still applies for the
above more general model. We can conclude the following for
it.

Corollary 7.2: Consider Algorithm 2 for the model given
above. The result of Theorem 4.2 applies with the following
change: we also need κ2s([P0, P1,new, . . . , PJ−1,new]) ≤ 0.3.
Because Algorithm 2 never deletes directions, the rank of
P̂(t) keeps increasing with every subspace change time (even
though the rank of P(t) is now bounded by r0 + cdif). As a
result, the performance guarantee above still requires a bound
on J that is imposed by the denseness assumption. In this
section, we address this limitation by re-estimating the current
subspace after the newly added directions have been accu-
rately estimated. This helps to “delete” span(Pold) from the
subspaces estimate. For the resulting algorithm, as we will
see, we do not need a bound on the number of changes, J , as
long as the separation between the subspace change times is
allowed to grow logarithmically with J .

One simple way to re-estimate the current subspace would
be by standard PCA: at t = t̃ j + α̃ − 1, compute P̂j ←
proj-PCA([L̂t ; Ĩ j,1], [.], r j) and let P̂(t)← P̂j . Using the sin θ
theorem [31] and the matrix Hoeffding inequality [32], and
using the procedure used earlier to analyze projection PCA, it
can be shown that, as long as f , a bound on the maximum
condition number of Cov[Lt], is small enough, doing this is
guaranteed to give an accurate estimate of span(Pj). However
as explained in Remark 3.4, f cannot be small because our
problem definition allows large noise, Lt , but assumes slow
subspace change. In other works that analyze standard PCA,
see [33] and references therein, the large condition number
does not cause a problem because they assume that the error
(et in our case) in the observed data vector (L̂t) is uncorrelated
with the true data vector (Lt). Under this assumption, one
only needs to increase the PCA data length α to deal with
larger condition numbers. However, in our case, because et is
correlated with Lt , this strategy does not work. This issue is
explained in detail in Appendix B.

In this section, we introduce a generalization of the above
strategy called cluster-PCA that removes the requirement that
f be small, but instead only requires that the eigenvalues of
Cov(Lt) be clustered for the times when the changed subspace
has stabilized. Under this assumption, cluster-PCA recovers
one cluster of entries of Pj at a time by using an approach that
generalizes the projection PCA step developed earlier. We first
explain the clustering assumption in Sec VII-A below and then
give the cluster-PCA algorithm.

A. Clustering Assumption

For positive integers K and α, let t̃ j := t j + Kα. We set
their values in, Theorem 7.7. Recall from the model on Lt

and the slow subspace change assumption that new directions,
Pj,new, get added at t = t j and initially, for the first α frames,

the projection of Lt along these directions is small (and thus
their variances are small), but can increase gradually. It is fair
to assume that within Kα frames, i.e. by t = t̃ j , the variances
along these new directions have stabilized and do not change
much for t ∈ [t̃ j , t j+1 − 1]. It is also fair to assume that the
same is true for the variances along the existing directions,
Pj−1. In other words, we assume that the matrix �t is either
constant or does not change much during this period. Under
this assumption, we assume that we can cluster its eigenvalues
(diagonal entries) into a few clusters such that the distance
between consecutive clusters is large and the distance between
the smallest and largest element of each cluster is small.
We make this precise below.

Assumption 7.3: Assume the following.

1) Either �t = �t̃ j
for all t ∈ [t̃ j , t j+1 − 1] or �t

changes very little during this period so that for
each i = 1, 2, · · · , r j , mint∈[t̃ j ,t j+1−1] λi (�t) ≥
maxt∈[t̃ j ,t j+1−1] λi+1(�t).

2) Let G j,(1),G j,(2), · · · ,G j,(ϑ j) be a partition of the
index set {1, 2, . . . r j } so that mini∈G j,(k)

mint∈[t̃ j ,t j+1−1]
λi (�t) > maxi∈G j,(k+1)

maxt∈[t̃ j ,t j+1−1] λi (�t), i.e. the
first group/cluster contains the largest set of eigenvalues,
the second one the next smallest set and so on (see
Figure 4). Let

a) G j,k := (Pj)G j,(k)
be the corresponding

cluster of eigenvectors, then span(Pj) =
span([G j,1, G j,2, · · · , G j,ϑ j]);

b) c̃ j,k := |G j,(k)| be the number of elements in G j,(k),

then
∑ϑ j

k=1 c̃ j,k = r j ;
c̃min := min j mink=1,2,··· ,ϑ j c̃ j,k

c) λ j,k
− := mini∈G j,(k)

mint∈[t̃ j ,t j+1−1] λi (�t),
λ j,k
+ := maxi∈G j,(k)

maxt∈[t̃ j ,t j+1−1] λi (�t) and
λ j,ϑ j+1

+ := 0;
d) g̃ j,k := λ j,k

+/λ j,k
− (notice that g̃ j,k ≥ 1);

e) h̃ j,k := λ j,k+1
+/λ j,k

− (notice that h̃ j,k < 1);
f) g̃max := max j maxk=1,2,··· ,ϑ j g̃ j,k,

h̃max := max j maxk=1,2,··· ,ϑ j h̃ j,k ,
g) ϑmax := max j ϑ j

We assume that g̃max is small enough (the distance
between the smallest and largest eigenvalues of a cluster
is small) and h̃max is small enough (distance between
consecutive clusters is large). We quantify this in
Theorem 7.7.

Remark 7.4: In order to address a reviewer’s concern, we
should clarify the following point. The above assumption still
allows the newly added eigenvalues to become large and
hence still allows the subspace of Lt to change significantly
over time. The above requires the covariance matrix of Lt

to be constant or nearly constant only for the time between
t̃ j := t j + Kα and the next change time, t j+1 and not for
the first Kα frames. Slow subspace change assumes that the
projection of Lt along the new directions is initially small
for the first α frames but then can increase gradually over the
next K−1 intervals of duration α. The variance along the new
directions can increase by as much as 1.22K times the initial
variance. Thus by t = t̃ j = t j + Kα, the variances along the
new directions can have already increased to large enough
values.

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5023

Fig. 4. We illustrate the clustering assumption. Assume �t = �t̃ j
.

We can allow the variances to increase for even longer with
the following simple change: re-define t̃ j as t̃ j := t j+1 − ϑ j α̃
in both the clustering assumption and the algorithm. With this
redefinition, we will be doing cluster-PCA at the very end of
the current subspace interval.

Lastly, note that the projection along the new directions
can further increase in the later subspace change periods
also.

B. The ReProCS With Cluster PCA Algorithm

ReProCS-cPCA is summarized in Algorithm 3. It uses the
following definition.

Definition 7.5: Let t̃ j := t j+Kα. Define the following time
intervals

1) I j,k := [t j + (k−1)α, t j + kα−1] for k = 1, 2, · · · , K .
2) Ĩ j,k := [t̃ j + (k−1)α̃, t̃ j +kα̃−1] for k = 1, 2, · · · , ϑ j .
3) Ĩ j,ϑ j+1 := [t̃ j + ϑ j α̃, t j+1 − 1].
Steps 1, 2, 3a and 3b of ReProCS-cPCA are the same as

Algorithm 2. As shown earlier, within K proj-PCA updates
(K chosen as given in Theorem 7.7) ‖et‖2 and the subspace
error, SE(t), drop down to a constant times ζ . In particular, if
at t = t j − 1, SE(t) ≤ rζ , then at t = t̃ j := t j + Kα, we can
show that SE(t) ≤ (r + cmax)ζ . Here r := rmax = r0 + cdif.
To bring SE(t) down to rζ before t j+1, we proceed as follows.
The main idea is to recover one cluster of entries of Pj

at a time. For each batch we use a new set of α̃ frames.
The entire procedure is done at t = t̃ j + ϑ j α̃ − 1 (since
we cannot update P̂(t) until all clusters are recovered). We
proceed as follows. In the first iteration, we use standard
PCA to estimate the first cluster, span(G j,1). In the kth

iteration, we apply proj-PCA on [L̂ t̃ j+(k−1)α̃, . . . , L̂ t̃ j+kα̃−1]
with P ← [Ĝ j,1, Ĝ j,2, . . . Ĝ j,k−1] to estimate span(G j,k). By
modifying the approach used to prove Theorem 4.2, we can
show that since g̃ j,k and h̃ j,k are small enough, span(G j,k) will
be accurately recovered, i.e. ‖(I −∑k

i=1 Ĝ j,i Ĝ′j,i)G j,k‖2 ≤
c̃ j,kζ . We do this ϑ j times and finally we set P̂j ←
[Ĝ j,1, Ĝ j,2 . . . Ĝ j,ϑ j] and P̂(t)← P̂j . Thus, at t = t̃ j+ϑ j α̃−1,

SE(t) ≤ ∑ϑ j
k=1 ‖(I −∑k

i=1 Ĝ j,i Ĝ′j,i)G j,k‖2 ≤ ∑ϑ j
k=1 c̃ j,kζ =

r j ζ ≤ rζ . Under the assumption that t j+1− t j ≥ Kα+ϑmaxα̃,

this means that before the next subspace change time, t j+1,
SE(t) is below rζ.

We illustrate the ideas of subspace estimation by addition
proj-PCA and cluster-PCA in Fig. 5. The connection between
proj-PCA done in the addition step and for the cluster-PCA
(in deletion) step is given in Table I.

C. Performance Guarantees

Definition 7.6: We need the following definitions for stating
the main result.

1) We define αdel(ζ) as

αdel(ζ) : =
⌈
(log 6ϑmax J + 11 log n)

· 8 · 102

(ζλ−)2 max(4.22, 4b2
7)

⌉

where b7 := (
√

rγ∗ + φ+
√

ζ)2 and φ+ = 1.1732. We
choose αdel so that if , α̃ ≥ αdel, then the conclu-
sions of the theorem will hold wth probability at least
(1− 2n−10).

2) Define

finc(g̃, h̃, κ+s,e, κ+s,D) := (r + c)

×ζ

[
max(3κ+s,eκ+s,Dφ+g̃, κ+s,eφ+h̃)

+ [
κ+s,eφ+ + κ+s,e(1+ 2φ+)

r2ζ 2
√

1− r2ζ 2

]
h̃

+ [r2

r + c
ζ + 4rζκ+s,eφ+ + 2(r + c)ζ(1+ κ+s,e

2
)φ+2]

f

+ 0.2
1

r + c

]
,

fdec(g̃, h̃, κ+s,e, κ+s,D) := 1− h̃ − 0.2ζ − r2ζ 2 f − r2ζ 2

− finc(g̃, h̃, κ+s,e, κ+s,D)

Notice that finc(.) is an increasing function of g̃, h̃ and
fdec(.) is a decreasing function of g̃, h̃.

Theorem 7.7: Consider Algorithm 3. Let c := cmax and
r := rmax = r0 + cdif. Pick a ζ that satisfies

ζ ≤ min

(
10−4

r2 ,
1.5× 10−4

r2 f
,

1

r3γ 2∗

)

Assume that the initial subspace estimate is accurate enough,
i.e. ‖(I − P̂0 P̂ ′0)P0‖ ≤ r0ζ . If the following conditions hold:

1) All of the conditions of Theorem 4.2 hold with Lt

satisfying Signal model 7.1,
2) α̃ ≥ αdel(ζ),
3) min j (t j+1 − t j) > Kα + ϑmaxα̃

4) algorithm estimates P̂j−1 and P̂j,new,K satisfy

max
j

κs((I − P̂j−1 P̂ ′j−1 − P̂j,new,K P̂ ′j,new,K)Pj) ≤ κ+s,e

5) (clustered eigenvalues) Assumption 7.3 holds with
g̃max, h̃max, c̃min satisfying fdec(g̃max, h̃max, κ

+
s,e, κ

+
s,∗ +

rζ)− finc(g̃max,h̃max,κ
+
s,e ,κ

+
s,∗+rζ)

c̃minζ
> 0.

then, with probability at least 1− 2n−10, at all times, t,

5024 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Algorithm 3 Recursive Projected CS With Cluster-PCA (ReProCS-cPCA)
Parameters: algorithm parameters: ξ , ω, α, α̃, K , model parameters: t j , c j,new, ϑ j and c̃ j,i

Input: n × 1 vector, Mt , and n × r0 basis matrix P̂0. Output: n × 1 vectors Ŝt and L̂t , and n × r(t) basis matrix P̂(t).
Initialization: Let P̂(ttrain) ← P̂0. Let j ← 1, k ← 1. For t > ttrain, do the following:

1) Estimate Tt and St via Projected CS:
a) Nullify most of Lt : compute �(t)← I − P̂(t−1) P̂ ′(t−1), yt ← �(t)Mt

b) Sparse Recovery: compute Ŝt,cs as the solution of minx ‖x‖1 s.t . ‖yt −�(t)x‖2 ≤ ξ

c) Support Estimate: compute T̂t = {i : |(Ŝt,cs)i | > ω}
d) LS Estimate of St : compute (Ŝt)T̂t

= ((�t)T̂t
)† yt , (Ŝt)T̂ c

t
= 0

2) Estimate Lt . L̂t = Mt − Ŝt .
3) Update P̂(t):

a) If t �= t j + qα − 1 for any q = 1, 2, . . . K and t �= t j + Kα + ϑ j α̃ − 1,

i) set P̂(t)← P̂(t−1)

b) Addition: Estimate span(Pj,new) iteratively using proj-PCA: If t = t j + kα − 1

i) P̂j,new,k ← proj-PCA([L̂t j+(k−1)α, . . . , L̂t j+kα−1], P̂j−1, c j,new)

ii) set P̂(t)← [P̂j−1 P̂j,new,k].
iii) If k = K , reset k ← 1; else increment k ← k + 1.

c) Deletion: Estimate span(Pj) by cluster-PCA: If t = t j + Kα + ϑ j α̃ − 1,

i) set Ĝ j,0 ← [.]
ii) For i = 1, 2, · · · , ϑ j ,

• Ĝ j,i ← proj-PCA([L̂ t̃ j+(i−1)α̃, . . . , L̂ t̃ j+iα̃−1], [Ĝ j,1, Ĝ j,2, . . . Ĝ j,i−1], c̃ j,i)

End for
iii) set P̂j ← [Ĝ j,1, · · · , Ĝ j,ϑ j] and set P̂(t)← P̂j .
iv) increment j ← j + 1.

Fig. 5. A diagram illustrating subspace estimation by ReProCS-cPCA.

1) T̂t = Tt and ‖et‖2 = ‖Lt − L̂t‖2 = ‖Ŝt − St‖2 ≤
0.18
√

cγnew + 1.24
√

ζ .
2) the subspace error, SE(t) satisfies

SE(t)

≤
⎧
⎨
⎩

0.6k−1 + rζ + 0.4cζ if t ∈ I j,k, k = 1, 2, · · · , K
(r + c)ζ if t ∈ Ĩ j,k, k = 1, 2, · · · , ϑ j
rζ if t ∈ Ĩ j,ϑ j+1

3) the error et = Ŝt − St = Lt − L̂t satisfies the following
at various times

‖et‖2 ≤

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1.17[0.15 · 0.72k−1√cγnew+
0.15 · 0.4cζ

√
cγ∗ + rζ

√
rγ∗]

if t ∈ I j,k, k = 1, 2, · · · , K
1.17(r + c)ζ

√
rγ∗

if t ∈ Ĩ j,k, k = 1, 2, · · · , ϑ j

1.17rζ
√

rγ∗ if t ∈ Ĩ j,ϑ j+1

D. Special Case When f is Small

If in a problem, Lt has small magnitude for all times t or
if its subspace does not change, then f can be small. In this
case, the clustering assumption is not needed, or in fact it
trivially holds with ϑ j = 1, c̃ j,1 = r j , g̃max = g̃ j,1 = f and
h̃max = h j,1 = 0. Thus, ϑmax = 1. With this, the following
corollary holds.

Corollary 7.8: Assume that all conditions of Theorem
7.7 hold except the last one (clustering assumption). If
f is small enough so that finc(f, 0, κ+s,e, κ+s,∗ + rζ) ≤
fdec(f, 0, κ+s,e, κ+s,∗ + rζ)r jζ , then, all conclusions of Theo-
rem 7.7 hold.

E. Discussion

Notice from Definition 4.1 that K = K (ζ) is larger if
ζ is smaller. Also, both αadd(ζ) and αdel(ζ) are inversely

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5025

TABLE I

COMPARING AND CONTRASTING THE ADDITION PROJ-PCA STEP AND PROJ-PCA USED IN THE DELETION STEP (CLUSTER-PCA)

proportional to ζ . Thus, if we want to achieve a smaller lowest
error level, ζ , we need to compute both addition proj-PCA and
cluster-PCA’s over larger durations, α and α̃ respectively, and
we will need more number of addition proj-PCA steps K . This
means that we also require a larger delay between subspace
change times, i.e. larger t j+1 − t j .

Let us first compare the above result with that for ReProCS
for the same subspace change model, i.e. the result from
Corollary 7.2. The most important difference is that ReProCS
requires κ2s([P0, P1,new, . . . PJ,new]) ≤ 0.3 whereas ReProCS-
cPCA only requires max j κ2s(Pj) ≤ 0.3. Moreover in case of
ReProCS, the denominator in the bound on ζ also depends
on J whereas in case of ReProCS-cPCA, it only depends on
rmax + cmax. Because of this, in Theorem 7.7 for ReProCS-
cPCA, the only place where J appears is in the definitions
of αadd and αdel. These govern the delay between subspace
change times, t j+1 − t j . Thus, with ReProCS-cPCA, J can
keep increasing, as long as min j (t j+1 − t j) also increases
accordingly. Moreover, notice that the dependence of αadd and
αdel on J is only logarithmic and thus min j (t j+1−t j) needs to
only increase in proportion to log J . The main extra assump-
tions that ReProCS-cPCA needs are the clustering assump-
tion; a longer delay between subspace change times; and a
denseness assumption similar to that on D j,new,k . We verify
the clustering assumption in Sec IX-A. The ReProCS-cPCA
algorithm also needs to know the cluster sizes of the eigen-
values. These can, however, be estimated by computing the
eigenvalues of the estimated covariance matrix at t = t̃ j + α̃
and clustering them.

Comparison With the PCP Result From [6]: Our results
need many more assumptions compared with the PCP
result [6] which only assumes independent support change of
the sparse part and a denseness assumption on the low-rank
part. The most important limitation of our work is that both
our results need an assumption on the algorithm estimates, thus
neither can be called a correctness result. Moreover, both the
results assume that the algorithms know the model parameters
while the result for PCP does not. The key limiting aspect
here is the knowledge of the subspace change times. The
advantages of our results w.r.t. that for PCP are as follows.
(a) Both results are for online algorithms; and (b) both need
weaker denseness assumptions on the singular vectors of Lt

as compared to PCP. PCP [6] requires denseness of both the
left and right singular vectors of Lt and it requires a bound
on ‖U V ′‖∞ where U and V denote the left and right singular
vectors. Denseness of only the left singular vectors is needed
in our case (notice that U = [Pj−1, Pj,new]). (c) Finally, the
most important advantage of the ReProCS-cPCA result is that
it does not need a bound on J (number of subspace change
times) as long as min j (t j+1 − t j) increases in proportion to
log J , and equivalently, does not need a bound on the rank of
Lt . However PCP needs a tight bound on the rank of Lt .

VIII. PROOF OF THEOREM 7.7

We first give some new definitions next. We then give the
key lemmas leading to the proof of the theorem and the proof
itself. Finally we prove these lemmas.

A. Some New Definitions

Unless redefined here, all previous definitions still apply.
Definition 8.1: Define the following:
1) r = rmax = r0+cdif (Note that this is a redefinition from

Definition 5.1)
2) ζ+j,∗ := rζ (Note that this is a redefinition from Defini-

tion 5.2)
3) define the sequence {ζ̃+k }k=1,2,··· ,ϑ j as follows

ζ̃+k :=
finc(g̃k, h̃k, κ

+
s,e, κ

+
s,∗ + rζ)

fdec(g̃k, h̃k, κ
+
s,e, κ

+
s,∗ + rζ)

where finc(.) and fdec(.) are defined in Definition 7.6.
Definition 8.2: Define
1)
 j,k := I −∑k

i=0 Ĝ j,i Ĝ′j,i .
2) G j,det,k := [G j,1 · · · , G j,k−1] and Ĝ j,det,k :=
[Ĝ j,1 · · · , Ĝ j,k−1]. Notice that
 j,k = I −
Ĝ j,det,k+1Ĝ′j,det,k+1.

3) G j,undet,k := [G j,k+1 · · · , G j,ϑ j].
4) D j,k :=
 j,k−1G j,k, D j,det,k :=
 j,k−1G j,det,k and

D j,undet,k :=
 j,k−1G j,undet,k .
Definition 8.3:

1) Let D j,k
Q R= E j,k R j,k denote its reduced QR decompo-

sition, i.e. let E j,k be a basis matrix for span(D j,k) and
let R j,k := E ′j,k D j,k .

5026 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

2) Let E j,k,⊥ be a basis matrix for the orthogonal com-
plement of span(E j,k) = span(D j,k). To be precise,
E j,k,⊥ is a n × (n − c̃ j,k) basis matrix that satisfies
E j,k,⊥′E j,k = 0.

3) Using E j,k and E j,k,⊥, define Ã j,k, Ã j,k,⊥, H̃ j,k, H̃ j,k,⊥
and B̃ j,k as

Ã j,k := 1

α̃

∑

t∈ Ĩ j,k

E j,k
′
 j,k−1 Lt Lt

′
 j,k−1 E j,k

Ã j,k,⊥ := 1

α̃

∑

t∈ Ĩ j,k

E j,k,⊥′
 j,k−1 Lt Lt
′
 j,k−1 E j,k,⊥

H̃ j,k := 1

α̃

∑

t∈ Ĩ j,k

E j,k
′
 j,k−1

(et et
′ − Lt et

′ − et Lt
′)
 j,k−1 E j,k

H̃ j,k,⊥ := 1

α̃

∑

t∈ Ĩ j,k

E j,k,⊥′
 j,k−1

(et et
′ − Lt et

′ − et Lt
′)
 j,k−1 E j,k,⊥

B̃ j,k := 1

α̃

∑

t∈ Ĩ j,k

E j,k,⊥′
 j,k−1 L̂t L̂ ′t
 j,k−1 E j,k

= 1

α̃

∑

t∈ Ĩ j,k

E j,k,⊥′
 j,k−1(Lt − et)

(Lt
′ − et

′)
 j,k−1 E j,k

4) Define

Ã j,k :=
[

E j,k E j,k,⊥
] [Ã j,k 0

0 Ã j,k,⊥

] [
E j,k

′
E j,k,⊥′

]

H̃ j,k :=
[

E j,k E j,k,⊥
]
[

H̃ j,k B̃ ′j,k
B̃ j,k H̃ j,k,⊥

][
E j,k

′
E j,k,⊥′

]

5) From the above, it is easy to see that

Ã j,k + H̃ j,k = 1

α̃

∑

t∈Ĩ j,k

 j,k−1 L̂t L̂ ′t
 j,k−1.

6) Recall from Algorithm 3 that

Ã j,k + H̃ j,k = 1

α̃

∑

t∈Ĩ j,k

 j,k−1 L̂t L̂ ′t
 j,k−1

EV D= [
Ĝ j,k Ĝ j,k,⊥

] [� j,k 0
0 � j,k,⊥

][
Ĝ′j,k

Ĝ′j,k,⊥

]

is the EVD of Ã j,k + H̃ j,k . Here �k is a c̃ j,k × c̃ j,k

diagonal matrix.
Definition 8.4: For k = 1, 2, · · · , ϑ j , define

ζ̃ j,k :=
∥∥∥∥
(

I −
k∑

i=1

Ĝ j,i Ĝ
′
j,i

)
G j,k

∥∥∥∥
2

This is the error in estimating span(G j,k) after the kth iteration
of the cluster-PCA step.

Remark 8.5:
1) Notice that ζ j,0 = ‖D j,new‖2, ζ j,k = ‖D j,new,k‖2 and

ζ̃ j,k = ‖(I − Ĝk Ĝ′k)D j,k‖2 = ‖
 j,k G j,k‖2.

2) Notice from the algorithm that (i) P̂j,new,k is perpendic-
ular to P̂j,∗ = P̂j−1; and (ii) Ĝ j,k is perpendicular to
[Ĝ j,1, Ĝ j,2, . . . Ĝ j,k−1].

3) For t ∈ I j,k, P(t) = Pj = [(Pj−1 R j \ Pj,old), Pj,new],
P̂(t) = [P̂j−1 P̂j,new,k] and

SE(t) = ‖(I − P̂j−1 P̂ ′j−1 − P̂j,new,k P̂ ′j,new,k)Pj‖2
≤ ‖(I − P̂j−1 P̂ ′j−1 − P̂j,new,k P̂ ′j,new,k)

[Pj−1 Pj,new]‖2
≤ ζ j,∗ + ζ j,k

for k = 1, 2 . . . K . The last inequality uses the first item
of this remark.

4) For t ∈ Ĩ j,k, P(t) = Pj , P̂(t) = [P̂j−1 P̂j,new,K] and

SE(t) = SE(t j+Kα−1) ≤ ζ j,∗ + ζ j,K

5) For t ∈ Ĩ j,ϑ j+1, P(t) = Pj , span(Pj) =
span([G j,1, · · · , G j,ϑ j]), P̂(t) = P̂j =
[Ĝ j,1, · · · , Ĝ j,ϑ j], and

SE(t) = ζ j+1,∗ ≤
ϑ j∑

k=1

ζ̃ j,k

The last inequality uses the first item of this remark.

Definition 8.6: Recall the definition of � j,k from
Definition 5.6. Define �(t) as

�(t) :=
⎧
⎨
⎩

� j,k−1 t ∈ I j,k, k = 1, 2 . . . K
� j,K t ∈ Ĩ j,k, k = 1, 2 . . . ϑ j

� j+1,0 t ∈ Ĩ j,ϑ j+1

Definition 8.7: Define the random variable

X̃ j,k := {a1, a2, · · · , at j+Kα+kα̃−1}
Definition 8.8: Define the sets

˜̌
� j,k := {X̃ j,k : ζ̃ j,k≤ c̃ j,kζ, and T̂t=Tt for all t ∈ Ĩ j,k},

k = 1, 2, . . . ϑ j , j = 1, 2, 3, . . . J
˜̌
� j,ϑ j+1 := {X j+1,0 : T̂t = Tt for all t ∈ Ĩ j,ϑ j+1},

j = 1, 2, 3, . . . J

Define the sets

�̃ j,0 := � j,K

�̃ j,k := �̃ j,k−1 ∩ ˜̌� j,k, k = 1, 2, . . . ϑ j , j = 1, 2, 3, . . . J
Definition 8.9: Define κs,D := max j maxk κs(D j,k)

Remark 8.10: Conditioned on �̃e
j,k−1, it is easy to see that

κs,D : = max
j

max
k

κs(D j,k)

≤ max
j

max
k

(κs(G j,k)+ rζ)

≤ max
j

κs(Pj)+ rζ ≤ κ+s,D := κ+s,∗ + rζ.

In the above we have used κs(G j,k) ≤ κs(Pj) and the same
idea as in Lemma 6.10.

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5027

B. Two Main Lemmas

In this and the following subsections we remove the
subscript j at most places. Also recall from earlier that
P∗ = Pj−1.

The theorem is a direct consequence of Lemmas 8.11 and
8.12 given below. Lemma 8.11 is a restatement of Lemmas 6.1
and 6.2 with using the new definition of ζ+∗ and the new bound
on ζ from Theorem 7.7. It summarizes the final conclusions
of the addition step for ReProCS-cPCA.

Lemma 8.11 (Final Lemma for Addition Step): Assume
that all the conditions in Theorem 7.7 holds. Also assume
that P(�e

j,k−1) > 0. Then

1) ζ+0 = 1, ζ+k ≤ 0.6k + 0.4cζ for all k = 1, 2, . . . K ;
2) P(�e

j,k |�e
j,k−1) ≥ pk(α, ζ) ≥ pK (α, ζ) for all k =

1, 2, . . . K .

where ζ+k is defined in Definition 5.2 and pk(α, ζ) is defined
in equation (13).

The lemma below summarizes the final conclusions for the
cluster-PCA step.

Lemma 8.12 (FinalLemma for Deletion (Cluster-PCA) Step):
Assume that all the conditions in Theorem 7.7 hold. Also
assume that P(�̃e

j,k−1) > 0. Then,

1) for all k = 1, 2, . . . ϑ j , P(�̃e
j,k | �̃e

j,k−1) ≥ p̃(α̃, ζ)
where p̃(α̃, ζ) is defined in Lemma 8.19.

2) P(�e
j+1,0 | �̃e

j,ϑ j
) = 1.

Proof: Notice that P(�̃e
j,k | �̃e

j,k−1) = P(ζ̃k ≤
c̃kζ and T̂t = Tt for all t ∈ Ĩ j,k | �̃e

j,k−1) and

P(�e
j+1,0 | �̃e

j,ϑ j
) = P(T̂t = Tt for all t ∈ I j,ϑ j+1). The

first claim of the lemma follows by combining Lemma 8.16
and the last claim of Lemma 6.4. The second claim follows
using the last claim of Lemma 6.4.

Remark 8.13: Under the assumptions of Theorem 7.7,

� j,0 ∩ (∩K
k=1�̌ j,k) ∩ (∩ϑ j

k=1
˜̌
� j,k) ⊆ � j+1,0

This follows easily using Remark 8.5 and the fact that
∑

k c̃k =
r j ≤ r .

Remark 8.14: Under the assumptions of Theorem 7.7, the
following hold.

1) For any k = 1, 2 . . . ϑ j + 1, �̃e
j,k implies (i) ζ j,K ≤ cζ ,

(ii) ‖� j,K Pj‖2 ≤ (r + c)ζ .

• (i) follows from the first claim of Lemma 8.11 and
the definition of K , (ii) follows using ‖� j,K Pj‖2 ≤
‖� j,K [P∗, Pnew]‖2 ≤ ζ∗+ζK ≤ ζ+∗ +ζ+K ≤ (r+c)ζ .

2) �e
J+1,0 implies (i) ζ j,∗ ≤ ζ+∗ for all j , (ii) ζ j,k ≤ 0.6k+

0.4cζ for all k = 1, · · · , K and all j , (iii) ζ j,K ≤ cζ
for all j .

C. Proof of Theorem 7.7

Proof: From Remark 8.13,

P(�e
j+1,0|�e

j,0) ≥ P(�̌e
j,1, . . . , �̌

e
j,K ,
˜̌
�e

j,1, . . . ,
˜̌
�e

j,ϑ j
|� j,0)

=
K∏

k=1

P(�̌e
j,k|�e

j,k−1)

ϑ j∏

k=1

P(˜̌�e
j,k|�̃e

j,k−1)

Also, since � j+1,0 ⊆ � j,0 using Lemma 2.12,
P(�e

J+1,0|�e
1,0) =

∏J
j=1 P(�e

j+1,0|�e
j,0). Thus

P(�e
J+1,0|�e

1,0) ≥
J∏

j=1

×
⎡
⎣

K∏

k=1

P(�̌e
j,k|�e

j,k−1)

ϑ j∏

k=1

P(
˜̌
�e

j,k|�̃e
j,k−1)

⎤
⎦

Using Lemmas 8.11 and 8.12, and the fact that pk(α, ζ) ≥
pK (α, ζ), we get P(�e

J+1,0|�1,0) ≥ pK (α, ζ)K J p̃(α̃, ζ)ϑmax J .

Also, P(�e
1,0) = 1. This follows by the assumption on P̂0 and

Lemma 6.4. Thus, P(�e
J+1,0) ≥ pK (α, ζ)K J p̃(α̃, ζ)ϑmax J.

Using the definitions of αadd(ζ) and αdel(ζ) and α ≥ αadd
and α̃ ≥ αdel,

P(�e
J+1,0) ≥ pK (α, ζ)K J p̃(α̃, ζ)ϑmax J

≥ (1− n−10)2 ≥ 1− 2n−10

The event �e
J+1,0 implies that T̂t = Tt for all t < tJ+1.

Using Remark 8.5 and the last claim of Remark 8.14, �e
J+1,0

implies that all the bounds on the subspace error hold. Using
these, Remark 5.12, ‖at,new‖2 ≤ √cγnew,k and ‖at‖2 ≤ √rγ∗,
�e

J+1,0 implies that all the bounds on ‖et‖2 hold (the bounds
are obtained in Lemma 6.4).

Thus, all conclusions of the the result hold w.p. at least
1− 2n−10.

D. A Lemma Needed for Getting High Probability
Bounds on the Subspace Error

The following lemma is needed for bounding the subspace
error, ζ̃k

Lemma 8.15: Assume that ζ̃k′ ≤ c̃k′ζ for k ′ = 1, · · · , k−1.
Then

1) ‖Ddet,k‖2 = ‖
k−1Gdet,k‖2 ≤ rζ .
2) ‖Gdet,k Gdet,k

′ − Ĝdet,k Ĝ′det,k‖2 ≤ 2rζ .

3) 0 <
√

1− r2ζ 2 ≤ σi (Dk) = σi (Rk) ≤ 1. Thus,
‖Dk‖2 = ‖Rk‖2 ≤ 1 and ‖D−1

k ‖2 = ‖R−1
k ‖2 ≤

1/
√

1− r2ζ 2.
4) ‖Dundet,k

′Ek‖2 = ‖Gundet,k
′Ek‖2 ≤ r2ζ 2√

1−r2ζ 2
.

Proof: The proof is given in Appendix D.

E. Bounding the Subspace Error, ζ̃k

Lemma 8.16 (High Probability Bound on ζ̃k): Assume that
the conditions of Theorem 7.7 hold. Then,

P(ζ̃k ≤ c̃kζ |�̃e
j,k−1) ≥ p̃(α̃, ζ)

where p̃(.) is defined in Lemma 8.19.
Proof: This follows by combining Lemma 8.17 and the

last claim of Lemma 8.19, both of which are given below.
Lemma 8.17 (Bounding ζ̃k

+
): If

fdec(g̃max, h̃max, κ
+
s,e, κ

+
s,∗ + rζ)

− finc(g̃max, h̃max, κ
+
s,e, κ

+
s,∗ + rζ)

c̃minζ
> 0

then fdec(g̃k, h̃k , κ
+
s,e, κ

+
s,∗ + rζ) > 0 and ζ̃+k ≤ c̃kζ .

5028 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Proof: Recall from Definition 8.1 that ζ̃k
+ :=

finc(g̃k,h̃k ,κ+s,e,κ+s,∗+rζ)

fdec(g̃k,h̃k ,κ+s,e,κ+s,∗+rζ)
. Notice that finc(.) is an increasing func-

tion of g̃, h̃, and fdec(.) is a decreasing function. Using the
definition of g̃max, h̃max, c̃min given in Assumption 7.3, the
result follows.

Lemma 8.18 (Bounding ζ̃k): If λmin(Ãk) − λmax(Ãk,⊥) −
‖H̃k‖2 > 0, then

ζ̃k ≤ ‖H̃k‖2
λmin(Ãk)− λmax(Ãk,⊥)− ‖H̃k‖2

(14)

Proof: The proof is the same as that of Lemma 6.9.

Lemma 8.19 (High Probability Bounds for Each of the
Terms in the ζ̃k Bound and for ζ̃k): Assume that the conditions
of Theorem 7.7 hold. Also, assume that P(�̃e

j,k−1) > 0. Then,
for all 1 ≤ k ≤ ϑ j ,

1) P(λmin(Ãk) ≥ λ−k (1 − r2ζ 2 − 0.1ζ)|�̃e
j,k−1) > 1 −

p̃1(α̃, ζ) with p̃1(α̃, ζ) given in (28).
2) P(λmax(Ãk,⊥) ≤ λ−k (h̃k + r2ζ 2 f + 0.1ζ)|�̃e

j,k−1) > 1−
p̃2(α̃, ζ) with p̃2(α̃, ζ) given in (30).

3) P(‖H̃k‖2 ≤ λ−k finc(g̃k, h̃k , κ
+
s,e, κ

+
s,∗ + rζ) |�̃e

j,k−1) ≥
1− p̃3(α̃, ζ) with p̃3(α̃, ζ) given in (35).

4) P(λmin(Ãk) − λmax(Ãk,⊥) − ‖H̃k‖2 ≥
λ−k fdec(g̃k, h̃k , κ

+
s,e, κ

+
s,∗ + rζ) |�̃e

j,k−1) ≥ p̃(α̃, ζ) :=
1− p̃1(α̃, ζ)− p̃2(α̃, ζ)− p̃3(α̃, ζ).

5) If fdec(g̃k, h̃k) > 0, then P(ζ̃k ≤ ζ̃+k |�̃e
j,k−1) ≥ p̃(α̃, ζ)

Proof: Recall that finc(.), fdec(.) and ζ̃+k are defined in
Definition 8.1. The proof of the first three claims is given
in Appendix X-B. This proof uses Lemmas 8.15 and 6.4,
Remark 8.10, and the Hoeffing corollaries. The fourth claim
follows directly from the first three using the union bound on
probabilities. The fifth claim follows from the fourth using
Lemma 8.18.

IX. MODEL VERIFICATION AND

SIMULATION EXPERIMENTS

We first discuss model verification for real data in Sec IX-A.
We then describe simulation experiments in Sec IX-B.

A. Model Verification for Real Data

We experimented with two background image sequence
datasets. The first was a video of lake water motion.
The second was a video of window curtains moving
due to the wind. The curtain sequence is available at
http://home.engineering.iastate.edu/chenlu/ReProCS/Fig2.mp4.
For this sequence, the image size was n = 5120 and the num-
ber of images, tmax = 1755. The lake sequence is available at
http://home.engineering.iastate.edu/chenlu/ReProCS/ReProCS.
htm (sequence 3). For this sequence, n = 6480 and the
number of images, tmax = 1500. Any given background
image sequence will never be exactly low rank, but only
approximately so. Let the data matrix with its empirical
mean subtracted be L f ull . Thus L f ull is a n × tmax matrix.
We first “low-rankified” this dataset by computing the EVD of
(1/tmax)L f ullL′f ull ; retaining the 90% eigenvectors’ set (i.e.
sorting eigenvalues in non-increasing order and retaining all

eigenvectors until the sum of the corresponding eigenvalues
exceeded 90% of the sum of all eigenvalues); and projecting
the dataset into this subspace. To be precise, we computed
Pf ull as the matrix containing these eigenvectors and we
computed the low-rank matrix L = Pf ull P ′f ullL f ull . Thus
L is a n × tmax matrix with rank(L) < min(n, tmax). The
curtains dataset is of size 5120×1755, but 90% of the energy
is contained in only 34 directions, i.e. rank(L) = 34. The
lake dataset is of size 6480 × 1500 but 90% of the energy
is contained in only 14 directions, i.e. rank(L) = 14. This
indicates that both datasets are indeed approximately low
rank.

In practical data, the subspace does not just change as
simply as in the model given in Sec. III-A. There are also
rotations of the new and existing eigen-directions at each
time which have not been modeled there. Moreover, with just
one training sequence of a given type, it is not possible to
compute Cov(Lt) at each time t . Thus it is not possible to
compute the delay between subspace change times. The only
thing we can do is to assume that there may be a change
every d frames, and that during these d frames the data is
stationary and ergodic, and then estimate Cov(Lt) for this
period using a time average. We proceeded as follows. We took
the first set of d frames, L1:d := [L1, L2 . . . Ld], estimated its
covariance matrix as (1/d)L1:dL′1:d and computed P0 as the
99.99% eigenvectors’ set. Also, we stored the lowest retained
eigenvalue and called it λ−. It is assumed that all directions
with eigenvalues below λ− are due to noise. Next, we picked
the next set of d frames, Ld+1:2d := [Ld+1, Ld+2, . . . L2d];
projected them perpendicular to P0, i.e. computed L1,p =
(I−P0 P ′0)Ld+1:2d ; and computed P1,new as the eigenvectors of
(1/d)L1,pL′1,p with eigenvalues equal to or above λ−. Then,
P1 = [P0, P1,new]. For the third set of d frames, we repeated
the above procedure, but with P0 replaced by P1 and obtained
P2. A similar approach was repeated for each batch.

We used d = 150 for both the datasets. In each case, we
computed r0 := rank(P0), and cmax := max j rank(Pj,new). For
each batch of d frames, we also computed at,new := P ′j,new Lt ,
at,∗ := P ′j−1Lt and γ∗ := maxt ‖at‖∞. We got cmax = 3 and
r0 = 8 for the lake sequence and cmax = 5 and r0 = 29 for the
curtain sequence. Thus the ratio cmax/r0 is sufficiently small in
both cases. In Fig 6, we plot ‖at,new‖∞/γ∗ for one 150-frame
period of the curtain sequence and for three 150-frame change
periods of the lake sequence. If we take α = 40, we observe
that γnew := max j maxt j≤t<t j+α ||at,new||∞ = 0.125γ∗ for the
curtain sequence and γnew = 0.06γ∗ for the lake sequence, i.e.
the projection along the new directions is small for the initial α
frames. Also, clearly, it increases slowly. In fact ‖at,new‖∞ ≤
max(vk−1γnew, γ∗) for all t ∈ I j,k also holds with v = 1.5 for
the curtain sequence and v = 1.8 for the lake sequence.

Verifying the Clustering Assumption: We verified the clus-
tering assumption for the lake video as follows. We first “low-
rankified” it to 90% energy as explained above. Note that, with
one sequence, it is not possible to estimate �t (this would
require an ensemble of sequences) and thus it is not possible to
check if all �t ’s in [t̃ j , t j+1−1] are similar enough. However,
by assuming that �t is the same for a long enough sequence,
one can estimate it using a time average and then verify if its

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5029

Fig. 6. Verification of slow subspace change. The figure is discussed in
Sec IX-A.

eigenvalues are sufficiently clustered. When this was done, we
observed that the clustering assumption holds with g̃max = 7.2,
h̃max = 0.34 and ϑmax = 7.

B. Simulation Experiments

The simulated data is generated as follows. The measure-
ment matrix Mt := [M1, M2, · · · , Mt] is of size 2048×4200.
It can be decomposed as a sparse matrix St := [S1, S2, · · · , St]
plus a low rank matrix Lt := [L1, L2, · · · , Lt].

The sparse matrix St := [S1, S2, . . . , St] is generated as
follows.

1) For 1 ≤ t ≤ ttrain = 200, St = 0.
2) For ttrain < t ≤ 5200, St has s nonzero elements. The

initial support T0 = {1, 2, . . . s}. Every � time instants
we increment the support indices by 1. For example,
for t ∈ [ttrain + 1, ttrain + � − 1], Tt = T0, for t ∈
[ttrain +�, ttrain+ 2�− 1]. Tt = {2, 3, . . . s + 1} and so
on. Thus, the support set changes in a highly correlated
fashion over time and this results in the matrix St being
low rank. The larger the value of �, the smaller will be
the rank of St (for t > ttrain +�).

3) The signs of the nonzero elements of St are ±1 with
equal probability and the magnitudes are uniformly
distributed between 2 and 3. Thus, Smin = 2.

The low rank matrix Lt := [L1, L2, . . . , Lt] where Lt :=
P(t)at is generated as follows:

1) There are a total of J = 2 subspace change times,
t1 = 301 and t2 = 2701. Let U be an 2048 ×
(r0+ c1,new+ c2,new) orthonormalized random Gaussian
matrix.

a) For 1 ≤ t ≤ t1 − 1, P(t) = P0 has rank r0 with
P0 = U[1,2,...,r0].

b) For t1 ≤ t ≤ t2 − 1, P(t) = P1 = [P0 P1,new]
has rank r1 = r0 + c1,new with P1,new =
U[r0+1,...,r0+c1,new].

c) For t ≥ t2, P(t) = P2 = [P1 P2,new]
has rank r2 = r1 + c2,new with P2,new =
U[r0+c1,new+1,...,r0+c1,new+c2,new].

2) at is independent over t . The various (at)i ’s are also
mutually independent for different i .

a) For 1 ≤ t < t1, we let (at)i be uniformly
distributed between −γi,t and γi,t , where

γi,t

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

400 if i = 1, 2, . . . , r0/4,∀t ,
30 if i = r0/4+1, r0/4+2, . . . , r0/2,∀t .
2 if i = r0/2+1, r0/2+2, . . . , 3r0/4,∀t .
1 if i = 3r0/4+1, 3r0/4+2, . . . , r0,∀t .

b) For t1 ≤ t < t2, at,∗ is an r0 length vector,
at,new is a c1,new length vector and Lt := P(t)at =
P1at = P0at,∗ + P1,newat,new. (at,∗)i is uniformly
distributed between −γi,t and γi,t and at,new is
uniformly distributed between −γr1,t and γr1,t ,
where

γr1,t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1.1k−1 if t1 + (k − 1)α ≤ t

≤ t1 + kα − 1

k = 1, 2, 3, 4

1.14−1 = 1.331 if t ≥ t1 + 4α.

c) For t ≥ t2, at,∗ is an r1 = r0+c1,new length vector,
at,new is a c2,new length vector and Lt := P(t)at =
P2at = [P0 P1,new]at,∗+P2,newat,new. Also, (at,∗)i

is uniformly distributed between −γi,t and γi,t

for i = 1, 2, · · · , r0 and is uniformly distributed
between −γr1,t and γr1,t for i = r0 + 1, . . . r1.
at,new is uniformly distributed between −γr2,t and
γr2,t , where

γr2,t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1.1k−1 if t2 + (k − 1)α ≤ t

≤ t2 + kα − 1,

k = 1, 2, · · · , 7

1.17−1 = 1.7716 if t ≥ t2 + 7α.

Thus for the above model, γ∗ = 400, γnew = 1, λ+ = 53333,
λ− = 0.3333 and f := λ+

λ− = 1.6× 105. Also, Smin = 2.
We used Lttrain +Nttrain as the training sequence to estimate

P̂0. Here Nttrain = [N1, N2, · · · , Nttrain] is i.i.d. random noise
with each (Nt)i uniformly distributed between −10−3 and
10−3. This is done to ensure that span(P̂0) �= span(P0) but
only approximates it.

Figure 7 shows the results of applying Algorithm 2
(ReProCS) to data generated according to the above model.
The model parameters used were s = 20, r0 = 36 and
c1,new = c2,new = 1, and each subfigure corresponds to
a different value of �. Because of the correlated support
change, the 2048 × t sparse matrix St = [S1, S2, · · · , St] is
rank deficient in either case, e.g. for Fig. 7(a), St has rank
69, 119, 169, 1219 at t = 300, 400, 500, 2600; for Fig. 7(b), St

has rank 29, 39, 49, 259 at t = 300, 400, 500, 2600. We plot
the subspace error SE(t) and the normalized error for St ,
‖Ŝt−St‖2‖St‖2 averaged over 100 Monte Carlo simulations. We also

plot the ratio dt := ‖ITt
′D j,new,k‖2
‖D j,new,k‖2 . This serves as a proxy for

κs(D j,new,k) (which has exponential computational complex-
ity). In fact, in our proofs, we only need this ratio to be small.

As can be seen from Figs. 7(a) and 7(b), the subspace error
SE(t) of ReProCS decreased exponentially and stabilized

5030 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Fig. 7. Plots of dt , S E and et for simulated data with r0 = 36, s = maxt |Tt | = 20. (a) � = 2. (b) � = 10. (c) � = 50. (d) � = 100.

after about 4 projection PCA update steps. The averaged
normalized error for St followed a similar trend. In Fig. 7(b)
where � = 10, the subspace error SE(t) also decreased but
the decrease was a bit slower as compared to Fig. 7(a) where
� = 2.

In Fig. 7(d) we set � = 100. In this case St is very low
rank. The rank of St at t = 300, 1000, 2600 is 20, 27, 43.
We can see here that the subspace error decays rather
slowly and does not return all the way to .01 within the
Kα frames.

Finally, if we set � = ∞, the ratio
‖ITt

′D j,new,k‖2
‖D j,new,k‖2 was

1 always. As a result, the subspace error and hence the
reconstruction error of ReProCS did not decrease from its
initial value at the subspace change time.

We also did one experiment in which we generated Tt

of size s = 100 uniformly at random from all possible
s-size subsets of {1, 2, . . . n}. Tt at different times t was also
generated independently. In this case, the reconstruction error

of ReProCS is 1
5000

∑5200
t=201

‖Ŝt−St‖2‖St‖2 = 2.8472 × 10−4. The
error for PCP was 3.5× 10−3 which is also quite small.

The data for figure 8 was generated the same as above
except that we use the more general subspace model that
allows for deletion of directions. Here, for 1 ≤ t ≤ t1 − 1,
P(t) = P0 has rank r0 with P0 = U[1,2,··· ,36]. For t1 ≤
t ≤ t2 − 1, P(t) = P1 = [P0 \ P1,old P1,new] has rank
r1 = r0 + c1,new − c1,old = 34 with P1,new = U[37] and
P1,old = U[9,18,36]. For t ≥ t2, P(t) = P2 = [P1\P2,old P2,new]
has rank r2 = r1+c2,new−c2,old = 32 with P2,new = U[38] and
P1old = U[8,17,35]. Again, we average over 100 Monte Carlo
simulations.

As can be seen from Figure 8, the normalized sparse recovery
error of ReProCS and ReProCS-cPCA decreased exponentially
and stabilized. Furthermore, ReProCS-cPCA outperforms
over ReProCS greatly when deletion steps are done.

Fig. 8. Reconstruction errors of St with r0 = 36, s = maxt |Tt | = 20. The
times at which PCP is done are marked by red triangles. � : 10, comparing
PCP with ReProCS and ReProCS-cPCA.

We also compared against PCP [6]. At every t = t j + 4kα,
we solved (1) with λ = 1/

√
max(n, t) as suggested in [6]

to recover St and Lt . We used the estimates of St for the
last 4α frames as the final estimates of Ŝt . So, the Ŝt for
t = t j+1, . . . t j+4α is obtained from PCP done at t = t j+4α,
the Ŝt for t = t j + 4α + 1, . . . t j + 8α is obtained from PCP
done at t = t j + 8α and so on. Because of the correlated
support change, the error of PCP was larger in both cases.

X. CONCLUSIONS AND FUTURE WORK

In this work, we studied the recursive (online) robust
PCA problem, which can also be interpreted as a problem
of recursive sparse recovery in the presence of large but
structured noise (noise that is dense and lies in a “slowly

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5031

changing” low dimensional subspace). We analyzed a novel
solution approach called Recursive Projected CS or ReProCS
that was introduced in our earlier work [1], [25], and [26].
The ReProCS algorithm that we analyze assumes knowledge
of the subspace change model on the Lt ’s. We showed
that, under mild assumptions and a denseness assumption
on the currently unestimated subspace, span(D j,new,k) (this
assumption depends on algorithm estimates), w.h.p., ReProCS
can exactly recover the support set of St at all times; the
reconstruction errors of both St and Lt are upper bounded
by a time-invariant and small value; and after every subspace
change time, w.h.p., the subspace recovery error decays to a
small enough value within a finite delay. The most important
open question that is being addressed in ongoing work is how
to make our result a correctness result, i.e. how to remove
the denseness assumption on D j,new,k (see a forthcoming
paper). Two other issues being studied are (i) how to get
a result for the correlated Lt ’s case [48], and (ii) how to
analyze the ReProCS algorithm when subspace change times
are not known. Finally, an open question is how to to bound
the sparse recovery error even when the support set is not
exactly recovered. The undersampled measurements’ case is
also being studied [49].

APPENDIX A
PROOFS OF PRELIMINARY LEMMAS

Proof of Lemma 2.10: Because P , Q and P̂ are basis matrix,
P ′P = I , Q′Q = I and P̂ ′ P̂ = I .

1) Using P ′P = I and ‖M‖22 = ‖M M ′‖2,
‖(I − P̂ P̂ ′)P P ′‖2 = ‖(I − P̂ P̂ ′)
P‖2. Similarly, ‖(I − P P ′)P̂ P̂ ′‖2 = ‖(I − P P ′)P̂‖2.
Let D1 = (I − P̂ P̂ ′)P P ′ and let D2 = (I − P P ′)P̂ P̂ ′.
Notice that ‖D1‖2 =

√
λmax(D′1 D1) =

√
‖D′1 D1‖2

and ‖D2‖2 =
√

λmax(D′2 D2) =
√
‖D′2 D2‖2. So, in

order to show ‖D1‖2 = ‖D2‖2, it suffices to show that
‖D′1 D1‖2 = ‖D′2 D2‖2. Let P ′ P̂ SV D= U�V ′. Then,
D′1 D1 = P(I − P ′ P̂ P̂ ′P)P ′ = PU(I − �2)U ′P ′ and
D′2 D2 = P̂(I − P̂ ′P P ′ P̂)P̂ ′ = P̂V (I − �2)V ′ P̂ ′ are
the compact SVD’s of D′1 D1 and D′2 D2 respectively.
Therefore, ‖D′1 D1‖ = ‖D′2 D2‖2 = ‖I − �2‖2 and
hence ‖(I − P̂ P̂ ′)P P ′‖2 = ‖(I − P P ′)P̂ P̂ ′‖2.

2) ‖P P ′ − P̂ P̂ ′‖2 = ‖P P ′ − P̂ P̂ ′P P ′ + P̂ P̂ ′P P ′ −
P̂ P̂ ′‖2 ≤ ‖(I − P̂ P̂ ′)P P ′‖2+‖(I − P P ′)P̂ P̂ ′‖2 = 2ζ∗.

3) Since Q′P = 0, then ‖Q′ P̂‖2 = ‖Q′(I − P P ′)P̂‖2 ≤
‖(I − P P ′)P̂‖2 = ζ∗.

4) Let M = (I − P̂ P̂ ′)Q). Then M ′M = Q′(I −
P̂ P̂ ′)Q and so σi ((I− P̂ P̂ ′)Q) =

√
λi (Q′(I − P̂ P̂ ′)Q).

Clearly, λmax(Q′(I− P̂ P̂ ′)Q) ≤ 1. By Weyl’s Theorem,
λmin(Q′(I − P̂ P̂ ′)Q) ≥ 1 − λmax(Q′ P̂ P̂ ′Q) = 1 −
‖Q′ P̂‖22 ≥ 1 − ζ 2∗ . Therefore,

√
1− ζ 2∗ ≤ σi ((I −

P̂ P̂ ′)Q) ≤ 1.

For the case when P and P̂ are not the same size, the
proof of 1 is used, but �2 becomes ��′ for D1 and �′� for
D2. Since � is of size r1 × r2, ��′ will be of size r1 × r1
and �′� will be of size r2 × r2. Because r1 ≤ r2, every

singular value of D′1 D1 will be a singualr value of D′2 D2
(using the SVD as in the proof of 1 above). Using the char-
acterization of the matrix 2-norm as the largest singluar value,
‖D′1 D1‖2 ≤ ‖D′2 D2‖.

Proof of Lemma 2.11: It is easy to see that P(Be, Ce) =
E[IB(X, Y)IC(X)]. If E[IB(X, Y)|X] ≥ p for all X ∈ C,
this means that E[IB(X, Y)|X]IC(X) ≥ pIC(X). This, in turn,
implies that

P(Be, Ce) = E[IB(X, Y)IC(X)] = E[E[IB(X, Y)|X]IC(X)]
≥ pE[IC(X)].

Recall from Definition 2.4 that P(Be|X) = E[IB(X, Y)|X] and
P(Ce) = E[IC(X)]. Thus, we conclude that if P(Be|X) ≥ p
for all X ∈ C, then P(Be, Ce) ≥ pP(Ce). Using the definition
of P(Be|Ce), the claim follows.

Proof of Corollary 2.14:

1) Since, for any X ∈ C, conditioned on X , the Zt ’s are
independent, the same is also true for Zt −g(X) for any
function of X . Let Yt := Zt − E(Zt |X). Thus, for any
X ∈ C, conditioned on X , the Yt ’s are independent. Also,
clearly E(Yt |X) = 0. Since for all X ∈ C, P(b1 I
 Zt

b2 I |X) = 1 and since λmax(.) is a convex function, and
λmin(.) is a concave function, of a Hermitian matrix,
thus b1 I
 E(Zt |X)
 b2 I w.p. one for all X ∈ C.
Therefore, P(Y 2

t
 (b2 − b1)
2 I |X) = 1 for all X ∈ C.

Thus, for Theorem 2.13, σ 2 = ‖∑t (b2 − b1)
2 I‖2 =

α(b2−b1)
2. For any X ∈ C, applying Theorem 2.13 for

{Yt }’s conditioned on X , we get that, for any ε > 0,

P

(
λmax

(
1

α

∑
t

Yt

)
≤ ε

∣∣∣X
)

> 1− n exp

(−αε2

8(b2 − b1)2

)
for all X ∈ C

By Weyl’s theorem, λmax(
1
α

∑
t Yt) =

λmax(
1
α

∑
t (Zt − E(Zt |X)) ≥ λmax(

1
α

∑
t Zt) +

λmin(
1
α

∑
t −E(Zt |X)). Since λmin(

1
α

∑
t −E(Zt |X)) =

−λmax(
1
α

∑
t E(Zt |X)) ≥ −b4, thus λmax(

1
α

∑
t Yt) ≥

λmax(
1
α

∑
t Zt)− b4. Therefore,

P

(
λmax

(
1

α

∑
t

Zt

)
≤ b4 + ε

∣∣∣X
)

> 1− n exp

(−αε2

8(b2 − b1)2

)
for all X ∈ C

2) Let Yt = E(Zt |X) − Zt . As before, E(Yt |X) = 0 and
conditioned on any X ∈ C, the Yt ’s are independent
and P(Y 2

t
 (b2 − b1)
2 I |X) = 1. As before, applying

Theorem 2.13, we get that for any ε > 0,

P

(
λmax

(
1

α

∑
t

Yt

)
≤ ε

∣∣∣X
)

> 1− n exp

(−αε2

8(b2 − b1)2

)
for all X ∈ C

By Weyl’s theorem, λmax(
1
α

∑
t Yt) =

λmax(
1
α

∑
t (E(Zt |X) − Zt)) ≥ λmin(

1
α

∑
t E(Zt |X)) +

5032 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

λmax(
1
α

∑
t −Zt) = λmin(

1
α

∑
t E(Zt |X)) −

λmin(
1
α

∑
t Zt) ≥ b3 − λmin(

1
α

∑
t Zt) Therefore,

for any ε > 0,

P

(
λmin

(
1

α

∑
t

Zt

)
≥ b3 − ε

∣∣∣X
)

≥ 1− n exp

(−αε2

8(b2 − b1)2

)
for all X ∈ C

Proof of Corollary 2.15: Define the dilation of an n1 × n2

matrix M as dilation(M) :=
[

0 M ′
M 0

]
. Notice that this is an

(n1 + n2) × (n1 + n2) Hermitian matrix [32]. As shown in
[32, eq. 2.12],

λmax(dilation(M)) = ‖dilation(M)‖2 = ‖M‖2 (15)

Thus, the corollary assumptions imply that
P(‖dilation(Zt)‖2 ≤ b1|X) = 1 for all X ∈ C. Thus,
P(−b1 I
 dilation(Zt)
 b1 I |X) = 1 for all X ∈ C.
Using (15), the corollary assumptions also imply that
1
α

∑
t E(dilation(Zt)|X) = dilation(1

α

∑
t E(Zt |X))
 b2 I for

all X ∈ C. Finally, Zt ’s conditionally independent given X ,
for any X ∈ C, implies that the same thing also holds for
dilation(Zt)’s. Thus, applying Corollary 2.14 for the sequence
{dilation(Zt)}, we get that,

P

(
λmax

(
1

α

∑
t

dilation(Zt)

)
≤ b2 + ε

∣∣∣X
)

≥ 1− (n1 + n2) exp

(
−αε2

32b2
1

)
for all X ∈ C

Using (15), λmax(
1
α

∑
t dilation(Zt)) = λmax(dilation

(1
α

∑
t Zt)) = ‖ 1

α

∑
t Zt‖2 and this gives the final result.

Proof of Lemma 3.7: Let A = I − P P ′. By definition,
δs(A) := max{max|T |≤s(λmax(A′T AT) − 1), max|T |≤s(1 −
λmin(A′T AT)))}. Notice that A′T AT = I − I ′T P P ′ IT . Since
I ′T P P ′ IT is p.s.d., by Weyl’s theorem, λmax(A′T AT) ≤ 1.
Since λmax(A′T AT) − 1 ≤ 0 while 1 − λmin(A′T AT) ≥ 0,
thus,

δs(I − P P ′) = max|T |≤s

(
1− λmin(I − I ′T P P ′ IT)

)
(16)

By Definition, κs(P) = max|T |≤s
‖I ′T P‖2
‖P‖2 = max|T |≤s ‖I ′T P‖2.

Notice that ‖I ′T P‖22 = λmax(I ′T P P ′ IT) = 1 − λmin(I −
I ′T P P ′ IT) 3, and so

κ2
s (P) = max|T |≤s

(
1− λmin(I − I ′T P P ′ IT)

)
(17)

From (16) and (17), we get δs(I − P P ′) = κ2
s (P).

3This follows because B = I ′T P P ′ IT is a Hermitian matrix. Let B =
U�U ′ be its EVD. Since UU ′ = I , λmin(I − B) = λmin(U(I − �)U ′) =
λmin(I − �) = 1− λmax(�) = 1− λmax(B).

APPENDIX B
THE NEED FOR PROJECTION PCA

A. Projection-PCA vs Standard PCA

The reason that we cannot use standard PCA for subspace
update in our work is because, in our case, the error et =
Lt − L̂t in the observed data vector L̂t is correlated with the
true data vector Lt ; and the condition number of Cov[Lt] is
large (see Remark 3.4). In other works that study finite sample
PCA, see [33] and references therein, the large condition
number does not cause a problem because they assume that
the error/noise (et) is uncorrelated with the true data vector
(Lt). Moreover, et or Lt or both are zero mean (which we
have too). Thus, the dominant term in the perturbation of
the estimated covariance matrix, (1/α)

∑
t L̂ t L̂ ′t w.r.t. the true

one is (1/α)
∑

t et e′t . For α large enough, the other two terms
(1/α)

∑
t Lt e′t and its transpose are close to zero w.h.p. due to

law or large numbers. Thus, the subspace error bound obtained
using the sin θ theorem and the matrix Hoeffding inequal-
ity, will depend, w.h.p., only on the ratio of the maximum
eigenvalue of Cov[et] to the smallest eigenvalue of Cov[Lt].
The probability with which this bound holds depends on f ,
however the probability can be made large by increasing the
number of data points α. However, in our case, because et and
Lt are correlated, this strategy does not work. We explain this
below.

In this discussion, we remove the subscript j . Also, let
P∗ := Pj−1, P̂∗ := P̂j−1, r∗ = rank(P∗). Consider t =
t j+kα−1 when the kth projection PCA or PCA is done. Since
the error et = Lt − L̂t is correlated with Lt , the dominant
terms in the perturbation matrix seen by PCA are (1/(t j +
kα))

∑t j+kα−1
t=1 Lt e′t and its transpose, while for projection

PCA, they are (1/α)�0
∑

t∈I j,k
Lt e′t�0 and its transpose. The

magnitude of Lt can be large. The magnitude of et is smaller
than a constant times that of Lt . The constant is less than one
but, at t = t j+α−1, it is not negligible. Thus, the norm of the
perturbation seen by PCA at this time may not be small. As
a result, the bound on the subspace error, SE(t), obtained by
applying the sin θ theorem may be more than one (and hence
meaningless since by definition SE(t) ≤ 1). For projection
PCA, because of �0, the perturbation is much smaller and
hence so is the bound on SE(t).

Let SEk := SE(t j+kα−1) = SE(t) denote the subspace error
for t ∈ I j,k . Consider k = 1 first. For PCA, we can show
that SE1 � Čκ+s g+ + Č ′ f ζ+∗ for constants Č, Č ′ that are
more than one but not too large. Here g+ is the upper bound
on the condition number of Cov(at,new)) and it is valid to
assume that g+ is small so that Čκ+s g+ < 1. However, f
is a bound on the maximum condition number of Cov(at) =
Cov(Lt) and this can be large. When it is, the second term
may not be less than one. On the other hand, for projection
PCA, we have SEk ≤ ζk + ζ∗ ≤ ζ+k + ζ+∗ with ζ+∗ = rζ ,
and ζ+k ≈ Čκ+s g+ζ+k−1 + Č ′ f (ζ+∗)2 and ζ+0 = 1. Thus SE1 �
Čκ+s g+ + Č ′ f (ζ+∗)2 + ζ+∗ . The first term in this bound is
similar to that of PCA, but the second term is much smaller.
The third term is negligibly small. Thus, in this case, it is
easier to ensure that the bound is less than one.

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5033

Moreover, our goal is to show that within a finite delay after
a subspace change time, the subspace error decays down from
one to a value proportional to ζ . For projection PCA, this
can be done because we can separately bound the subspace
error of the existing subspace, ζ∗, and of the newly added
one, ζk , and then bound the total subspace error, SE(t), by
ζ∗ + ζk for t ∈ I j,k . Assuming that, by t = t j , ζ∗ is small
enough, i.e. ζ∗ ≤ r∗ζ with ζ < 0.00015/r2 f , we can show
that within K iterations, ζk also becomes small enough so
that SE(t) ≤ (r∗ + c)ζ . However, for PCA, it is not possible
to separate the subspace error in this fashion. For k > 1, all
we can claim is that SEk � Čκ+s f SEk−1. Since f can be
large (larger than 1/κ+s), this cannot be used to show that SEk

decreases with k.

B. Why Not Use All kα Frames at t = t j + kα − 1

Another possible way to implement projection PCA is to
use the past kα estimates L̂t at the kth projection PCA time,
t = t j + kα − 1. This may actually result in an improved
algorithm. We believe that it can also be analyzed using the
approaches developed in this paper. However, the analysis
will be more complicated. We briefly try to explain why. The
perturbation seen at t = t j + kα − 1, Hk , will now satisfy
Hk ≈ (1/(kα))

∑k
k′=1

∑
t∈I j,k′ �0(−Lt e′t − et L ′t + et e′t)�0

instead of just being approximately equal to the last (k ′ = k)
term. Bounds on each of these terms will hold with a different
probability. Thus, proving a lemma similar to Lemma 6.11 will
be more complicated.

APPENDIX C
PROOF OF LEMMA 6.11

For convenience, we will use 1
α

∑
t to denote 1

α

∑
t∈I j,k

.
The proof follows using the following key facts and the
Hoeffding corollaries.

Fact 10.1: Under the assumptions of Theorem 4.2 the
following are true.

1) The matrices Dnew, Rnew, Enew, D∗, Dnew,k−1, �k−1 are
functions of the r.v. X j,k−1. Since X j,k−1 is independent
of any at for t ∈ I j,k the same is true for the matrices
Dnew, Rnew, Enew, D∗, Dnew,k−1, �k−1.

All terms that we bound for the first two claims of
the lemma are of the form 1

α

∑
t∈I j,k

Zt where Zt =
f1(X j,k−1)Yt f2(X j,k−1), Yt is a sub-matrix of at a′t and
f1(.) and f2(.) are functions of X j,k−1. Thus, condi-
tioned on X j,k−1, the Zt ’s are mutually independent.
(Recall that we assume independence of the at ’s.

All the terms that we bound for the third claim contain
et . Using Lemma 6.4, conditioned on X j,k−1, et satisfies
(10) w.p. one whenever X j,k−1 ∈ � j,k−1. Using (10), it
is easy to see that all these terms are also of the above
form whenever X j,k−1 ∈ � j,k−1.

Thus, conditioned on X j,k−1, the Zt ’s for all the above
terms are mutually independent, whenever X j,k−1 ∈
� j,k−1.

2) It is easy to see that ‖�k−1 P∗‖2 ≤ ζ∗, ζ0 =
‖Dnew‖2 ≤ 1, �0 Dnew = �′0 Dnew = Dnew,

‖Rnew‖ ≤ 1, ‖(Rnew)−1‖ ≤ 1/
√

1− ζ 2∗ , Enew,⊥′Dnew =
0, and ‖Enew

′�0et‖ = ‖(R′new)−1 D′new�0et‖ =
‖(Rnew)−1 D′newet‖ ≤ ‖(R′new)−1 D′new ITt ‖‖et‖ ≤
κs(Dnew)√

1−ζ 2∗
‖et‖. The bounds on ‖Rnew‖ and ‖(Rnew)−1‖

follow using Lemma 2.10 and the fact that σi (Rnew) =
σi (Dnew).

3) X j,k−1 ∈ � j,k−1 implies that

a) ζ j,∗ ≤ ζ+∗ (By definition of � j,k−1 (Definition
5.11))

b) ζk−1 ≤ ζ+k−1 ≤ 0.6k−1+0.4cζ (This follows by the
definition of � j,k−1 and Lemma 6.1.)

4) Item 3 implies that conditioned on X j,k−1 ∈ � j,k−1

a) κs(Dnew) ≤ κ+s (follows by Lemma 6.10),
b) λmin(Rnew Rnew

′) ≥ 1−(ζ+∗)2 (follows from Lemma
2.10 and the fact that σmin(Rnew) = σmin(Dnew)),

c) ‖ITt
′�k−1 P∗‖2 ≤ ‖�k−1 P∗‖2 ≤ ζ j,∗ ≤ ζ+j,∗,

d) ‖ITt
′Dnew,k−1‖2 ≤ κs(Dnew,k−1)ζk−1 ≤ κ+s ζ+k−1.

5) By Weyl’s theorem (Theorem 2.8), for a sequence
of matrices Bt , λmin(

∑
t Bt) ≥ ∑

t λmin(Bt) and
λmax(

∑
t Bt) ≤∑

t λmax(Bt).
Proof: Consider Ak := 1

α

∑
t Enew

′�0 Lt Lt
′�0 Enew.

Notice that Enew
′�0 Lt = Rnewat,new+ Enew

′D∗at,∗. Let Zt =
Rnewat,newat,new

′Rnew
′ and let Yt = Rnewat,newat,∗′D∗′Enew

′+
Enew

′D∗at,∗at,new
′Rnew

′, then

Ak � 1

α

∑
t

Zt + 1

α

∑
t

Yt (18)

Consider
∑

t Zt =∑
t Rnewat,newat,new

′R′new.

1) Using item 1 of Fact 10.1, the Zt ’s are conditionally
independent given X j,k−1.

2) Using item 1, Ostrowoski’s theorem (The-
orem 2.9), and item 4, for all X j,k−1 ∈
� j,k−1, λmin

(
E(1

α

∑
t Zt |X j,k−1)

) =
λmin

(
Rnew

1
α

∑
t E(at,newat,new

′)Rnew
′) ≥

λmin
(
Rnew Rnew

′)λmin
(1

α

∑
t E(at,newat,new

′)
) ≥

(1− (ζ+j,∗)2)λ−new,k .
3) Finally, using items 2 and the bound on ‖at‖∞

from the model, conditioned on X j,k−1, 0
 Zt

cγ 2

new,k I
 c max
(
(1.2)2kγ 2

new, γ 2∗
)

I holds w.p. one for
all X j,k−1 ∈ � j,k−1.

Thus, applying Corollary 2.14 with ε = cζλ−
24 , we get

P

(
λmin

(
1

α

∑
t

Zt

)
≥ (1−(ζ+∗)2)λnew,k− cζλ−

24

∣∣∣∣X j,k−1

)

≥ 1− c exp

(−αζ 2(λ−)2

8 · 242 ·min(1.24kγ 4
new, γ 4∗)

)
(19)

for all X j,k−1 ∈ � j,k−1.
Consider Yt = Rnewat,newat,∗′D∗′Enew+Enew

′D∗at,∗at,new
′

Rnew
′.

1) Using item 1, the Yt ’s are conditionally independent
given X j,k−1.

2) Using item 1 and the fact that at,new and at,∗ are
mutually uncorrelated, E

(1
α

∑
t Yt |X j,k−1

) = 0 for all
X j,k−1 ∈ � j,k−1.

5034 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

3) Using the bound on ‖at‖∞, items 2, 4, and Fact 6.8,
conditioned on X j,k−1, ‖Yt‖ ≤ 2

√
crζ+∗ γ∗γnew,k ≤

2
√

crζ+∗ γ 2∗ ≤ 2 holds w.p. one for all X j,k−1 ∈ � j,k−1.
Thus, under the same conditioning, −bI
 Yt
 bI with

b = 2 w.p. one.
Thus, applying Corollary 2.14 with ε = cζλ−

24 , we get

P

(
λmin

(
1

α

∑
t

Yt

)
≥ −cζλ−

24

∣∣∣X j,k−1

)

≥1−c exp

(−αc2ζ 2(λ−)2

8 · 242 · (2b)2

)
for all X j,k−1 ∈ � j,k−1 (20)

Combining (18), (19) and (20) and using the union bound,
P(λmin(Ak) ≥ λ−new,k(1 − (ζ+∗)2) − cζλ−

12 |X j,k−1) ≥ 1 −
pa(α, ζ) for all X j,k−1 ∈ � j,k−1. The first claim of the lemma
follows by using λ−new,k ≥ λ− and then applying Lemma 2.11
with X ≡ X j,k−1 and C ≡ � j,k−1.

Now consider Ak,⊥ := 1
α

∑
t Enew,⊥′�0 Lt Lt

′�0 Enew,⊥.
Using item 2, Enew,⊥′�0 Lt = Enew,⊥′D∗at,∗. Thus, Ak,⊥ =
1
α

∑
t Zt with Zt = Enew,⊥′D∗at,∗at,∗′D∗′Enew,⊥ which is

of size (n − c) × (n − c). Using the same ideas as above
we can show that 0
 Zt
 r(ζ+∗)2γ 2∗ I
 ζ I and
E
(1

α

∑
t Zt |X j,k−1

)
 (ζ+∗)2λ+ I . Thus by Corollary 2.14

with ε = cζλ−
24 and Lemma 2.11 the second claim follows.

Using the expression for Hk given in Definition 5.7, it is
easy to see that

‖Hk‖2 ≤ max{‖Hk‖2, ‖Hk,⊥‖2} + ‖Bk‖2
≤

∥∥∥ 1

α

∑
t

et et
′
∥∥∥

2
+max(‖T 2‖2, ‖T 4‖2)+ ‖Bk‖2

(21)

where T 2 := 1
α

∑
t Enew

′�0(Lt et
′ + et Lt

′)�0 Enew and
T 4 := 1

α

∑
t Enew,⊥′�0(Lt et

′ + et
′Lt)�0 Enew,⊥. The second

inequality follows by using the facts that (i) Hk = T 1 −
T 2 where T 1 := 1

α

∑
t Enew

′�0et et
′�0 Enew, (ii) Hk,⊥ =

T 3 − T 4 where T 3 := 1
α

∑
t Enew,⊥′�0et et

′�0 Enew,⊥, and
(iii) max(‖T 1‖2, ‖T 3‖2) ≤ ‖ 1

α

∑
t et et

′‖2. Next, we obtain
high probability bounds on each of the terms on the RHS of
(21) using the Hoeffding corollaries.

Consider ‖ 1
α

∑
t et et

′‖2. Let Zt = et et
′.

1) Using item 1, conditioned on X j,k−1, the various Zt ’s in
the summation are independent, for all X j,k−1 ∈ � j,k−1.

2) Using item 4, and the bound on ‖at‖∞, conditioned on
X j,k−1, 0
 Zt
 b1 I w.p. one for all X j,k−1 ∈ � j,k−1.
Here b1 := (κ+s ζ+k−1φ

+√cγnew,k + ζ+∗ φ+
√

rγ∗)2.
3) Also using item 4, 0
 1

α

∑
t E(Zt |X j,k−1)
 b2 I , with

b2 := (κ+s)2(ζ+k−1)
2(φ+)2λ+new,k + (ζ+∗)2(φ+)2λ+ for all

X j,k−1 ∈ � j,k−1.

Thus, applying Corollary 2.14 with ε = cζλ−
24 ,

P

(∥∥∥ 1

α

∑
t

et et
′
∥∥∥

2
≤ b2 + cζλ−

24

∣∣∣X j,k−1

)

≥ 1− n exp

(
−αc2ζ 2(λ−)2

8 · 242b2
1

)
for all X j,k−1 ∈ � j,k−1

Consider T 2. Let Zt := Enew
′�0(Lt et

′ + et Lt
′)�0 Enew

which is of size c × c. Then T 2 = 1
α

∑
t Zt .

1) Using item 1, conditioned on X j,k−1, the vari-
ous Zt ’s used in the summation are mutually inde-
pendent, for all X j,k−1 ∈ � j,k−1. Using item
2, Enew

′�0 Lt = Rnewat,new + Enew
′D∗at,∗ and

Enew
′�0et = (Rnew

′)−1 Dnew
′et .

2) Thus, using items 2, 4, and the bound on ‖at‖∞, it
follows that conditioned on X j,k−1, ‖Zt‖2 ≤ 2b̃3 ≤
2b3 w.p. one for all X j,k−1 ∈ � j,k−1. Here, b̃3 :=

κ+s√
1−(ζ+∗)2

φ+(κ+s ζ+k−1
√

cγnew,k + √rζ+∗ γ∗)(
√

cγnew,k +
√

rζ+∗ γ∗) and b3 := 1√
1−(ζ+∗)2

(φ+cκ+s
2
ζ+k−1γ

2
new,k +

φ+
√

rcκ+s
2
ζ+k−1ζ

+∗ γnew,kγ∗ + φ+
√

rcκ+s ζ+∗ γ∗γnew,k +
φ+rζ+∗

2
γ 2∗).

3) Also, ‖ 1
α

∑
t E(Zt |X j,k−1)‖2 ≤ 2b̃4 ≤ 2b4 where b̃4 :=

κ+s√
1−(ζ+∗)2

φ+κ+s ζ+k−1λ
+
new,k + κ+s√

1−(ζ+∗)2
φ+(ζ+∗)2λ+

and b4 := κ+s√
1−(ζ+∗)2

φ+κ+s ζ+k−1λ
+
new,k +

1√
1−(ζ+∗)2

φ+(ζ+∗)2λ+.

Thus, applying Corollary 2.15 with ε = cζλ−
24 ,

P
(
‖T 2‖2 ≤ 2b4 + cζλ−

24

∣∣∣X j,k−1

)

≥ 1− c exp

(
−αc2ζ 2(λ−)2

32 · 242 · 4b2
3

)
for all X j,k−1 ∈ � j,k−1

Consider T 4. Let Zt := Enew,⊥′�0(Lt et
′ +et Lt

′)�0 Enew,⊥
which is of size (n − c)× (n − c). Then T 4 = 1

α

∑
t Zt .

1) Using item 1, conditioned on X j,k−1, the various Zt ’s
used in the summation are mutually independent, for
all X j,k−1 ∈ � j,k−1. Using item 2, Enew,⊥′�0 Lt =
Enew,⊥′D∗at,∗.

2) Thus, conditioned on X j,k−1, ‖Zt‖2 ≤ 2b5 w.p. one
for all X j,k−1 ∈ � j,k−1. Here b5 := φ+r(ζ+∗)2γ 2∗ +
φ+
√

rcκ+s ζ+∗ ζ+k−1γ∗γnew,k This follows using items 4
and the bound on ‖at‖∞.

3) Also, ‖ 1
α

∑
t E(Zt |X j,k−1)‖2 ≤ 2b6, b6 :=

φ+(ζ+∗)2λ+.

Applying Corollary 2.15 with ε = cζλ−
24 ,

P
(
‖T 4‖2 ≤ 2b6 + cζλ−

24

∣∣∣X j,k−1

)

≥ 1− (n − c) exp

(
−αc2ζ 2(λ−)2

32 · 242 · 4b2
5

)
for all X j,k−1 ∈ � j,k−1

(22)

Consider max(‖T 2‖2, ‖T 4‖2). Since b3 > b5 (follows
because ζ+k−1 ≤ 1) and b4 > b6, so 2b6 + cζλ−

24 <

2b4 + cζλ−
24 and 1 − (n − c) exp

(
−αc2ζ 2(λ−)2

8·242·4b2
5

)
> 1 −

(n − c) exp

(
−αc2ζ 2(λ−)2

8·242·4b2
3

)
. Therefore, for all X j,k−1 ∈

� j,k−1, P
(
‖T 4‖2 ≤ 2b4 + cζλ−

24

∣∣∣X j,k−1

)
≥ 1 − (n −

c) exp

(
−αc2ζ 2(λ−)2

32·242·4b2
3

)
.

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5035

By the union bound, for all X j,k−1 ∈ � j,k−1,

P
(

max(‖T 2‖2, ‖T 4‖2) ≤ 2b4 + cζλ−

24

∣∣∣X j,k−1

)

≥ 1− n exp

(
−αc2ζ 2(λ−)2

32 · 242 · 4b2
3

)
(23)

Consider ‖Bk‖2. Let Zt := Enew,⊥′�0(Lt − et)(Lt
′ −

et
′)�0 Enew which is of size (n− c)× c. Then Bk = 1

α

∑
t Zt .

Using item 2, Enew,⊥′�0(Lt − et) = Enew,⊥′(D∗at,∗ −
�0et), Enew

′�0(Lt − et) = Rnewat,new + Enew
′D∗at,∗ +

(R′new)−1 D′newet . Also, ‖Zt‖2 ≤ b7 w.p. one for all X j,k−1 ∈
� j,k−1 and ‖ 1

α

∑
t E(Zt |X j,k−1)‖2 ≤ b8 for all X j,k−1 ∈

� j,k−1. Here

b7 : = (
√

rζ+∗ (1+ φ+)γ∗ + (κ+s)ζ+k−1φ
+√cγnew,k) ·

×
(
√

cγnew,k +
√

rζ+∗

(
1+ 1√

1− (ζ+∗)2
κ+s φ+

)
γ∗

+ 1√
1− (ζ+∗)2

κ+s
2
ζ+k−1φ

+√cγnew,k

)

and

b8 : =
(

κ+s ζ+k−1φ
+ + 1√

1− (ζ+∗)2
(κ+s)3(ζ+k−1)

2(φ+)2

)
λ+new,k

+(ζ+∗)2

(
1+ φ+ + 1√

1− (ζ+∗)2
κ+s φ+

+ 1√
1− (ζ+∗)2

κ+s (φ+)2

)
λ+

Thus, applying Corollary 2.15 with ε = cζλ−
24 ,

P
(
‖Bk‖2 ≤ b8 + cζλ−

24

∣∣∣X j,k−1

)

≥ 1− n exp

(
−αc2ζ 2(λ−)2

32 · 242b2
7

)
for all X j,k−1 ∈ � j,k−1

(24)

Using (21), (22), (23) and (24) and the union bound, for
any X j,k−1 ∈ � j,k−1,

P
(
‖Hk‖2 ≤ b9 + cζλ−

8

∣∣∣X j,k−1

)
≥ 1− n exp

(
−αc2ζ 2(λ−)2

8 · 242b2
1

)
− n exp

(
−αc2ζ 2(λ−)2

32 · 242 · 4b2
3

)

−n exp

(
−αc2ζ 2(λ−)2

32 · 242b2
7

)

where

b9 : = b2 + 2b4 + b8

=
(

(
2(κ+s)2φ+√
1− (ζ+∗)2

+ κ+s φ+)ζ+k−1+

((κ+s)2(φ+)2 + (κ+s)3(φ+)2
√

1− (ζ+∗)2
)(ζ+k−1)

2

)
λ+new,k

+
(

(φ+)2 + 2φ+√
1− (ζ+∗)2

+ 1+ φ+

+ κ+s φ+√
1− (ζ+∗)2

+ κ+s (φ+)2
√

1− (ζ+∗)2

)
(ζ+∗)2λ+

Using λ−new,k ≥ λ− and f := λ+/λ−, b9 + cζλ−
8 ≤

λ−new,k(b+0.125cζ) where b is defined in Definition 5.2. Using
Fact 6.8 and substituting κ+s = 0.15, φ+ = 1.2, one can upper
bound b1, b3 and b7 and show that the above probability is
lower bounded by 1− pc(α, ζ). Finally, applying Lemma 2.11,
the third claim of the lemma follows.

APPENDIX D
PROOF OF LEMMA 8.15

Proof of Lemma 8.15:

1) The first claim follows because ‖Ddet,k‖2 =
‖
k−1Gdet,k‖2 = ‖
k−1[G1G2 · · ·Gk−1]‖2 ≤∑k−1

k1=1 ‖
k−1Gk1‖2 ≤ ∑k−1
k1=1 ‖
k1 Gk1‖2 =∑k−1

k1=1 ζ̃k1 ≤
∑k−1

k1=1 c̃k1 ζ ≤ rζ . The first inequality
follows by triangle inequality. The second one follows
because Ĝ1, · · · , Ĝk−1 are mutually orthonormal and
so
k−1 =∏k−1

k2=1(I − Ĝk2 Ĝ′k2
).

2) By the first claim, ‖(I − Ĝdet,k Ĝ′det,k)Gdet,k‖2 =
‖
k−1Gdet,k‖2 ≤ rζ . By item 2) of Lemma 2.10 with
P = Gdet,k and P̂ = Ĝdet,k , the result ‖Gdet,k Gdet,k

′ −
Ĝdet,k Ĝ′det,k‖2 ≤ 2rζ follows.

3) Recall that Dk
Q R= Ek Rk is a QR decomposition where

Ek is orthonormal and Rk is upper triangular. Therefore,
σi (Dk) = σi (Rk). Since ‖(I − Ĝdet,k Ĝ′det,k)Gdet,k‖2 =
‖
k−1Gdet,k‖2 ≤ rζ and G′k Gdet,k = 0, by item 4) of
Lemma 2.10 with P = Gdet,k , P̂ = Ĝdet,k and Q =
Gk , we have

√
1− r2ζ 2 ≤ σi ((I − Ĝdet,k Ĝ′det,k)Gk) =

σi (Dk) ≤ 1.

4) Since Dk
Q R= Ek Rk , so ‖Dundet,k

′Ek‖2 =
‖Dundet,k

′Dk R−1
k ‖2 = ‖Gundet,k

′
 ′k−1
k−1Gk R−1
k ‖2 =

‖Gundet,k
′
k−1Gk R−1

k ‖2 = ‖Gundet,k
′Dk R−1

k ‖2 =
‖Gundet,k

′Ek‖2. Since Ek = Dk R−1
k =

(I − Ĝdet,k Ĝ′det,k)Gk R−1
k ,

‖Gundet,k
′Ek‖2 = ‖Gundet,k

′(I − Ĝdet,k Ĝ′det,k)Gk R−1
k ‖2

≤ ‖Gundet,k
′(I − Ĝdet,k Ĝ′det,k)Gk‖2√

1− r2ζ 2)

= ‖Gundet,k
′Ĝdet,k Ĝ′det,k Gk‖2√
1− r2ζ 2)

5036 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

By item 3) of Lemma 2.10 with P = Gdet,k , P̂ = Ĝdet,k

and Q = Gundet,k , we get ‖Gundet,k
′Ĝdet,k‖2 ≤ rζ . By

item 3) of Lemma 2.10 with P̂ = Ĝdet,k and Q = Gk ,
we get ‖Ĝ′det,k Gk‖2 ≤ rζ . Therefore, ‖Gundet,k

′Ek‖2 =
‖Ek
′Gundet,k‖2 ≤ r2ζ 2√

1−r2ζ 2
.

APPENDIX E
PROOF OF LEMMA 8.19

Proof: We use 1
α̃

∑
t to denote 1

α̃

∑
t∈Ĩ j,k

.

For t ∈ Ĩ j,k , let at,k := G j,k
′Lt , at,det := Gdet,k

′Lt =
[G j,1, · · ·G j,k−1]′Lt and at,undet := Gundet,k

′Lt =
[G j,k+1 · · ·G j,ϑ j]′Lt . Then at := P ′j Lt can be split as at =
[a′t,det a′t,k a′t,undet]′.

This lemma follows using the following facts and the
Hoeffding corollaries, Corollary 2.14 and 2.15.

1) The matrices Dk , Rk , Ek , Ddet,k, Dundet,k ,
k−1, �K are
functions of the r.v. X̃ j,k−1. All terms that we bound
for the first two claims of the lemma are of the form
1
α

∑
t∈Ĩ j,k

Zt where Zt = f1(X̃ j,k−1)Yt f2(X̃ j,k−1), Yt

is a sub-matrix of at a′t and f1(.) and f2(.) are functions
of X̃ j,k−1. For instance, one of the terms while bounding
λmin(Ak) is 1

α̃

∑
t Rkat,kat,k

′Rk
′. X̃ j,k−1 is independent

of any at for t ∈ Ĩ j,k , and hence the same is true for the
matrices Dk , Rk , Ek , Ddet,k, Dundet,k ,
k−1, �K . Also,
at ’s for different t ∈ Ĩ j,k are mutually independent.
Thus, conditioned on X̃ j,k−1, the Zt ’s defined above are
mutually independent.

2) All the terms that we bound for the third claim con-
tain et . Using Lemma 6.4, conditioned on X̃ j,k−1, et

satisfies (10) w.p. one whenever X̃ j,k−1 ∈ �̃ j,k−1.
Conditioned on X̃ j,k−1, all these terms are also of the
form 1

α

∑
t∈Ĩ j,k

Zt with Zt as defined above, whenever

X̃ j,k−1 ∈ �̃ j,k−1. Thus, conditioned on X̃ j,k−1, the
Zt ’s for these terms are mutually independent, whenever
X̃ j,k−1 ∈ �̃ j,k−1.

3) By Remark 8.14 and the definition of �̃ j,k−1, X̃ j,k−1 ∈
�̃ j,k−1 implies that ζ∗ ≤ rζ , ζ̃k′ ≤ ck′ζ, for all k ′ =
1, 2, . . . k−1, ζK ≤ ζ+K ≤ cζ , (iv) φK ≤ φ+ (by Lemma
6.4); (v) ‖�K Pj‖2 ≤ (r + c)ζ ; and (vi) all conclusions
of Lemma 8.15 hold.

4) By the clustering assumption, λ−k ≤ λmin(E(at,kat,k
′)) ≤

λmax(E(at,kat,k
′)) ≤ λ+k ; λmax(E(at,detat,det

′)) ≤
λ+1 = λ+; and λmax(E(at,undetat,undet

′)) ≤ λ+k+1. Also,
λmax(E(at a′t)) ≤ λ+.

5) By Weyl’s theorem, for a sequence of matrices Bt ,
λmin(

∑
t Bt) ≥ ∑

t λmin(Bt) and λmax(
∑

t Bt) ≤∑
t λmax(Bt).

Consider Ãk = 1
α̃

∑
t Ek
′
k−1 Lt Lt

′
k−1 Ek . Notice that
Ek
′
k−1 Lt = Rkat,k + Ek

′(Ddet,kat,det + Dundet,kat,undet).
Let Zt = Rkat,kat,k

′Rk
′ and let Yt = Rkat,k(at,det

′Ddet,k
′ +

at,undet
′Dundet,k

′)Ek+E ′k(Ddet,kat,det+Dundet,kat,undet)at,k
′Rk
′.

Then

Ãk � 1

α̃

∑
t

Zt + 1

α̃

∑
t

Yt (25)

Consider 1
α̃

∑
t Zt = 1

α̃

∑
t Rkat,kat,k

′Rk
′.

(a) As explained above, the Zt ’s are conditionally
independent given X̃ j,k−1. (b) Using Ostrowoski’s
theorem and Lemma 8.15, for all X̃ j,k−1 ∈ �̃ j,k−1,
λmin(E(1

α̃

∑
t Zt |X̃ j,k−1)) = λmin(Rk

1
α̃

∑
t E(at,kat,k

′)Rk
′) ≥

λmin(Rk Rk
′)λmin(

1
α̃

∑
t E(at,kat,k

′)) ≥ (1 − r2ζ 2)λ−k .
(c) Finally, using ‖Rk‖2 ≤ 1 and ‖at,k‖2 ≤

√
c̃kγ∗,

conditioned on X̃ j,k−1, 0
 Zt
 c̃kγ
2∗ I holds w.p. one for

all X̃ j,k−1 ∈ �̃ j,k−1.
Thus, applying Corollary 2.14 with ε = 0.1ζλ−, and using

c̃k ≤ r , for all X̃ j,k−1 ∈ �̃ j,k−1,

P

(
λmin

(1

α̃

∑
t

Zt

)
≥ (1− r2ζ 2)λ−k − 0.1ζλ−

∣∣∣X̃ j,k−1

)

≥1−c̃k exp

(−α̃ε2

8(c̃kγ 2∗)2

)
≥1− r exp

(−α̃ · (0.1ζλ−)2

8r2γ 4∗

)

(26)

Consider Yt = Rkat,k(at,det
′Ddet,k

′ + at,undet
′Dundet,k

′)Ek +
E ′k(Ddet,kat,det + Dundet,kat,undet)at,k

′Rk
′. (a) As before,

the Yt ’s are conditionally independent given X̃ j,k−1.
(b) Since E[at] = 0 and Cov[at] = �t is diagonal,
E(1

α

∑
t Yt |X̃ j,k−1) = 0 whenever X̃ j,k−1 ∈ �̃ j,k−1. (c) Con-

ditioned on X̃ j,k−1, ‖Yt‖2 ≤ 2
√

c̃krγ 2∗ rζ(1 + rζ√
1−r2ζ 2

) ≤
2r2ζγ 2∗ (1 + 10−4√

1−10−4) ≤ 2
r (1 + 10−4√

1−10−4) < 2.1 holds w.p.

one for all X̃ j,k−1 ∈ �̃ j,k−1. This follows because X̃ j,k−1 ∈
�̃ j,k−1 implies that ‖Ddet,k‖2 ≤ rζ , ‖Ek

′Dundet,k‖2 =
‖Ek
′Gundet,k‖2 ≤ r2ζ 2√

1−r2ζ 2
. Thus, under the same condition-

ing, −bI
 Yt
 bI with b = 2.1 w.p. one. Thus, applying
Corollary 2.14 with ε = 0.1ζλ−, we get

P

(
λmin

(1

α̃

∑
t

Yt

)
≥ −0.1ζλ−

∣∣∣X̃ j,k−1

)

≥ 1− r exp

(−α̃(0.1ζλ−)2

8(̇4.2)2

)
for all X̃ j,k−1 ∈ �̃ j,k−1(27)

Combining (25), (26) and (27) and using the union bound,
P(λmin(Ãk) ≥ λ−k (1 − r2ζ 2) − 0.2ζλ−|X̃ j,k−1) ≥ 1 −
p̃1(α̃, ζ) for all X̃ j,k−1 ∈ �̃ j,k−1 where

p̃1(α̃, ζ) := r exp

(−α̃ · (0.1ζλ−)2

8r2γ 4∗

)
+r exp

(−α̃(0.1ζλ−)2

8(̇4.2)2

)

(28)

The first claim of the lemma follows by using λ−k ≥ λ− and
applying Lemma 2.11 with X ≡ X̃ j,k−1 and C ≡ �̃ j,k−1.

Consider Ãk,⊥ := 1
α

∑
t Ek,⊥′
k−1 Lt Lt

′
k−1 Ek,⊥. Notice
that Ek,⊥′
k−1 Lt = Ek,⊥′(Ddet,kat,det + Dundet,kat,undet).
Thus, Ãk,⊥ = 1

α̃

∑
t Zt with Zt = Ek,⊥′(Ddet,kat,det +

Dundet,kat,undet)(Ddet,kat,det+Dundet,kat,undet)
′Ek,⊥ which is of

size (n− c̃k)× (n− c̃k). (a) As before, given X̃ j,k−1, the Zt ’s
are independent. (b) Conditioned on X̃ j,k−1, 0
 Zt
 rγ 2∗ I
w.p. one for all X̃ j,k−1 ∈ �̃ j,k−1. (c) E(1

α

∑
t Zt |X̃ j,k−1)

(λ+k+1 + r2ζ 2λ+)I for all X̃ j,k−1 ∈ �̃ j,k−1.

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5037

Thus applying Corollary 2.14 with ε = 0.1ζλ− and using
c̃k ≥ c̃min, we get

P(λmax(Ãk,⊥) ≤ λ+k+1 + r2ζ 2λ+ + 0.1ζλ−|X̃ j,k−1)

≥ 1− p̃2(α̃, ζ) for all X̃ j,k−1 ∈ �̃ j,k−1 (29)

where

p̃2(α̃, ζ) := (n − c̃min) exp

(−α̃(0.1ζλ−)2

8r2γ 4∗

)
(30)

The second claim follows using λ−k ≥ λ−, f := λ+/λ−, h̃k :=
λk+1

+/λk
− in the above expression and applying Lemma 2.11.

Consider the third claim. Using the expression for H̃k given
in Definition 8.3, it is easy to see that

‖H̃k‖2 ≤ max{‖H̃k‖2, ‖H̃k,⊥‖2} + ‖B̃k‖2
≤

∥∥∥ 1

α̃

∑
t

et et
′
∥∥∥

2
+max(‖T 2‖2, ‖T 4‖2)+ ‖B̃k‖2

(31)

where T 2 := 1
α̃

∑
t Ek
′
k−1(Lt et

′ + et Lt
′)
k−1 Ek and

T 4 := 1
α̃

∑
t Ek,⊥′
k−1(Lt et

′ + et
′Lt)
k−1 Ek,⊥. The second

inequality follows by using the facts that (i) H̃k = T 1 −
T 2 where T 1 := 1

α̃

∑
t Ek
′
k−1et et

′
k−1 Ek , (ii) H̃k,⊥ =
T 3 − T 4 where T 3 := 1

α̃

∑
t Ek,⊥′
k−1et et

′
k−1 Ek,⊥, and
(iii) max(‖T 1‖2, ‖T 3‖2) ≤ ‖ 1

α̃

∑
t et et

′‖2.
Next, we obtain high probability bounds on each of the

terms on the RHS of (21) using the Hoeffding corollaries.
Consider ‖ 1

α̃

∑
t et et

′‖2. Let Zt = et et
′. (a) As explained in

the beginning of the proof, conditioned on X̃ j,k−1, the various
Zt ’s in the summation are independent whenever X̃ j,k−1 ∈
�̃ j,k−1. Also, by Lemma 6.4, under this conditioning, T̂t = Tt

for all t ∈ Ĩ j,k and hence et satisfies (10) in this interval. Recall
also that in this interval, �(t) = �K . Thus, using ‖�K Pj‖2 ≤
(r + c)ζ ,

‖et‖2 ≤ φ+
√

ζ

(b) Conditioned on X̃ j,k−1, 0
 Zt
 b1 I w.p. one for all
X̃ j,k−1 ∈ �̃ j,k−1. Here b1 := φ+2

ζ . (c) Using ‖�K Pj‖2 ≤
(r + c)ζ , 0
 1

α

∑
t E(Zt |X̃ j,k−1)
 b2 I, b2 := (r +

c)2ζ 2φ+2
λ+ for all X̃ j,k−1 ∈ �̃ j,k−1.

Thus, applying Corollary 2.14 with ε = 0.1ζλ−,

P

(∥∥∥ 1

α̃

∑
t

et et
′
∥∥∥

2
≤ b2 + 0.1ζλ−

∣∣∣X̃ j,k−1

)

≥ 1− n exp

(
−α̃(0.1ζλ−)2

8 · b2
1

)
for all X̃ j,k−1 ∈ �̃ j,k−1

(32)

Consider T 2. Let Zt := Ek
′
k−1(Lt et

′ + et Lt
′)
k−1 Ek

which is of size c̃k × c̃k . Then T 2 = 1
α̃

∑
t Zt .

(a) Conditioned on X̃ j,k−1, the various Zt ’s used in
the summation are mutually independent whenever
X̃ j,k−1 ∈ �̃ j,k−1. (b) Notice that Ek

′
k−1 Lt =
Rkat,k + Ek

′(Ddet,kat,det + Dundet,kat,undet) and Ek
′
k−1et =

(R−1
k)′D′ket = (R−1

k)′D′k ITt [(�K)′Tt
(�K)Tt]−1 ITt

′�K Pj at .
Thus conditioned on X̃ j,k−1, ‖Zt‖2 ≤ 2b3 w.p. one

for all X̃ j,k−1 ∈ �̃ j,k−1. Here, b3 :=
√

rζ√
1−r2ζ 2

φ+γ∗.

This follows using ‖(R−1
k)′‖2 ≤ 1/

√
1− r2ζ 2,

‖et‖2 ≤ φ+
√

ζ and ‖E ′k
k−1 Lt‖2 ≤ ‖Lt‖2 ≤ √rγ∗.
(c) Also, ‖ 1

α

∑
t E(Zt |X̃ j,k−1)‖2 ≤ 2b4 where

b4 := κ+s,Dκ+s,e(r + c)ζφ+(λ+k + rζλ+ + r2ζ 2√
1−r2ζ 2

λ+k+1).

Here κ+s,D = κ+s,∗ + rζ defined in Remark 8.10 is the bound
on max j maxk κs(D j,k).

Thus, applying Corollary 2.15 with ε = 0.1ζλ−, for all
X̃ j,k−1 ∈ �̃ j,k−1,

P(‖T 2‖2 ≤ 2b4 + 0.1ζλ−|X̃ j,k−1)

≥ 1− c̃k exp

(
−α̃(0.1ζλ−)2

32 · 4b2
3

)

Consider T 4. Let Zt := Ek,⊥′
k−1(Lt et
′+et Lt

′)
k−1 Ek,⊥
which is of size (n − c̃k) × (n − c̃k). Then T 4 = 1

α̃

∑
t Zt .

(a) conditioned on X̃ j,k−1, the various Zt ’s used in the
summation are mutually independent whenever X̃ j,k−1 ∈
�̃ j,k−1. (b) Notice that Ek,⊥′
k−1 Lt = Ek,⊥′(Ddet,kat,det +
Dundet,kat,undet). Thus, conditioned on X̃ j,k−1, ‖Zt‖2 ≤ 2b5

w.p. one for all X̃ j,k−1 ∈ �̃ j,k−1. Here b5 := √rζφ+γ∗.
(c) Also, for all X̃ j,k−1 ∈ �̃ j,k−1, ‖ 1

α̃

∑
t E(Zt |X̃ j,k−1)‖2 ≤

2b6, b6 := κ+s,e(r + c)ζφ+(λ+k+1+rζλ+). Applying Corollary
2.15 with ε = 0.1ζλ−, for all X̃ j,k−1 ∈ �̃ j,k−1,

P(‖T 4‖2 ≤ 2b6 + 0.1ζλ−|X̃ j,k−1)

≥ 1− (n − c̃k) exp

(
−α̃(0.1ζλ−)2

32 · 4b2
5

)

≥ 1− (n − c̃min) exp

(
−α̃(0.1ζλ−)2

32 · 4b2
5

)
.

Consider max(‖T 2‖2, ‖T 4‖2). By union bound and using
b3 > b5, for all X̃ j,k−1 ∈ �̃ j,k−1,

P(max(‖T 2‖2, ‖T 4‖2) ≤ 2 max(b4, b6)+ 0.1ζλ−|X̃ j,k−1)

≥ 1− n exp

(
−α̃(0.1ζλ−)2

32 · 4b2
3

)
(33)

Consider ‖B̃k‖2. Let Zt := Ek,⊥′
k−1(Lt − et)(Lt
′ −

et
′)
k−1 Ek which is of size (n−c̃k)×c̃k . Then B̃k = 1

α̃

∑
t Zt .

(a) conditioned on X̃ j,k−1, the various Zt ’s used in the sum-
mation are mutually independent whenever X̃ j,k−1 ∈ �̃ j,k−1.
(b) Notice that Ek,⊥′
k−1(Lt − et) = Ek,⊥′(Ddet,kat,det +
Dundet,kat,undet −
k−1et) and Ek

′
k−1(Lt − et) = Rkat,k +
Ek
′(Ddet,kat,det+Dundet,kat,undet−
k−1et). Thus, conditioned

on X̃ j,k−1, ‖Zt‖2 ≤ b7 w.p. one for all X j,K ,k−1 ∈ � j,K ,k−1.
Here b7 := (

√
rγ∗+φ+

√
ζ)2. (c) ‖ 1

α̃

∑
t E(Zt |X̃ j,k−1)‖2 ≤ b8

for all X̃ j,k−1 ∈ �̃ j,k−1 where

b8 :=(r + c)ζ κ+s,eφ+λ+k

+
[
(r + c)ζ κ+s,eφ+ + (r + c)ζ κ+s,e

r2ζ 2
√

1− r2ζ 2

]
λ+k+1

+ [r2ζ 2 + 2(r + c)rζ 2κ+s,eφ+ + (r + c)2ζ 2κ+s,e
2
φ+2]λ+

5038 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Thus, applying Corollary 2.15 with ε = 0.1ζλ−,

P(‖B̃k‖2 ≤ b8 + 0.1ζλ−|X̃ j,k−1) ≥ 1− n exp

×
(
−α̃(0.1ζλ−)2

32 · b2
7

)
for all X̃ j,k−1 ∈ �̃ j,k−1 (34)

Using (31), (32), (33) and (34) and the union bound, for
any X̃ j,k−1 ∈ �̃ j,k−1,

P(‖H̃k‖2 ≤ b9 + 0.2ζλ−|X̃ j,k−1) ≥ 1− p̃3(α̃, ζ)

where b9 := b2 + 2b4 + b8 and

p̃3(α̃, ζ) : = n exp

(
−α̃ε2

8 · b2
1

)
+ n exp

(
−α̃ε2

32 · 4b2
3

)

+n exp

(
−α̃ε2

32 · b2
7

)
(35)

with b1 = φ+2
ζ , b3 := √rζφ+γ∗, b7 := (

√
rγ∗ + φ+

√
ζ)2.

Using λ−k ≥ λ−, f := λ+/λ−, g̃k := λ+k /λ−k and h̃k :=
λ+k+1/λ

−
k , and then applying Lemma 2.11, the third claim of

the lemma follows.

REFERENCES

[1] C. Qiu and N. Vaswani, “Real-time robust principal components’
pursuit,” in Proc. Allerton Conf. Commun., Control, Comput., 2010.

[2] C. Qiu, N. Vaswani, and L. Hogben, “Recursive robust PCA or recursive
sparse recovery in large but structured noise,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2013, pp. 5954–5958.

[3] C. Qiu and N. Vaswani, “Recursive sparse recovery in large but
structured noise—Part 2,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2013, pp. 864–868.

[4] S. Roweis, “EM algorithms for PCA and SPCA,” in Advances in Neural
Information Processing Systems. Cambridge, MA, USA: MIT Press,
1998, pp. 626–632.

[5] F. De la Torre and M. J. Black, “A framework for robust subspace
learning,” Int. J. Comput. Vis., vol. 54, nos. 1–3, pp. 117–142, 2003.

[6] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, p. 11, 2011.

[7] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-
sparsity incoherence for matrix decomposition,” SIAM J. Optim., vol. 21,
no. 2, pp. 572–596, 2011.

[8] M. Brand, “Incremental singular value decomposition of uncertain data
with missing values,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2002,
pp. 707–720.

[9] D. Skocaj and A. Leonardis, “Weighted and robust incremental method
for subspace learning,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
vol. 2. Oct. 2003, pp. 1494–1501.

[10] Y. Li, L.-Q. Xu, J. Morphett, and R. Jacobs, “An integrated algorithm of
incremental and robust PCA,” in Proc. IEEE Int. Conf. Image Process.
(ICIP), Sep. 2003, pp. 245–248.

[11] J. Wright and Y. Ma, “Dense error correction via l1-minimization,” IEEE
Trans. Inf. Theory, vol. 56, no. 7, pp. 3540–3560, Jul. 2010.

[12] T. Zhang and G. Lerman. (2014, Jan.). A novel M-estimator for robust
PCA. J. Mach. Learn. Res. [Online]. 15(1), pp. 749–808. Available:
http://dl.acm.org/citation.cfm?id=2627435.2627458

[13] H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via outlier pursuit,”
IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3047–3064, May 2012.

[14] M. McCoy and J. A. Tropp, “Two proposals for robust PCA using
semidefinite programming,” Electron. J. Statist., vol. 5, pp. 1123–1160,
Sep. 2011.

[15] M. B. McCoy and J. A. Tropp, “Sharp recovery bounds for convex
deconvolution, with applications,” arXiv:1205.1580.

[16] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The
convex geometry of linear inverse problems,” Found. Comput. Math.,
vol. 12, no. 6, pp. 805–849, 2012.

[17] Y. Hu, S. Goud, and M. Jacob, “A fast majorize–minimize algorithm
for the recovery of sparse and low-rank matrices,” IEEE Trans. Image
Process., vol. 21, no. 2, pp. 742–753, Feb. 2012.

[18] A. E. Waters, A. C. Sankaranarayanan, and R. G. Baraniuk, “SpaRCS:
Recovering low-rank and sparse matrices from compressive measure-
ments,” in Proc. Neural Inf. Process. Syst. (NIPS), 2011.

[19] E. Richard, P.-A. Savalle, and N. Vayatis, “Estimation of simultaneously
sparse and low rank matrices,” in Proc. 29th Int. Conf. Mach. Learn.
(ICML), 2012.

[20] D. Hsu, S. M. Kakade, and T. Zhang, “Robust matrix decomposition
with outliers,” arXiv:1011.1518.

[21] M. Mardani, G. Mateos, and G. B. Giannakis, “Recovery of low-rank
plus compressed sparse matrices with application to unveiling traffic
anomalies,” IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 5186–5205,
2013.

[22] J. Wright, A. Ganesh, K. Min, and Y. Ma, “Compressive principal
component pursuit,” Inf. Inference, vol. 2, no. 1, pp. 32—68, 2013.

[23] A. Ganesh, K. Min, J. Wright, and Y. Ma, “Principal component pursuit
with reduced linear measurements,” arXiv:1202.6445.

[24] M. Tao and X. Yuan, “Recovering low-rank and sparse components
of matrices from incomplete and noisy observations,” SIAM J. Optim.,
vol. 21, no. 1, pp. 57–81, 2011.

[25] C. Qiu and N. Vaswani, “Recursive sparse recovery in large but corre-
lated noise,” in Proc. 49th Allerton Conf. Commun. Control Comput.,
2011.

[26] H. Guo, C. Qiu, and N. Vaswani, “An online algorithm for separating
sparse and low-dimensional signal sequences from their sum,” IEEE
Trans. Signal Process., 2014, arXiv: 1303.4261 [cs.IT], submitted for
publication.

[27] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the
Grassmannian for online foreground and background separation in
subsampled video,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2012, pp. 1568–1575.

[28] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Found. Comput. Math., vol. 9, no. 6, pp. 717–772, 2009.

[29] K. Lee and Y. Bresler, “ADMiRA: Atomic decomposition for mini-
mum rank approximation,” IEEE Trans. Inf. Theory, vol. 56, no. 9,
pp. 4402–4416, Sep. 2010.

[30] E. Candes, “The restricted isometry property and its implications for
compressed sensing,” Compte Rendus l’Academie Sci., vol. 346, no. 9,
pp. 589–592, 2008.

[31] C. Davis and W. M. Kahan, “The rotation of eigenvectors by a pertur-
bation. III,” SIAM J. Numer. Anal., vol. 7, no. 1, pp. 1–46, Mar. 1970.

[32] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”
Found. Comput. Math., vol. 12, no. 4, pp. 389–434, 2012.

[33] B. Nadler, “Finite sample approximation results for principal component
analysis: A matrix perturbation approach,” Ann. Statist., vol. 36, no. 6,
pp. 2791–2817, 2008.

[34] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[35] Y. Jin and B. D. Rao, “Algorithms for robust linear regression by exploit-
ing the connection to sparse signal recovery,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Mar. 2010, pp. 3830–3833.

[36] K. Mitra, A. Veeraraghavan, and R. Chellappa, “Robust regression using
sparse learning for high dimensional parameter estimation problems,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2010, pp. 3846–3849.

[37] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[38] C. Qiu and N. Vaswani, “Support-predicted modified-CS for recursive
robust principal components’ pursuit,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul./Aug. 2011, pp. 668–672.

[39] G. Grimmett and D. Stirzaker, Probability and Random Processes.
New York, NY, USA: Oxford Univ. Press, 2001.

[40] R. Horn and C. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 1985.

[41] G. Li and Z. Chen, “Projection-pursuit approach to robust dispersion
matrices and principal components: Primary theory and Monte Carlo,”
J. Amer. Statist. Assoc., vol. 80, no. 391, pp. 759–766, 1985.

[42] P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sampling and
reconstruction of multiband signals,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), vol. 3. May 1996, pp. 1688–1691.

[43] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using FOCUSS: A re-weighted minimum norm algorithm,”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, Mar. 1997.

[44] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[45] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

QIU et al.: RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY 5039

[46] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation when
p is much larger than n,” Ann. Statist., vol. 35, no. 6, pp. 2313–2351,
2007.

[47] D. Hsu, S. M. Kakade, and T. Zhang, “Robust matrix decomposition
with sparse corruptions,” IEEE Trans. Inf. Theory, vol. 57, no. 11,
pp. 7221–7234, Nov. 2011.

[48] J. Zhan and N. Vaswani, “Performance guarantees for ReProCS—
Correlated low-rank matrix entries case,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), May 2014.

[49] B. Lois, N. Vaswani, and C. Qiu, “Performance guarantees for under-
sampled recursive sparse recovery in large but structured noise,” in Proc.
GlobalSIP, 2013.

Chenlu Qiu received a B.S. from Southeast University in China in 2006 in
Information Engineering and a Ph.D. from Iowa State University in 2013 in
Electrical Engineering. She is currently with the Traffic Management Research
Institute of the Ministry of Public Security, China. Her research interests
include robust PCA and video analysis.

Namrata Vaswani received a B.Tech. from Indian Institute of Technology
(IIT), Delhi, in 1999 and a Ph.D. from University of Maryland, College Park,
in 2004, both in Electrical Engineering. During 2004-05, she was a research
scientist at Georgia Tech. Since Fall 2005, she has been with the Iowa State
University where she is currently an associate professor of electrical and
computer engineering. She held the Harpole-Pentair assistant professorship
at ISU during 2008-09. From 2009 to 2013, she served as an Associate
Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING. Her research
interests are in signal and information processing for problems motivated by
big-data and bio-imaging applications. Her current work focuses on recursive
sparse recovery, robust PCA, matrix completion and applications in video and
medical imaging.

Brian Lois received a B.S. from Marquette University, Milwaukee, WI in
Mathematics in 2010. He is currently a Ph.D. candidate in Mathematics and
Electrical Engineering at Iowa State University. His research interests are in
linear algebra and signal processing.

Leslie Hogben is Dio Lewis Holl Chair in Applied Mathematics and Professor
of Mathematics at Iowa State University, and Associate Director for Diversity
of the American Institute of Mathematics. She is the author of more than 70
research papers and advisor to numerous PhD students, the Secretary/Treasurer
of the International Linear Algebra Society, and an associate editor of the
journals Linear Algebra and its Applications and Electronic Journal of Linear
Algebra. Her research is in linear algebra, especially combinatorial matrix
theory, spectral graph theory, and applications of linear algebra and graph
theory.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

