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Abstract—Our goal is to develop statistical models for the shape change of a configuration of “landmark” points (key points of interest)

over time and to use these models for filtering and tracking to automatically extract landmarks, synthesis, and change detection. The

term “shape activity” was introduced in recent work to denote a particular stochastic model for the dynamics of landmark shapes

(dynamics after global translation, scale, and rotation effects are normalized for). In that work, only models for stationary shape

sequences were proposed. But most “activities” of a set of landmarks, e.g., running, jumping, or crawling, have large shape changes

with respect to initial shape and hence are nonstationary. The key contribution of this work is a novel approach to define a generative

model for both 2D and 3D nonstationary landmark shape sequences. Greatly improved performance using the proposed models is

demonstrated for sequentially filtering noise-corrupted landmark configurations to compute Minimum Mean Procrustes Square Error

(MMPSE) estimates of the true shape and for tracking human activity videos, i.e., for using the filtering to predict the locations of the

landmarks (body parts) and using this prediction for faster and more accurate landmarks extraction from the current image.

Index Terms—Landmark shape sequence analysis, nonstationary shape sequences, Kendall’s shape space, tangent space, tracking,

particle filtering.

Ç

1 INTRODUCTION

THE goal of this work is to develop statistical models for
the shape change of a configuration of “landmark”

points (key points of interest) over time and to use these
models for filtering, tracking (to automatically extract
landmarks), synthesis, and change detection applications.
The “shape” of an ordered set of landmarks was defined by
Kendall et al. [3] as all of the geometric information that
remains when location, scale, and rotational effects are
filtered out. The term “shape activity” was introduced in [4]
to denote a particular stochastic model for the dynamics of
“landmark shapes” (dynamics after global translation, scale,
and rotation effects are normalized for). A model for shape
change is invariant to camera motion under the weak
perspective model (also referred to as the scaled ortho-
graphic camera) [5], which is a valid assumption when the
scene depth is small compared to distance from the camera.
The models studied in [4] were primarily for modeling
stationary shape activities (SSA) of 2D landmarks (assume
constant “mean shape”). In this work, we propose models
for the dynamics of nonstationary shape sequences (referred
to as “nonstationary shape activities” (NSSA)) of 2D and 3D
landmarks. Most “activities” of a set of landmarks, for
example, see Fig. 6, are not stationary, and hence, this more

general model is needed. Even if the activity is actually
stationary, it still gets tracked using our model.

Two-dimensional landmarks are usually the 2D coordi-
nates of feature points of interest in an image sequence, e.g.,
these could be the joints of the different body parts of the
human body and the goal could be to model and track
articulated human body motion (see Figs. 6 and 7). Alter-
natively, these could be the locations of a set of interacting
point objects and the goal could be to track their collective
behavior over time and detect abnormalities [4]. Three-
dimensional landmark shape sequences are often obtained
from a time sequence of volume images, e.g., by manually
or automatically extracting landmarks from a 3D heart MR
image sequence or from a time sequence of brain MRI
volumes. Two-dimensional or 3D landmarks may also be
obtained from motion capture (MOCAP) [6] data where
sensors are attached to various joints of the human body
and their 3D coordinates measured over time. The Carnegie
Mellon Motion Capture database is a common example.
Modeling Mocap data have applications in biomechanics
and graphics to understand the motion of human joints in
various actions.

1.1 Our Contributions and Related Work

The key contribution of this work is a novel approach to
define a generative model for 2D and 3D nonstationary
landmark shape sequences.1 The main idea is to compute the
tangent space representation of the current shape in the
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1. We could have just defined the model for m-D landmark shape
sequences and 2D or 3D would follow as special cases. But we model the
2D case separately since both shape computation from preshapes (compare
(1) versus (16)) and Procrustes mean computation are more efficient in 2D
than in general m-D (where the mean is computed using an iterative
algorithm) [7].
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tangent space at the previous shape. This can be referred to
as the “shape velocity” vector since it quantifies the
“difference” between two consecutive shapes projected into
the tangent space at the first one. The coefficients of shape
velocity along the orthogonal basis directions spanning the
current tangent space (“shape speed”) can be modeled using
standard vector time-series models. An important require-
ment in doing this is to ensure that the basis directions of the
current tangent space are aligned with those of the previous
one. For both 2D and 3D shape sequences, we use the
tangent space projections defined in [7, pages 71-77].

A second contribution of our work is demonstrating the
use of our nonstationary model for

1. sequentially filtering noise-corrupted landmark con-
figurations to compute Minimum Mean Procrustes
Square Error (MMPSE) estimates of the true shape;

2. tracking, i.e., for using the filtering to predict the
locations of the landmarks at the current time and
using this prediction for faster and more accurate
landmarks’ extraction from the current image;

3. synthesis;
4. change detection.

Most of our experiments focus on 1 and 2. Greatly
improved performance of our tracking and filtering algo-
rithm over existing work [8], [4], [9] is demonstrated. Due to
the nonlinearities in the shape dynamics model and the
non-Gaussian observation model (similar to that of Con-
densation [10]), we use a particle filter (PF) [11] for filtering
and tracking. Our tracking problem is a typical example of a
large-dimensional problem with frequently multimodal
observation likelihoods (due to background clutter and
missing landmarks), and hence, we replace the basic PF
used in previous work by the recently proposed PF with
Efficient Importance Sampling (PF-EIS). We demonstrate
that PF-EIS has a much better performance for landmark
shape tracking than the basic PF, when the number of
particles used is small.

In recent years, there has been a large amount of work on
modeling sequences of landmark shapes—both in statistics
[7], [12] and in computer vision and medical image analysis
[8], [4], [13], [14], [10], [15], [16], [17], [18]. Active shape
models (ASMs) [8] and SSAs [4] both assume stationarity of
the shape sequence (single mean shape plus stationary
deviations about it).

But, in most real applications, there is large shape
variation over a long sequence, and therefore, a single mean
shape plus an ASM or SSA model does not suffice. This is
explained in more detail in Section 2.2. For example, consider
a running sequence (see Fig. 6). Another example is the
changes in shape within a single heart cycle. In existing
work, the ASM is usually replaced by piecewise ASMs [13],
for example, different ASMs are used for systolic and
diastolic motions in [13] or SSA is replaced by piecewise
SSA [14]. Piecewise ASMs are good for recognition pro-
blems, but not for automatic tracking or for compression
since they do not model the transitions between pieces well.
When piecewise SSA was used for tracking in [14], it needed
to use separate change detection and shape recognition
procedures to detect when and which piece to switch to. In
this work, we demonstrate through extensive experiments

that both filtering and tracking using our model significantly
outperform either ASMs or SSAs.

Smoothing splines [12] is, to the best of our knowledge,
the only other existing work that truly models nonstationary
landmark shape sequences (other than the piecewise models
discussed above). But it does not provide a generative
model for the shape sequences, which is the key require-
ment in tracking, compression, or synthesis applications.

A key difference of our work from Condensation [10] is
that the latter only models and tracks global affine
deformation between two landmark configurations. This
is a valid model for rigid or approximately rigid object
motion, but not for modeling shape change of different
parts of the human body performing actions such as
running or jumping, where there is significant local shape
deformation which is not affine.

Our modeling approach is similar in spirit to [19], which
also uses piecewise geodesic priors to define a generative
model but in a very different context.

Other related work includes Active Appearance Models
[15] and Active Appearance Motion Models [16], which also
model appearance, and hence, are not invariant to intensity
changes between training and test data, and work on
articulated human body tracking [17], [18], [20].

The paper is organized as follows: In Section 2, we
explain the nonstationary model for 2D landmark shape
sequences and its parameter estimation. We discuss the
same for 3D shape sequences in Section 3. Algorithms for
filtering and tracking are developed in Section 4. Experi-
mental results are given in Section 5. We conclude the paper
in Section 6.

2 MODELING 2D SHAPE SEQUENCES

For modeling human motion activity or any activity
involving multiple interacting objects, we represent body
joints/objects as the landmark points and the correspond-
ing activity is represented as a sequence of deforming
landmark shapes over time. It is done in two steps. First, we
transform the shape sequence to a vector time series using
the nonstationary shape deformation model. Then, we fit
standard statistical models to the time series.

2.1 2D Landmark Shape Analysis Preliminaries

The configuration S is an ordered set ofK landmarks. In the
2D case, it can be represented as a K-dimensional complex
vector [7, page 39], with the x (and y) coordinates forming the
real (and imaginary) parts. The preshape w is obtained by
translation and scale normalization, and the shape z is
obtained by rotation normalization w.r.t. a given shape �.
For details, see [7, Chapter 3] or [4, Section 2]. The Procrustes
distance and Procrustes mean are also defined there. The
complex eigenvector solution for computing the Procrustes
mean shape can be found in [7, Chap. 3] and [21].

As explained in [7, Chap. 4], the shape space M is a
manifold in CK�1, and hence, its actual dimension is CK�2.
Thus, the tangent plane at any point of the shape space is a
CK�2-dimensional hyperplane in CK [7]. The projection of a
configuration S into the tangent space at a pole � can be
computed [7] as follows:
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y ¼ CKS; CK ¼4 IK � 1K1TK=K;

w ¼ y=kyk;
�ðw; �Þ ¼ angleðw��Þ; zðw; �Þ ¼ wej�ðw;�Þ;

ð1Þ

vðz; �Þ ¼ ½IK � ����z: ð2Þ

Here, IK is a K �K identity matrix and 1K is a column
vector with K rows with all entries as 1. The notation xT

denotes transpose and x� denotes conjugate transpose. The
first three equations involve translation, scale, and rotation
normalization, respectively, and the last one involves
projecting the shape z into the tangent space at �.

The projection from tangent space to shape space is
given by [7]:

z ¼ ð1� v�vÞ
1
2 �þ v: ð3Þ

2.2 Problem with SSA and ASM Models

The SSA model proposed in [4] computed a single mean
shape � for a training sequence and aligned each
preshape wt in the sequence to � to obtain the shape
sequence zt. Tangent projections vðzt; �Þ of each zt were
computed in the tangent space at � and their time series
was modeled using an autoregressive (AR) model. The
work of [9] replaced AR by ARMA models and used the
models for recognition problems. The ASM of [8] assumed
that zt belongs to a vector space and replaced the tangent
space projection given in (2) by its linear version vðzt; �Þ ¼
zt � � and modeled the time series of vðzt; �Þ.

Since both SSA and ASM assumed a single mean shape,
they could model only small deviations from mean, which is
only possible for stationary sequences. But, in many
applications, this assumption may not hold, for example, a
crawling or a dancing sequence or see Fig. 6. In these cases,
the mean shapes for different time intervals are different.
Or, in other words, considering the entire sequence, the
shape activity is essentially nonstationary. Now, if we force
a fixed mean shape to such a deforming shape sequence, the
resulting shapes zt would drift too far away from �. It is
important to note that a single tangent space approximation
works as long as each element of vðzt; �Þ for all shapes is less
than 1 (otherwise, the square root in (3) will be of a negative
number). Also, a time-invariant AR or ARMA model on
vðzt; �Þs is a valid one only if the magnitudes of each
element of vðzt; �Þ are significantly smaller than 1 (this is
because, when vðzt; �Þ is large, i.e., when zt is far from �,
small changes in vðzt; �Þ would correspond to very large
changes in zt). But, for large shape variation, vðzt; �Þ will be
large. In such a scenario, both SSA and ASM would fail to
correctly model the shape dynamics.

2.3 Modeling Nonstationary Shape Sequences

To model a nonstationary shape sequence, we use � ¼ zt�1

at time t. Thus,

zt :¼ wt
w�t zt�1

jw�t zt�1j
;

vt :¼ vðzt; zt�1Þ ¼ ½I � zt�1z
�
t�1�zt:

ð4Þ

The inverse map is given by

zt ¼ ð1� v�t vtÞ
1
2 zt�1 þ vt: ð5Þ

Since the projection of zt�1 in the tangent space at zt�1, Tzt�1
,

is zero, vt can be interpreted as the difference ðzt � zt�1Þ
projected into Tzt�1

, i.e., it is the “shape velocity” at time t.
The translation, scale, and rotation normalization in 2D

removes two complex dimensions (four real dimensions),
and thus, the shape space is a K � 2-dimensional manifold
in CK and so the tangent space is a K � 2-dimensional
hyperplane in CK [7]. Thus, the shape velocity vt has only
K � 2-independent complex dimensions, i.e., it can be
rewritten as vt ¼ Ut ~ct, where the columns of ðUtÞK�K�2

contain the K � 2 orthonormal basis directions spanning
Tzt�1

and ~ct 2 CK�2 are the basis coefficients. ~ct may be
interpreted as a “shape speed” vector.

Note that, by definition, Tzt�1
is perpendicular to zt�1

and 1K . Also, zt�1 is perpendicular to 1K (due to
translation normalization). Thus, the projection matrix
for Tzt�1

is ½IK � zt�1z
�
t�1�CK ¼ ½IK � zt�1z

�
t�1 � 1K1TK=K�. In

other words, Ut satisfies

UtU
�
t ¼

�
IK � zt�1z

�
t�1 � 1K1TK=K

�
: ð6Þ

One way to obtain Ut is by computing the Singular Value
Decomposition (SVD) of the right-hand side (RHS) of (6)
and setting the columns of Ut equal to the left singular
vectors with nonzero singular values. Denote this operation
by Ut ¼ left:singular:vectorsðMðzt�1ÞÞ, where

MðzÞ ¼4
�
IK � zz� � 1K1TK=K

�
: ð7Þ

This was used in [1], [4]. But, if this is done at each t, the
columns of Ut and Ut�1 may not be aligned. As an
extreme example, consider the following. Let K ¼ 4. It
may happen that

Ut�1 ¼

1 0
0 1
0 0
0 0

2
664

3
775

and

Ut ¼

0:1 0:995
0:995 �0:1

0 0
0 0

2
664

3
775:

In this case, it is obvious that the first column of Ut
corresponds to the second column of Ut�1 and vice versa for
the second column of Ut. Or, in other words, ~ct;1
corresponds to ~ct�1;2 and ~ct;2 to ~ct�1;1. Thus, if SVD is used
to obtain Ut at each t, the ~cts cannot be assumed to be
identically distributed, it is therefore incorrect to model
them by an AR model, which assumes stationarity of ~ct.
Notice the large modeling error of this method (NSSA-
unaligned) in Fig. 2a.

We fix this problem as follows (also, see Fig. 1): To obtain
an aligned sequence of basis directions over time, we obtain
the mth column of Ut by starting with the mth column of
Ut�1, making it perpendicular to zt�1 (by subtracting
zt�1z

�
t�1), and then using Gram-Schmidt orthogonalization

to also make the resulting vector perpendicular to the first
m� 1 columns of Ut (i.e., by further subtracting outPm�1

j¼1 ðUtÞjðUtÞ
�
j ). This procedure can be summarized as
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Ut ¼ gðUt�1; zt�1Þ; where

gð:Þm ¼
4

I � zt�1z
�
t�1 �

Xm�1

j¼1

gð:Þjgð:Þ
�
j

" #
ðUt�1Þm;

8m ¼ 1; . . . ðK � 2Þ:

ð8Þ

Here, gð:Þm denotes the mth columns of gðUt�1; zt�1Þ. U0 is
initialized as U0 ¼ left:singular:vectorsðMðz0ÞÞ.

Now, since the columns of Ut are aligned, it is fair to
assume that ~ct;js are identically distributed for each j over
time. Since they are also temporally correlated, we model
them by an autoregressive model with lag 1 (AR(1) model).
For simplicity of notation, we first convert ~ct into a 2K � 4-
dimensional real vector. We denote this operation by

ct ¼ vecð~ctÞ; ð9Þ

and the inverse operation (obtaining the complex vector) is
denoted by ~ct ¼ vec�1ðctÞ. Thus, in summary, the dynamical
model of the state Xt ¼ ½Ut; zt; ct� is given by

ct ¼ Acct�1 þ �c;t; �c;t � Nð0;�cÞ;
Ut ¼ gðUt�1; zt�1Þ;

zt ¼
�
1� cTt ct

�1=2
zt�1 þ Utvec�1ðctÞ;

ð10Þ

where Nð�;�Þ denotes Gaussian pdf with mean and
covariance matrix �. The last equation follows from (3)
and the fact that vt ¼ Ut~ct, U�t Ut ¼ I, and ~c�t ~ct ¼ cTt ct. The
above model is initialized with

z0 ¼ w0; U0 ¼ left:singular:vectorsðMðz0ÞÞ; c0 ¼ 0: ð11Þ

2.4 Model Parameter Estimation

The above model is completely specified by zinit ¼ w0, Ac,
�c. Ac is the AR transition matrix and �c is the modeling
error covariance matrix in the AR model. Given a training
sequence of landmark configurations, fStgN�1

t¼0 , a maximum-
likelihood (ML) estimate of the parameters can be obtained
as follows:

1. Obtain the shape sequence fztg by translation,
scale, and rotation normalization of fStgðN�1Þ

t¼0 , i.e.,
compute yt ¼ CKSt and wt ¼ yt

kytk for each t. Set
z0 ¼ w0. Compute

zt ¼ wt
w�t zt�1

jw�t zt�1j
; 8t > 0: ð12Þ

2. For all t, obtain the shape velocity coefficients fctg
from fztg. This involves computing

Ut ¼ gðUt�1; zt�1Þ;
~ct ¼ U�t vt ¼ U�t zt;
ct ¼ vecð~ctÞ;

ð13Þ

starting with U0 ¼ left:singular:vectorsðMðz0ÞÞ. The

second equation above follows because

U�t vt ¼ U�t ½IK � zt�1z
�
t�1�zt

¼ U�t
�
IK � zt�1z

�
t�1 � 1K1TK=K

�
zt

¼ U�t UtU�t zt ¼ U�t zt

(the second equality follows because zt is translation

normalized so that 1TKzt ¼ 0 and third one follows

because, by definition, UtU
�
t ¼ ½IK � zt�1z

�
t�1 �

1K1TK=K�).
3. Obtain an ML estimate of the AR model para-

meters Ac;�c from fctg by using the Yule-Walker
equations, i.e.,
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Fig. 1. This figure shows the alignment of successive tangent spaces for

NSSA. When using [4], [1], the axes (here, x and y) of the consecutive

tangent planes may not be aligned (top). Our method gives aligned axes

(bottom).

Fig. 2. (a) The ME for NSSA, ASM, and ASM for a few activities using
2D MOCAP data. It is important to note that NSSA without the basis
alignment has a very large modeling error. While after the basis
alignment is taken into account, NSSA has much lower ME than SSA
and ASM. (b) The ME for NSSA, ASM, and ASM for a few activities
using 3D MOCAP data. Again, NSSA had much lower ME compared to
that SSA and ASM. That is why the corresponding bar plot for NSSA
modeling error has almost disappeared.
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Ac ¼ Rcð1ÞRcð0Þ�1; where

Rcð0Þ ¼
1

N

XN�1

t¼0

ctc
T
t ; Rcð1Þ ¼

1

N � 1

XN�1

t¼1

ctc
T
t�1;

�c ¼
1

N � 1

XN�1

t¼1

ðct �Acct�1Þðct �Acct�1ÞT :

ð14Þ

2.4.1 Using Multiple Training Sequences

If more than one training sequence is available, one can

compute a mean zinit (denoted by ~zinit) by aligning the

initial preshapes w0 of all the sequences. We set z0 for each

sequence as the corresponding w0 aligned to ~zinit. These

operations make sure that the initial shapes of all the

training sequences are aligned. Now, starting with z0, we

can obtain the shape speed cts for each sequence. Say, we

have a total of q training sequences for a given motion

activity, each with length N . We denote cts corresponding

to the ith sequence as fcitg, where i ¼ 1; . . . ; q. Now, we

can estimate Rcð0Þ; Rcð1Þ as Rcð0Þ ¼ 1
q

Pq
i¼1

1
N

PN�1
t¼0 citc

i
t
T

and Rcð1Þ ¼ 1
q

Pq
i¼1

1
N�1

PN�1
t¼1 citc

i T
t�1. Finally, we compute

Ac ¼ Rcð1ÞRcð0Þ�1 and �c ¼ 1
q

Pq
i¼1 �i

c, where

�i
c ¼

1

N � 1

XN�1

t¼1

�
cit �Acc

i
t�1

��
cit �Acc

i
t�1

�T
:

The entire procedure is summarized in Algorithm 1.

Algorithm 1. 2D NSSA: Training with Multiple Training

Sequences For a Given Motion Activity

Input: Preshapes corresponding to q training sequences
(fwitg

N�1
t¼0 , i ¼ 1; . . . ; q)

Output: Computed parameters ~zinit; Ac;�c.

1) Compute ~zinit ¼ �ðw1
0; w

2
0; . . . ; wq0; Þ where �ð:Þ is the

Procrustes mean shape [7], [21].

2) Compute ~Uinit ¼ left:singular:vectorsðMð~zinitÞÞ where

M(.) is given in (7).

3) For each i, i ¼ 1; 2; . . . q

a) Compute zi0 ¼ zðwi0; ~zinitÞ using (1), compute
Ui

0 ¼ gð ~Uinit; z
i
0Þ using (8) and set ci0 ¼ 0.

b) For each t, t ¼ 1; . . .N � 1 do

i) Compute zit; U
i
t ; c

i
t using (12), (13).

4) Compute Ac ¼ Rcð1ÞRcð0Þ�1 where,

Rcð0Þ ¼ 1
q

Pq
i¼1

1
N

PN�1
t¼0 citc

i
t
T

and

Rcð1Þ ¼ 1
q

Pq
i¼1

1
N�1

PN�1
t¼1 citc

i T
t�1

5) Compute �c ¼ 1
q

1
N�1

Pq
i¼1

PN�1
t¼1 ðcit �Acc

i
t�1Þ

ðcit �Acc
i
t�1Þ

T

3 MODELING 3D SHAPE SEQUENCES

A 3D configuration is represented by a set of K ordered

landmarks as a ðK � 3Þmatrix whose each row corresponds

to the ðx; y; zÞ coordinates of the corresponding landmark.

In this section, we discuss the basics of 3D landmark shape

analysis [7] and then develop 3D nonstationary shape

activity model (3D-NSSA).

3.1 3D Landmark Shape Analysis Preliminaries

For 3D shapes, the computation of preshape ðwÞK�3 from

raw shape ðSÞK�3 is similar to the 2D case, i.e., first get the

centered shape ðyÞK�3 and then perform size normalization:

y ¼ CKS; where CK is given in ð1Þ

w ¼ y

kykF
:

ð15Þ

Here, k:kF denotes Frobenius norm of a matrix. The rotation

aligned shape z is obtained from preshapew in the following

way: Say, we want to align ðwÞK�3 w.r.t. ð�ÞK�3. We do this as

z ¼ wUVT ; where

V�UT ¼ SVDð�TwÞ;
ð16Þ

where V;U are the left and right singular vectors of the 3� 3

matrix ð�TwÞ. As pointed out by an anonymous reviewer,

while performing 3D shape alignment, we may have

reflections unlike the 2D case. This happens if detðUÞ ¼ �1

or detðVÞ ¼ �1, where detð:Þ denotes determinant. Thus, 3D

alignment is a bit different from 2D since reflections are

allowed in 3D but not in 2D.

Another important thing about 3D shape analysis is the

vectorization operation [7]. Say, z is the shape at a given

instant which is a ðK � 3Þ matrix with columns z1; z2; z3.

We vectorize z to a 3K length vector as follows:

vec3DðzÞ ¼
�
zT

1 ; z
T
2 ; z

T
3

�T
: ð17Þ

The inverse operation is given by vec�1
3Dð:Þ, which forms a

K � 3 matrix from a 3K length vector. The tangent space

coordinate vðz; �Þ of a shape z w.r.t. the shape � is given

as follows:

vðz; �Þ ¼ ½I3K � vec3Dð�Þvec3Dð�ÞT �vecðzÞ: ð18Þ

The inverse map (i.e., from tangent space to shape space) is

given as

z ¼ vec�1
3Dðð1� vTvÞ

1
2 vec3Dð�Þ þ vÞ: ð19Þ

3.2 3D Nonstationary Shape Activity (3D-NSSA)

To define an NSSA model on 3D shape data, we first obtain

the translation- and scale-normalized preshape sequence

fwtg from the 3D configuration sequence fStg using (15). As

in the 2D case, we use � ¼ zt�1 to compute the shape

sequence followed by computing the shape velocity and

shape speed vectors in an exactly analogous fashion. The

final procedure can be summarized as follows:

First, we have zinit ¼ z0 ¼ w0 and then we

compute the initial tangent space basis matrix as

Uinit ¼ U0 ¼ left:singular:vectorsðM3Dðz0ÞÞ, where

M3DðzÞ ¼4 ½I3K � vecðzÞvecðzÞT �CK;3D; ð20Þ

where

CK;3D ¼
CK 0K�K 0K�K

0K�K CK 0K�K

0K�K 0K�K CK

2
4

3
5:
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Here, 0K�K is a ðK �KÞmatrix with all zero entries and CK
is defined in (1). Now, starting with z0 and U0, the

computation of the corresponding time sequence of shape

speed vectors is done as follows:

zt ¼ wtUVT; where V�UT ¼ SVD
�
zTt�1wt

�
; ð21Þ

Ut ¼ gðUt�1; vec3Dðzt�1ÞÞ; ð22Þ

ct ¼ UT
t vt ¼ UT

t vec3DðztÞ; ð23Þ

where gð:Þ is defined in (8). The reason why UT
t vt ¼

UT
t vec3DðztÞ is similar to the 2D case (see discussion

below (13)).
We model ct using a first order AR model (in general,

this may be replaced by any appropriate model for ct).

Thus, the forward model for generating a 3D shape

sequence is

ct ¼ Acct�1 þ nt; nt � Nð0;�cÞ;
Ut ¼ gðUt�1; vec3Dðzt�1ÞÞ;

zt ¼ vec�1
3D

��
1� cTt ct

�1
2vec3Dðzt�1Þ þ Utct

�
:

ð24Þ

The last equation follows from (19) and the fact that vTt vt ¼
ðUtctÞTUtct ¼ cTt ðUT

t UtÞct ¼ cTt ct and UT
t Ut ¼ I.

3.3 Model Parameter Estimation

The parameter estimation algorithm for the 3D case can be

summarized as follows:

1. For all t, obtain fwtg from a given 3D landmark
configuration sequence fStg.

2. For all t, compute fztg from fwtg using (21).
3. For all t, compute fctg from fztg using (22) and (23).
4. Estimate the AR model parameters for ct using the

Yule-Walker equations given in (14).

4 FILTERING AND TRACKING

The goal of filtering is to filter out the noise and get a good

estimate of the true landmark shape from noisy observed

landmarks. In our algorithm, the particle filter takes noisy

observed landmark data as input and outputs the MMPSE

estimate of the true landmark shape. The MMPSE estimate

of shape can be derived by following the Procrustes mean

derivation [7] as:

ẑt ¼ arg min
�
E½d2ðzt; �ÞjY1:t�

¼ arg min
�
E½kztz�t �� �k

2jY1:t�

¼ arg max
�

��E½ztz�t jY1:t��;

ð25Þ

where E½�jY1:t� denotes the conditional expectation given

Y1:t, d denotes the Procrustes distance [7], and Y1:t are the

observations until t. The last equality follows because

z�t zt ¼ 1 and ��� ¼ 1. Under a particle filtering setup, the

MMPSE estimate is computed as ẑt ¼ principal eigenvector

of
PNpf

i¼1 z
i
tz
i
t
�
wit, where Npf denotes number of particles, i

denotes the ith particle, and wit represents the importance

weight corresponding to the ith particle, i.e.,

pðztjY1:tÞ �
XNpf

i¼1

wit�
�
zt � zit

�
:

The configuration parameters, i.e., scale, translation, and

rotation are also estimated in the process of filtering. Apart

from removing random additive noise, particle filtering can

also be used to “clean up” the effects of occlusion and clutter.

Tracking is used to extract and filter out landmark

configurations from a sequence of images. Filtering plays a

very crucial role in the process. In fact, tracking can be

considered as observation extraction coupled with filtering.

It works as follows: A shape deformation model (as

described in Section 2.3) predicts the shape at the current

instant using the previous shape estimates. Similarly, scale,

translation, and rotation models are used to predict their

values as well. These, coupled with the predicted shape,

give the predicted landmark locations (i.e., predicted

configuration) at the current instant. Using these predicted

landmark locations in the current image, the landmarks can

be extracted for the current image using any technique, for

example, edge detection or optical flow. Our method for

doing this is described in Algorithm 4 and Section 4.5. Once

the observed landmarks are obtained, they are filtered to get

an MMPSE estimate of the true landmark shape and MMSE

estimates of scale, rotation, and translation. These estimates

are again utilized to extract the observed landmark

locations at the next time instant as described above.

We describe our state transition model and observation

model in Sections 4.1 and 4.2. We develop the PF algorithms

for filtering in Sections 4.3 and 4.4. The PF-based tracking

algorithm to extract landmarks from video sequences is

described in Section 4.5.

4.1 System Model (State Transition Model)

Since the observations are landmark configurations, to

extract them, we need to estimate both the shape and the

“motion” (scale, translation, and rotation). Thus, our state

vector is Xt ¼ ½st; �t; �t; ct; zt; Ut�, where st is the logarithm of

global scale, �t is the global rotation, �t is the xy translation,

ct is the shape speed vector, zt is the shape, and Ut is the

basis set spanning the current tangent space. The shape

dynamics model is given in (10). It is a second order model

on zt which is equivalent to a first order model on the shape

speed ct. We use a first order model on logarithm of global

scale st, global 2D rotation �t (this typically models the

random motion of camera), and translation �t:

st ¼ �sst�1 þ �s;t; �s;t � N
�
0; �2

s

�
;

�t ¼ �t�1 þ ��;t; ��;t � N
�
0; �2

�

�
;

�t ¼ �t�1 þ ��;t; ��;t � N
�
0; �2

�

�
:

ð26Þ

Note that, in case of filtering (when landmark observa-

tions are already available), translation can be normalized

for. Since it is a linear process, the form of the observation

noise pdf does not change. But, in case of tracking to predict

and extract landmarks from image sequences, translation

does need to be tracked to predict where the configuration

of landmarks translated to.
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The resulting state transition prior becomes:

pðXtjXt�1Þ ¼ N
�
�sst�1; �

2
s

�
N
�
�t�1; �

2
�

�
�N

�
�t�1; �

2
�

�
NðAcct�1;�cÞ

� �ðUt � gðUt�1; zt�1ÞÞ�ðzt � fðzt�1; Ut; ctÞÞ;

where � denotes the Dirac delta function and fðzt�1; Ut; ctÞ ¼4

ð1� cTt ctÞ
1=2zt�1 þ Utvec�1ðctÞ and gð:Þ is defined in (8).

4.2 Observation Model

There are various ways to extract landmarks from image
sequences—e.g., edge detection followed by extracting the
K strongest edges closest to predicted landmark locations
or using the Kanade-Lucas-Tomasi (KLT) Feature Tracker
[22] (block optical flow estimation) algorithm at or around
predicted landmark locations. As explained in Section 4.5
and Algorithm 4, we use a modification of KLT for this
purpose.

Algorithm 2. PF-Gordon for Landmark Shape Filtering

Initialization: At time t ¼ 0, sample s
ðiÞ
0 � Nðs0; �

2
sÞ,

�
ðiÞ
0 � Nð�0; �

2
�Þ; c

ðiÞ
0 ¼ 0; z

ðiÞ
0 ¼ z0 and U

ðiÞ
0 ¼ U0. Here,

i ¼ 1; . . . ; Npf where, Npf is the number of particles.

For t > 0,

1) Importance sample X
ðiÞ
t � pðXtjXðiÞt�1Þ as

sit � Nð�ssit�1; �
2
sÞ, �it � Nð�it�1; �

2
�Þ,

cit � NðAcc
i
t�1;�cÞ, Ui

t ¼ gðUi
t�1; z

i
t�1Þ,

zit ¼ fðzit�1; U
i
t ; c

i
tÞ. i ¼ 1; 2; . . . ; Npf

2) Weight and Resample. Compute wit ¼
~witPNpf

j¼1
~wjt

where,

~wit ¼ wit�1pðYtjXi
tÞ with, pðYtjXi

tÞ ¼ pðYtjhðsit; �it; zitÞÞ ¼QK
k¼1½ð1� pÞN ð½hðsit; �it; zitÞ�k; �2

oÞ þ pNð0; 100�2
oÞ�; 8i

3) Compute the MMPSE estimate ẑt as the principal

eigenvector of
PNpf

i¼1 z
i
tz
i
t
�
wit. Estimate configuration

parameters as ŝt ¼
PNpf

i¼1 w
i
ts
i
t and �̂t ¼

PNpf

i¼1 w
i
t�
i
t

4) Set t tþ 1 and go to step 1.

The configuration of landmarks is obtained from the
shape, scale, and rotation by the transformation
hðst; �t; ztÞ ¼ ztestej�t . The simplest observation model is of
the form

Yt ¼ hðst; �t; ztÞ þ wt; wt � N
�
0; �2

oI
�
; ð27Þ

where wt is a complex Gaussian noise vector. This assumes
that there is no background clutter: each of the K strongest
edges or the K KLT-feature points are always generated by
the true landmark location plus some error modeled as
Gaussian noise. But this is often a simplistic model since
there is always background clutter that generates false
edges or false KLT-feature matches or there might be
missing landmarks due to blur or occlusion. Thus, it may
happen that, out of the K “observed landmark locations,”
some landmark at some time is actually generated by clutter
(e.g., if a true landmark is blurred or occluded, while a
nearby clutter point has a stronger edge). We model this as
follows: with a small probability p, the kth landmark Yt;k is
generated by a clutter point (model a clutter point location
as a large variance Gaussian or by a uniform), independent
of other landmarks. With probability ð1� pÞ, it is generated
by a Gaussian-noise-corrupted actual landmark (indepen-
dent of other landmarks), i.e.,

Yt;k � ð1� pÞN
�
½hðst; �t; ztÞ�k; �2

o

�
þ pN

�
0; 100�2

o

�
: ð28Þ

The above model has been adapted from the observation
model used in Condensation [10]. The resulting observation
likelihood term is

pðYtjXtÞ ¼
YK
k¼1

ð1� pÞN
�
½hðst; �t; ztÞ�k; �2

o

�
þ pN

�
0; 100�2

o

�
:

4.3 Particle Filter with Efficient Importance
Sampling

The first PF algorithm, PF-Gordon [11], used the state
transition prior (i.e., pðXtjXt�1Þ) as the importance density.
This assumes nothing and has very small computation
burden per particle. But since it does not use knowledge of
the current observation, the weights variance can be large,
particularly when the observations are more reliable than
the prior model. Thus, it requires more particles for a given
accuracy level compared to the case when the knowledge of
observations is used. The optimal importance density [23] is
given by the posterior conditioned on the previous state,
denoted by p�, where

p�ðXtÞ ¼4 pðXtjXt�1; YtÞ: ð29Þ

But, in most problems, including ours, p� cannot be
computed analytically. When it is unimodal, PF-Doucet [23]
approximates it by a Gaussian about its mode (Laplace’s
approximation [24]) and samples from the Gaussian. Other
work that also implicitly assumes thatp� is unimodal includes
[25]. But, in our case, the observation likelihood is a raised
Gaussian as a function of ½hð:Þ�k and is thus heavy tailed. If the
equivalent state transition prior of ½hð:Þ�k is broad (e.g., this
will happen if STP of st or �t is broad), whenever Yt;k is
generated from the outlier distribution (i.e., is far from the
predicted landmark location), the resulting posterior given
the previous statep�ðXtÞ ¼4 pðXtjXt�1; YtÞwill be multimodal.

For such problems where p� is often multimodal, a
particle filter with efficient importance sampling (PF-EIS)
was proposed in [26] which combines the ideas of both PF-
Gordon and PF-Doucet to handle multimodal observation
likelihoods. This algorithm relies on the fact that even
though p� is multimodal, for most real-life problems, it is
possible to split the state vector Xt into an “effective basis”
Xt;s and “residual space” Xt;r in such a way that p�,
conditioned on Xt;s, is unimodal, i.e.,

p��;iðXt;rÞ ¼4 p�
�
XtjXi

t;s

�
¼ p
�
Xt;rjXi

t�1; X
i
t;s; Yt

�
ð30Þ

is unimodal. Here, the index i represents the sample from
the ith particle. We sample the Xt;s particle, Xi

t;s, from its
state transition prior (STP) but use Laplace’s approximation
[24], [23] to approximate p��;i by a Gaussian and sample Xt;r

from it. Thus, we sample Xi
t;r from Nðmi

t;�
i
ISÞ, where

mi
t ¼ arg min

Xt;r

½� log p��;iðXt;rÞ� ¼ arg min
Xt;r

LiðXt;rÞ;

�i
IS ¼

�
r2Liðmi

tÞ
��1

;

where

LiðXt;rÞ ¼4
�
� log p

�
YtjXi

t;s; Xt;r

��
þ
�
� log p

�
Xt;rjXi

t�1; X
i
t;s

��
;
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and Nð�;�Þ denotes a Gaussian pdf with mean � and
covariance matrix �. As shown in [26], unimodality of p��;i is
ensured if the variance of STP of Xt;r is small enough
compared to distance between the modes of OL givenXt;s in
any direction. Even ifXt;s is chosen so that this holds for most
particles, at most times, the proposed algorithm will work.

4.4 PF-Gordon and PF-EIS for Our Problem

We summarize the basic PF (i.e., PF-Gordon [11]) for
landmark shape filtering in Algorithm 2. In order to
develop the PF-EIS, we follow the steps as explained in
Section 4.3. The choices of Xt;s and Xt;r under this problem
setup are justified as follows: Since the STP of st; �t is
usually broad (to allow for occasional large camera motion
or zoom), we use Xt;s ¼ ½st; �t� and Xt;r ¼ ½ct; zt; Ut�. Note
that, for the purpose of importance sampling, only st; �t; ct
are the “importance sampling states” since zt; Ut are
deterministically computed from ct and Xt�1. The particles
of Xt;s are sampled from its state transition prior, i.e., using
the first two equations of (26). Conditioned on the sampled
scale and rotation, Xi

t;s, it is much more likely that p� is
unimodal, i.e., p��;iðct; Ut; ztÞ defined below is unimodal:

p��;iðct; zt; UtÞ ¼ 	 p
�
Yt j h

�
sit; �

i
t; zt
��
N
�
ct;Acc

i
t�1;�c

�
� �
�
Ut � g

�
Ui
t�1; z

i
t�1

��
�
�
zt � f

�
zit�1; Ut; ct

��
;

where Nðx;�;�Þ denotes the value of a Gaussian pdf with
mean � and variance � computed at the point x and 	 is a
proportionality constant. Since the pdfs of Ut, zt, conditioned
on ct, Xt�1, are Dirac delta functions, the above simplifies to

p��;i ¼ 	 p
�
Yt j h

�
sit; �

i
t; f
�
zit�1; g

i; ct
���
N
�
ct;Acc

i
t�1;�c

�
� �ðUt � giÞ �

�
zt � f

�
zit�1; g

i; ct
��

¼4 p��;iðctÞ �ðUt � giÞ �
�
zt � f

�
zit�1; g

i; ct
��
;

ð31Þ

where gi ¼4 gðUi
t�1; z

i
t�1Þ. The importance sampling part of

Xt;r is only ct. We compute the importance density for ct by
approximating p��;iðctÞ by a Gaussian at its unique mode.
The mode is computed by minimizing LiðctÞ ¼ � log p��;iðctÞ
defined below:

LiðctÞ ¼
�
� log p

�
Yt j h

�
sit; �

i
t; f
�
zit�1; g

i; ct
����

þ
�
� logN

�
ct;Acc

i
t�1;�c

��
:

ð32Þ

The PF-EIS algorithm for landmark shape tracking is
summarized in Algorithm 3.

Algorithm 3. PF-EIS for Landmark Shape Filtering

Initialization: At time t ¼ 0, sample s
ðiÞ
0 � Nðs0; �

2
sÞ,

�
ðiÞ
0 � Nð�0; �

2
�Þ; c

ðiÞ
0 ¼ 0; z

ðiÞ
0 ¼ z0 and U

ðiÞ
0 ¼ U0. Here,

i ¼ 1; . . . ; Npf where, Npf is the number of particles.

For t > 0,

1) Importance sample sit � Nð�ssit�1; �
2
sÞ,

�it � Nð�it�1; �
2
�Þ. i ¼ 1; 2; . . . ; Npf

2) Compute mi
t ¼ arg minctL

iðctÞ and �i
IS ¼ ½r2Liðmi

tÞ�
�1

where Li is defined in (32).

3) Importance sample cit � Nðmi
t;�

i
ISÞ. Compute

Ui
t ¼ gðUi

t�1; z
i
t�1Þ and zit ¼ fðzit�1; U

i
t ; c

i
tÞ.

4) Compute Importance weights as, wit ¼
~witPNpf

j¼1
~wjt

where

~wit ¼ wit�1
pðYtjhðsit;�it;zitÞÞN ðcit;Acc

i
t�1;�cÞ

N ðcit;mi
t;�

i
IS
Þ .

5) Compute the MMPSE estimate ẑt as the principal

eigenvector of
PNpf

i¼1 z
i
tz
i
t
�
wit. Resample.

6) Set t tþ 1 and go to step 1.

4.5 Tracking to Automatically Extract Landmarks

In this section, we describe out technique to track and
automatically extract landmark configurations over a
sequence of images or a video. The system comprises of a
optical flow (OF) tracker coupled with filtering. We
compute optical flow at a cluster of points around each
currently estimated landmark location ½Ŝt�k (k denotes the
kth landmark) and use this to move the cluster of points
into the next frame (frame tþ 1). The centroid of the moved
cluster serves as the new observation for the kth landmark
at tþ 1. The same thing is done for all landmark points to
get Ytþ1 (the vector of observed landmark locations at tþ 1).
This observation is fed into the NSSA-based PF which
outputs the estimated landmark locations (and estimated
shape) at tþ 1. The entire procedure is summarized in
Algorithm 4. For computing the optical flow, we used the
code/method developed by [27].

Algorithm 4. Automatic Landmark Extraction over a

Sequence of Images

Input: image(t-1), image(t), Ŝt�1 (estimated landmark
configuration at t� 1)

Output: fXi
t; w

i
tg; i ¼ 1; 2; . . . , Ŝt ¼

PNpf

i¼1ðzites
i
tþj�it þ �it Þwit

(estimated landmark configuration at time t) where, zt is

the shape and est , �t, �t are the global scale, rotation and

translation respectively.

1) For each estimated landmark ½Ŝt�1�k; k ¼ 1; 2; . . .K,

compute optical flow at a cluster of points around

½Ŝt�1�k and use this to move the points into image(t).
Use the centroid of the moved cluster as the kth

observed landmark at time t, ½Yt�k. Do this for all

landmark points to get Yt
2) Run PF-Gordon using Yt, i.e., implement steps 1 and 2

of Algorithm 2. But this time, we include the global

translation in the state-space as well.

3) Display the estimated landmarks’ location,

Ŝt ¼
PNpf

i¼1ðzites
i
tþj�it þ �it Þwit (estimated landmark

configuration at time t), set t tþ 1, and go to step 1.

5 EXPERIMENTAL RESULTS

We began by comparing the ability of NSSA to model real-
life landmark shape sequences with that of SSA, ASM, and
the wrong NSSA model (NSSA-unaligned) [1]. This is
discussed in Section 5.1. It was observed that NSSA had
much smaller modeling error than all three. This compar-
ison gave us the first indication that NSSA would provide a
much more accurate prior dynamic model for Bayesian
filtering or tracking applications, as well as also for
synthesis/extrapolation applications.

Next, we simulated multiple realizations of a “nonsta-
tionary shape activity” along with scale and rotation
variations and attempted to track it using three different PF
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algorithms: the original PF (PF-Gordon) was compared with
PF-Doucet [23] and PF-EIS [26] (described in Section 4.3).
These comparisons are discussed in Section 5.2. It was
observed that, when the number of available particles is
small, PF-EIS has the best performance.

Since most existing work that used SSA or ASM for
tracking used PF-Gordon, we retained this PF for most of our
comparisons between NSSA, SSA, and ASM. The following
four sets of experiments were done. In Section 5.3, we
demonstrate the superior ability of NSSA-based PF (PF-
Gordon with Npf ¼ 1;000 and PF-EIS with Npf ¼ 50) to filter
out the landmark shapes from heavily noise-corrupted and
cluttered observed landmark configurations. In Section 5.4,
we compare the tracking ability of NSSA-based PF with SSA-
based PF and ASM-based PF, i.e., their ability to accurately
extract out landmarks from image sequences. Once again
NSSA is found to be significantly superior to SSA and ASM
and also to direct landmark extraction (without any model-
based filtering). The use of 3D-NSSA to accurately synthesize
new human activity sequences is discussed in Section 5.5. In
Section 5.6, we give a preliminary experiment that demon-
strates that NSSA is able to remain in track even when a
model change occurs.

5.1 Modeling Error Comparison

We used the Carnegie Mellon Motion Capture (CMU
Mocap) database [6] for our experiments. Each file in the
database had the coordinates of the markers placed at the
body landmark locations (especially the body joints) for
successive frames of a specific human motion activity, e.g.,
running, jumping, etc. An example is shown in Fig. 6. The
corresponding 2D and 3D landmark shape sequences were
used as the training data for learning the NSSA (or SSA or
ASM) model parameters.

We define modeling error (ME) as the trace of the noise
covariance matrix of the AR modeling error, i.e., ME ¼
traceð�cÞ, where �c ¼ E½ðct �Acct�1Þðct �Acct�1ÞT � and ct
are the “aligned” coefficients of shape velocity. We also
compute the modeling error when the cts are not aligned, i.e.,
when Ut is computed using SVD at each t (as in [1]). When
computing error for SSA, cts are the tangent space coefficients
of shape (not of shape velocity), i.e., all shapes zt are projected
into a single tangent space at the common mean shape �. For

ASM, modeling error is still the same but now ct ¼ zt � �, i.e.,
the shape space is assumed to be euclidean.

We computed the modeling error of SSA, ASM, and
NSSA (unaligned) for various human actions and compared
with that of NSSA. It was found that NSSA has much lower
modeling error than all three. The modeling error bar plots
of 2D and 3D shape sequences have been shown in Figs. 2a
and 2b for a few motion activities.

Modeling error tells us how well we are able to capture
the shape deformation dynamics using the given model. It
thus quantifies how well we can predict the shape at a
time instant given the information from the previous time
instant. Thus, lower modeling error will result in better
tracking ability and also a better ability to synthesize
a new sequence or to extrapolate an existing sequence
(graphics problems).

5.2 Comparing PF Algorithms

We simulated landmark shape change of a set of K ¼ 5
landmarks (a deforming pentagon) and tracked it using
PF-EIS (Algorithm 3), PF-Gordon (Algorithm 2) [11], and
PF-Doucet [23] with Npf ¼ 50 particles. The initial shape z0

was a regular pentagon. The shape and global motion
change of the configuration followed (10), (26) with
�c ¼ 0:0025I6, �2

s ¼ 0:0001, �2
� ¼ 0:25, Ac ¼ 0:6I6, a n d

�s ¼ 0:9. The observations followed (28) with �2
o ¼ 0:04

and p ¼ 0:2. I6 denotes a 6� 6 identity matrix. It is to be
noted that the STP of scale (est ) is a log-normal, and hence,
even �2

s ¼ 0:0001 results in a fairly broad distribution.
Whenever one or more landmarks are generated by

clutter, the observation likelihood (OL) of log-scale (st) is
either heavy-tailed with the wrong (outlier) mode or is
multimodal. When many landmarks are generated by
clutter, the same happens for �t. This combined with a
broad prior of st; �t results in multimodal p�ðst; �tÞ.
Whenever this happens, most particles of PF-Doucet end
up sampling from a Gaussian about the wrong mode of
p�ðst; �tÞ or p�ðstÞ, resulting in loss of track. But, PF-EIS does
not suffer from this problem since it samples from the prior
of st; �t. Also, since the prior of ct is narrow compared to the
distance between likelihood modes, p��;iðctÞ is usually
unimodal, and thus, sampling from its Laplace’s
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Fig. 3. Comparison of the MSE of estimated configurations computed
using PF-EIS, PF-Doucet, and PF-Gordon for simulated shape
sequence. EIS has the smallest MSE (discussed in Section 5.2).

Fig. 4. Filtering noise and clutter corrupted MOCAP data: comparing
NSSA-, SSA-, and ASM-based PF-Gordon and also NSSA-based
PF-EIS. NSSA significantly outperforms SSA and ASM. NSSA-based
PF-EIS with just 50 particles has comparable performance to that of
1,000 particle NSSA-based PF-Gordon (discussed in Section 5.3).
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approximation is valid. On the other hand, for small Npf ,

PF-Gordon often loses track because it samples all states

from the prior, thus resulting in small effective particle size.

In Fig. 3, the mean squared error (MSE) plot averaged over

80 Monte Carlo runs is shown. Also, see Fig. 4 for MOCAP

data, where PF-EIS with Npf ¼ 50 particles is able to achieve

almost the same tracking accuracy as PF-Gordon with

Npf ¼ 1;000.

5.3 Filtering from Noisy and Cluttered Observations

In this experiment, 2D landmark shape sequences from
CMU Mocap database (refer Section 5.1) were used as the
ground truth (as shown in Fig. 5a). We incorporated
random scale variations, additive noise, and clutter to the
ground truth. The observations were simulated using (28).
This experiment helped us to quantitatively compare
performance since ground truth was available.

We used the PF-Gordon (i.e., the basic PF) with Npf ¼
1;000 particles for filtering. Our primary objective was to
compare the performance of NSSA-based system model with

that of SSA and ASM. PF-Gordon solely depends on the STP
for importance sampling, and thus, its performance heavily
relies on the accuracy of the system model. Also, all past
works on SSA- or ASM-based tracking used PF-Gordon.

We considered two motion activities, namely, run and
jump, with K ¼ 16 landmarks. Different data sequences
were used for training and testing. Our results are shown
in Appendix I (run), which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2009.94, and Fig. 5 (jump), and the
Procrustes distance comparison plots are given in Fig. 4.
The landmark locations were fitted with rectangular
patches to visualize the body posture at a given instant.
The first row shows the ground truth and also the
observation. It can be seen that the observed landmark
locations (represented as þ on top of the ground truth)
were severely corrupted with clutter and random noise.
Thus, visually, the observed configurations hardly conform
to the human body. But, as shown in Fig. 5b, NSSA has
been able to filter out the true shape from those observa-
tions with very good accuracy. SSA (Fig. 5c) and ASM
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Fig. 5. Filtering out true shape data from noisy/cluttered observations using PF-Gordon (motion activity: jump). The landmark points (denoted by �
for ground truth and ut for the filter output) are fitted with rectangular patches to visualize the body posture at a given time instant. The tracking
performances of NSSA, SSA, and ASM are shown over four frames. (a) Ground truth with observations (þ), (b) tracked with NSSA, (c) tracked with
SSA, and (d) tracked with ASM. It can be clearly seen that NSSA way outperforms SSA and ASM.

Authorized licensed use limited to: Iowa State University. Downloaded on July 12,2010 at 19:16:34 UTC from IEEE Xplore.  Restrictions apply. 



(Fig. 5d), however, perform poorly in this job. Similar
results were found for motion activity run (see Appendix I,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2009.94). In Fig. 4, we plot the Procrustes distance
between the estimated shape and the true shape at each
instant as the quantitative measure of filtering accuracy.
Also, note that PF-EIS (with NSSA model) is able to achieve
almost the same accuracy as PF-Gordon (with NSSA
model) with as few as Npf ¼ 50 particles.

In case of SSA and ASM, filtering performed around the
fixed mean shape ends up generating shape samples far away
from the desired shape space where the original set of
deforming shapes lies. This, in turn, led to their poor
performances. But NSSA, on the other hand, does an excellent
job in filtering because of its time varying mean shape
assumption. Of course, we assume that the shape deviations
over successive time frames are small enough to make sure
the current shape is in the neighborhood of the current mean
shape (i.e., the previous shape) for our mathematical

treatments to be valid. This is a reasonable assumption for
most of the real-life motion activities.

5.4 Tracking and Automatic Landmark Extraction

For automatic landmark extraction and tracking, we used 50

frames of real-life videos of human activities (as shown in

Fig. 6 (run) and Fig. 7 (jump)). A total of 13 body landmarks

were considered as shown in Fig. 7. The body landmarks

were: right shoulder, right elbow, right hand, right hip,

right knee, right foot, head, left shoulder, left elbow, left

hand, left hip, left knee, and left foot.
For run sequences, the system model was learned from

the hand-marked ground truth data corresponding to the

training database. In case of jump, however, we used the

mocap data itself. We appropriately subsampled the mocap

data frames in order to roughly synchronize them to the

video frames. Implementations of Algorithm 4 using system

models based on NSSA, SSA, and ASM were compared.

Their performances over multiple time frames are shown in
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Fig. 6. Tracking landmark configurations over the video of a running sequence (discussed in Section 4.5). (a) NSSA, (b) SSA, and (c) ASM. It can be
clearly seen that NSSA way outperforms SSA and ASM. (d) Landmark observations extracted using purely optical-flow-based approach. It can be
seen that the observed landmark loses posture information gradually over time. Such observation leads to poor filtering/tracking performance of the
system.
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Fig. 6 (run). It can be clearly seen that NSSA (Fig. 6a)
performs much better than SSA (Fig. 6b) or ASM (Fig. 6c) in
terms of keeping track of the body landmarks. It is very
important to note that filtering and prediction play a very
crucial role in the process of extracting landmark observa-
tions. To verify this, we extracted the landmark observations
purely based on optical flow, i.e., starting with the initial
locations, we used the optical flow between successive
frames to drift the points, and thus, getting observations over
time. This procedure does not use the knowledge of the state
estimates at each instant to decide where the expected
landmark might be while computing the optical flow. As can
be seen from Fig. 6d, quite a few of the observed landmarks
in this case were found to get stuck at wrong locations (due
to background interference, occlusion, or clutter) and from
that point on they were never in sync with the body
movements. In fact, the point of using the state estimates is to
correct the locations of such landmarks and making sure that
we do not end up computing the OF at the wrong regions for
getting the landmark location for the next frame.

Next, we test the system with NSSA-based system model
on the video of a person jumping. It can be seen in Fig. 7 that
NSSA did a very good job in terms of tracking the
landmarks over various time frames. It is to be noticed
that, at frame 15, it loses track of the landmark correspond-
ing to the right hand. But later, it regains the track (see
frame 39, Fig. 7).

5.5 3D-NSSA Synthesis

Motivated by the drastically small modeling error of
3D-NSSA for human actions (see Fig. 2b), we attempted to
use 3D NSSA for a motion synthesis application. We
learned the deformation model for 3D body shape of the
human body while running from MOCAP data. The
synthesized run sequence using this model is shown in
Fig. 8. Since there is no ground truth in this case, we

visually verified the systems ability to synthesize run and

the system performance was found to be promising.

5.6 Change Detection with NSSA

We did a simple experiment to test the ability of the NSSA-

based tracker to detect changes in activity while still not

completely losing track. We used a sequence where a

person begins by running, and then, leaps (http://

mocap.cs.cmu.edu:8080/subjects/49/49_04.avi). Notice

that this is a fairly sudden change. The ELL-based change

detection statistic [28] was able to detect the change to leap

and, for some time after the change also, our tracker did not

lose track (see Fig. 9—tracking error does not increase until

later). More results and comparison with SSA are shown in

[1]. Detailed results and all MATLAB codes can be found at

http://www.public.iastate.edu/~samarjit/pami.html.

590 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 4, APRIL 2010

Fig. 7. Tracking landmark configurations over the video of a jump sequence with NSSA-based system model (discussed in Section 4.5). It can be
seen that at frame 15, NSSA lost track of one of the landmarks (right hand). But after that, it regains track of the landmark.

Fig. 8. Synthesis of a 3D shape sequence corresponding to motion activity run. Four frames are shown. The system model was learned using
3D-NSSA on 3D landmark shape sequences for running. The sequence shown above visually resembles a running sequence.

Fig. 9. The ELL and tracking error (TE) plot for the shape sequence with
run followed by leap. PF-Gordon was used with NSSA-based system
model. The actual activity transition occurred at t ¼ 132. It can be clearly
seen that ELL detected the change. There is distinct spike of ELL
around t ¼ 132. However, the tracker still keeps tracking even after the
change has occurred.
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5.7 Shortcomings of NSSA: Classification

Despite very good performances while tracking/filtering, in
its current form, NSSA does not perform as well for
classification. We tried to perform a model-based max-
imum-likelihood classification among various motion activ-
ities (e.g., run, jump, sit, etc.). The input to the classifier was
the time sequence of shape velocity coefficients for NSSA,
tangent space coefficients for SSA, and shape deviation
vectors for ASM. The output was the most likely activity to
have generated the sequence. In our preliminary experi-
ments with run, sit, jump, and dance activity sequences,
NSSA had a 4 percent misclassification rate, while SSA and
ASM had 2.5 and 2 percent, respectively. The reason NSSA
does not perform as well as the rest is the same as the
reason it significantly outperforms SSA and ASM for
tracking—it is a more generic model for shape change. It
consists of a zero mean random walk model on shape and a
zero mean AR model on shape velocities. The effect of
initial shape is lost in a long sequence.

To use NSSA for classification, we should modify the
current model and define a nonzero-mean shape velocity
change model. Alternatively, a good idea would be to use
NSSA for tracking, i.e., for extracting landmark shape
sequences from video, and then, feeding these into a
piecewise SSA [14] or piecewise ASM [13] based classifier.

6 CONCLUSIONS AND FUTURE WORK

The key contribution of this work is a novel approach to
define a generative model for both 2D and 3D nonstationary
landmark shape sequences, which we call NSSA. The main
idea is to compute the tangent space representation of the
current shape in the tangent space at the previous shape.
This can be referred to as the shape velocity vector since it
quantifies the difference between two consecutive shapes
projected into the tangent space at the first one. The
“aligned” shape velocity coefficients (shape speed vector)
are modeled using vector time-series methods.

Applications in filtering, tracking, synthesis (using
3D-NSSA models), and change detection are demonstrated.
Filtering and tracking are studied in detail and significantly
improved performance over related work is demonstrated
(see Figs. 2, 3, 4, 5, 6, 7, 8, and 9). With the exception of
smoothing splines [29], [12], most other existing work does
not model nonstationary shape sequences. In other work
[30], we have also successfully demonstrated the use of the
NSSA for model-based compression of landmark shape
sequence data.

Future work includes developing the 3D synthesis,
change detection, and classification applications (see Sec-
tions 5.5, 5.6, and 5.7 for details). Another possible future
research direction is combining our models with GPVLM-
based observation extraction techniques [17], [31]. Also, our
optical-flow-based landmark extractor could be improved
by using ideas from [32].
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