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HMM Model & Tracking
• Hidden state sequence: {Xt}, observations: {Yt}

– state sequence, {Xt }, is a Markov chain
– Yt independent of past & future given Xt

– p(Xt|Xt-1): state transition prior (known)
– p(Yt|Xt): observation likelihood (known)

• Tracking: recursively get the optimal estimate of 
Xt at each t using observations, Y1:t
– compute/approximate the posterior, πt(Xt) := p(Xt|Y1:t)
– use πt to compute any “optimal” state estimate, e.g. 

MMSE, MAP,…
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Problem Setup
• Observation Likelihood is often multimodal or 

heavy-tailed
– e.g. some sensors fail or are nonlinear
– e.g. clutter, occlusions, low contrast images
– If the state transition prior is narrow enough, posterior 

will be unimodal: can adapt KF, EKF
• If not (fast changing sequence): req. a Particle Filter

• Large dimensional state space (LDSS)
– e.g. tracking the temperature field in a large area
– e.g. deformable contour tracking
– PF expensive: requires impractically large N
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Narrow prior: 
Unimodal posterior

Broad prior: 
Multimodal posterior

Temperature measured with 2 types of sensors, each with nonzero 
failure probability
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Large Dim. & Multimodal Examples
• Sensor Networks

– Spatially varying physical quantities, e.g. temperature
– Boundary of a chemical spill or target emissions

• Image Sequences
– Boundary contour of moving & deforming objects
– Deforming shapes of “landmark” points
– Rigid motion & Illumination variation (over space & time)

• Time-varying system transfer functions
– Time varying AR model for speech (e.g STV-PARCOR)

• Observation likelihood is frequently multimodal in most of 
the above problems
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Multimodal likelihood examples - 1

• Nonlinear sensor [Gordon et al’93]

– sensor measuring the square of temperature 
corrupted by Gaussian noise

Yt = Xt
2 + wt, wt ∼ N(0,σ2)

• whenever Yt > 0, p(Yt|Xt) is bimodal as a function of Xt with 
modes at Xt = Yt

1/2 , -Yt
1/2

• Observn = many-to-one function of state + noise
– Yt = h(Xt,1)g(Xt,2) + wt : h, g monotonic functions
– e.g. illumination & motion tracking [Kale-Vaswani’07]
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Multimodal likelihood examples - 2
• Sensors with nonzero failure probability

– temperature measured with 2 sensors, each with 
some probability of failure 

– bimodal likelihood if any of them fails 
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Multimodal likelihood examples - 3
• Deformable contour tracking [Isard-Blake’96][Vaswani et al’06]

through overlapping background clutter

through low contrast images (tumor region in brain MRI)
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Particle Filter [Gordon et al’93]

• Sequential Monte Carlo technique to approx the 
Bayes’ recursion for computing the posterior 
πt(X1:t) = p(X1:t|Y1:t)
– approximation approaches true posterior as the # of 

M.C. samples (“particles”) ∞ in most cases

• Does this sequentially at each time, t, using 
Sequential Importance Sampling along with a 
Resampling step (to eliminate particles with very 
small importance weights)
– Our work: design of efficient importance densities
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Particle Filter: Seq. Imp Sampling
• Sequential Imp Sampling for an HMM model

– Replace Y by Y1:t, replace X by X1:t
– Choose Imp Sampling density s.t. it factorizes as

qt,Y1:t
(X1:t) = qt-1,Y1:t-1

(X1:t-1) sXt-1,Yt
(Xt)

• allows for recursive computation of weights

• Seq Imp Sampling: At each t, for each i, 
– Importance Sample: Xt

i ~ sXt-1
i,Yt

(Xt)

– Weight: wt
i ∝ wt-1

i p(Yt|Xt
i) p(Xt

i|Xt-1
i) / sXt-1

i,Yt
(Xt

i)

– Posterior, πt(X1:t) ≈ πt
N(X1:t) = ∑i wt

i δ(X1:t - X1:t
i)
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Outline
• Goal & Key Ideas

• PF - Efficient Importance Sampling (PF-EIS)

• Testing for posterior unimodality

• PF-EIS with Mode Tracking (PF-EIS-MT)

• Some More Applications & Open Issues
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Our Goal

• Design efficient importance sampling 
techniques for PF, when 
– the likelihood is multimodal and the state 

transition prior is broad in at least some 
dimensions

and/or
– the state space dimension is large (compared 

to the available particle budget, N)
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Key Idea 1: “LDSS property”
• In most cases, at any given time, most of the state 

change occurs in a small number of dimensions
»

• The state change in the rest of the dimensions is 
small (state transition prior narrow)

– Different from dim. reduction or from marginalizing over 
stationary distribution [Chorin et al’04] [Givon et al’08]

– Related to the “compressibility” assumption used in 
lossy compression & in compressed sensing
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Key Idea 2: “Unimodality”
• Split the state space s.t. the posterior conditioned 

on a small “multimodal” part of the current state 
is unimodal
– Possible to do this if the state change in the rest of 

dimensions is small enough (LDSS property)
– We derive sufficient conditions to test for unimodality

• When this holds, we can
– sample the “multimodal” states from the prior
– use existing efficient sampling techniques for unimodal 

posteriors for the rest of the states (“unimodal states”) 
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Key Idea 3: “IS-MT”
• If for a part of the “unimodal” state space, state 

change still smaller: its conditional posterior will 
be quite narrow (besides being unimodal)

• If a sampling density is unimodal & narrow 
enough:
– Any sample from it will be close to its mode w.h.p.
– A valid approximation: use the mode as the sample 

• Mode tracking (MT) approx. of importance 
sampling (IS) introduces some extra error but 
greatly reduces IS dimension
– Lower approx. error when available N is small
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PF with Efficient Importance Sampling 
(PF-EIS)
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The Problem (recap)

• Observation likelihood is frequently 
multimodal

• State transition prior is broad and/or 
multimodal in at least some dimensions



PF for Large Dim & Multimodal Problems
24

Existing Work
• PF-Original: Importance Sample from prior [Gordon et al’93]

– always applicable but is inefficient

• Optimal IS density: p*(Xt) := p(Xt | Xt-1,Yt) [D’98][older works]
– cannot be computed in closed form most cases

• When the optimal IS density, p*, is unimodal 
– Adapt KF, EKF, PMT [Brockett et al’94][TZ’92][Jackson et al’04]

• Possible if the posterior is unimodal too
– PF-D: IS from Gaussian approx to p* [Doucet’98]
– Unscented PF [VDDW,NIPS’01]: UKF to approx to p* 

• MHT, IMM, Gaussian Sum PF [Kotecha-Djuric’03], …
– practical only if total # of (possible) modes is small
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PF-Efficient IS (PF-EIS)
[Vaswani, Trans. SP, Oct’08]

• Large dim problems w/ freq. multimodal likelihoods
– No. of possible likelihood modes large: MHT, GSPF impractical
– Prior broad in at least some dims: p* multimodal

• But, because of the LDSS property (small state 
change in most dimensions), it is possible to
– split the state, Xt , into Xt,s (“multimodal” state) & Xt,r

(“unimodal” state) s.t. p* conditioned on Xt,s is unimodal

• Modify existing algorithms as follows
– sample Xt,s from its state transition prior
– sample Xt,r from a Gaussian approx. to p* given Xt,s
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PF-EIS algorithm
• Split Xt = [Xt,s, Xt,r]

• At each t, for each particle i
– Imp Sample Xt,s

i ~ p(Xt,s
i|Xt-1

i)

– Compute mode of p* conditioned on Xt,s
i as

• mt
i = arg minx -[ log p(Yt | x) + log p(x | Xt-1

i, Xt,s
i) ]

– Imp Sample Xt,r
i ~ N(mt

i, Σt
i)

– Weight 
• wt

i ∝ wt-1
i p(Yt|Xt

i) p(Xt,r
i | Xt-1

i , Xt,s
i) / N(Xt,r

i ; mt
i, Σt

i)

• Resample when needed
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Testing for Posterior Unimodality
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The Problem (Simplified Version)
[Vaswani, Trans. SP, Oct’08]

• Posterior ∝ likelihood . prior
– p(x|y) = α p(y|x) p(x) 

• The Problem:
– Likelihood is multimodal

• E(x) := -log p(y|x) has multiple local minima

– Typically prior is strongly log-concave, e.g. Gaussian
• D(x) := -log p(x) is strongly convex with a unique min. at x0

– How narrow should the prior be for the posterior to be 
unimodal

• i.e. for L(x) := -log p(x|y) = E(x) + D(x) to have a unique 
minimizer?
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Sufficient Conditions [Vaswani, Trans. SP, Oct’08]

• A posterior is unimodal if
– the prior strongly log-concave, e.g. Gaussian
– its unique mode, x0, is close enough to a likelihood 

mode s.t. likelihood is locally log-concave at x0
– spread of the prior narrow enough s.t. ∃ an ²0 > 0 s.t. 

[ inf
x∈∩p(Ap∪Zp)

max
p

γp(x)] > 1

γp(x) :=

⎧⎪⎨⎪⎩
|[∇D(x)]p|

²0+|[∇E(x)]p| x ∈ Ap

|[∇E(x)]p|
²0−|[∇E(x)]p| x ∈ Zp

Zp := RLC
0 ∩ {x : [∇E]p · [∇D]p ≥ 0, |[∇E]p| < ²0}

Ap := RLC
0 ∩ {x : [∇E]p · [∇D]p < 0}
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Implications: Posterior unimodal if
• Either the likelihood is unimodal

or 
• The prior is Gaussian-like and

– its mode, x0, is close enough 
to a likelihood mode

– its maximum variance is small 
compared to distance b/w 
nearest & second-nearest 
likelihood mode to x0

• Max variance upper bound 
increases with decreasing 
strength of second-nearest mode

RLC

x0

E(x)
D(x)

L(x)

A
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∇L has 1 zero crossing (stationary pt) for σprior2 = 0.9Δ*

∇L has 3 zero crossings (stationary pts) for σprior2 = 1.1Δ* 

Plot of ∇L(x)

E(x)

L(x) for
σprior

2=1.1Δ*
(two minima)

L(x) for 
σprior

2=0.9Δ*
(one minimum)

Scalar case: Plots of L(x), ∇L(x)  

∇L(x) for
σprior

2=1.1Δ*

Plot of L(x)
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Vector case (2D):
Contours of [∇L(x)]1=0 (blue), [∇L(x)]2=0 (red)

∆1=∆2 = 0.9∆*
one intersection point
(one stationary point)

∆1=∆2 = 1.1∆*
three intersection points
(three stationary points)
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Application: Tracking random fields
• State transition model: State, Xt = [Ct, vt] 

– temperature vector at time t, Ct = Ct-1 + Bvt

– temperature change (Bvt) is spatially correlated
– temperature change coefficients along eigen-directions, 

(vt): Gaussian random walk

• Observation, Yt = sensor measurements
– different sensor measurements independent given Xt

– with probability αj, sensor j can fail
– likelihood multimodal w.r.t. temperature at node j, if 

sensor at node j fails (or sees outlier noise)
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Choosing multimodal state, Xt,s

Practical heuristics motivated by the unimodality
result

• Get the eigen-directions of the covariance of 
temperature change

• If one node has older sensors (higher failure 
probability) than other nodes:
– choose temperature change along eigen-

directions (a) which are most correlated to 
temperature at this node and (b) which have the 
largest eigenvalues, as Xt,s
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Simulation Results: Sensor failure

• Tracking temperature 
at M=3 sensor nodes, 
each with 2 sensors

• Node 1 had much 
higher failure 
probability than rest

• PF-EIS: Xt,s = vt,1

• PF-EIS (black) 
outperforms PF-D, 
PF-Original & GSPF
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Simulation Results: Nonlinear sensor

• Tracking temperature 
at M=3 nodes, each 
with 1 sensor per node

• Node 1 has a squared 
sensor (measures 
square of temperature 
in Gaussian noise)
– likelihood 

multimodal when 
Yt>0

• PF-EIS (black) 
outperforms all others
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PF-EIS with Mode Tracker 
(PF-EIS-MT)
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The Problem (recap)
• As importance sampling dimension 

increases, N required for accurate tracking 
also increases 
– effective particle size reduces

• Regular PF impractical for very large 
dimensional problems
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Existing Work
• If a large part of state space conditionally linear 

Gaussian or can be vector quantized
– use Rao Blackwellized PF [Chen-Liu’00][SGN,TSP’05]

• If a large part of state space is asymp. stationary
– marginalize over it using MC [Chorin et al’04][Givon et al’08]

• If cannot do either: PF-EIS with Mode Tracker

• Other work: Resampling modifications
– Look ahead resampling: Auxiliary PF [Pitt-Shepherd’99]
– Repeated resampling within a single t [Oudjane et al’03]
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PF-EIS with Mode Tracking
[Vaswani, Trans. SP, Oct’08]

• If for a part of the unimodal state (“residual state”), 
the conditional posterior is narrow enough,
– it can be approx. by a Dirac delta function at its mode

• Mode Tracking (MT) approx of Imp Sampling (IS)
– MT approx of IS: introduces some error
– But it reduces IS dimension by a large amount (improves 

effective particle size)
– Net effect: lower error when N is small (if residual states 

carefully chosen)
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PF-EIS-MT algorithm design

• Select the multimodal state, Xt,s, using 
heuristics motivated by the unimodality 
result, the rest of the states are Xt,r

• Split Xt,r further into Xt,r,s, Xt,r,r s.t. the 
conditional posterior of Xt,r,r (residual state) is 
narrow enough to justify IS-MT
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PF-EIS-MT algorithm
At each t,  split Xt = [ Xt,s , Xt,r,s, Xt,r,r ] &

• for each particle, i, 
– sample Xt,si from its state transition prior

– compute the conditional posterior mode of Xt,r

– sample Xt,r,si from Gaussian approx about mode

– compute mode of conditional posterior of Xt,r,r and set 
Xt,r,ri equal to it

– weight appropriately

• resample
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PF-MT

• PF-MT: computationally simpler version of 
PF-EIS-MT
– Combine Xt,s & Xt,r,s & sample from the state 

transition prior for both

– Mode Track Xt,r,r: compute conditional 
posterior mode of Xt,r,r and set Xt,r,r equal to it
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Simulation Results: Sensor failure

• Tracking on M=10 
sensor nodes, each 
with two sensors per 
node. Node 1 has 
much higher failure 
prob than rest

• PF-MT (blue) has 
least RMSE
– using K=1 dim 

multimodal state
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Simulation Results: Modeling error

• Tracking on M=5 
sensor nodes, each 
with one sensor per 
node

• Actual pfail of node 1 
much larger than 
modeled one 

• PF-EIS-MT (blue) 
has least RMSE
– Using K=1, K2=2
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More Applications
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Applications
• Tracking changes in spatially varying physical quantities, 

using a network of sensors [Vaswani, Trans. SP, Oct 2008]

• Tracking spatially varying illumination change of moving 
objects [Kale et al, ICASSP’07]

• Deformable contour tracking
– Affine PF-MT [Rathi et al, CVPR’05, PAMI’07]
– Deform PF-MT [Vaswani et al, CDC’06, Trans IP (to appear)]

• Global motion & shape change of a large set of 
“landmarks” (feature points of interest) from image 
sequences [Vaswani et al, Asilomar’07]
– group of interacting people from a distance, human body parts 

during an action, e.g. dancing
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Illumination & Motion Tracking: PF-MT
[Kale et al, ICASSP’07]

• Large dim: spatially & temporally varying 
illumination (object near enough to light source)
– State = Motion (3 dim) + Illumination (7 dim)

• IS on motion (3 dim) & MT on illumination
– Illumination changes very slowly
– Image likelihood is usually unimodal conditioned on 

motion (i.e. as a function of illumination)
• even if it is multimodal (e.g. in case of occlusions), the modes are 

usually far apart compared to the illumination change variance
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Face tracking results (N=100)[Kale et al’07] 

PF-MT

3 dim 
PF (no 
illum)

10-dim 
Auxiliary 
PF
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Face tracking: RMSE from ground truth
[Kale et al, ICASSP’07]

Comparing PF-MT with 10 dim regular PFs (original, auxiliary) 
& with PF- K dim (not track illumination at all). N = 100
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Deformable Contour Tracking
• State: contour, contour point velocities
• Observation: image intensity and/or edge map

• Likelihood: neg. expo. of segmentation energies 
– Region based: observation = image intensity 

• Likelihood = probability of image being generated by the contour
• Multimodal in case of low contrast images

– Edge based: observation = edge locations (edge map) 
• Likelihood = probability of a subset of these edges being 

generated by the contour; of others being generated by clutter or 
occlusions or being missed due to low contrast

• Multimodal due to clutter or occlusions or low contrast
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Two proposed PF-MT algorithms
• Affine PF-MT [Rathi et al, CVPR’05, PAMI’07]

– Imp sample on 6-dim space of affine deformations, 
Mode Track on residual deformation

– Assumes either that likelihood modes separated only 
by affine deformation or that non-affine deformation per 
frame is small (slowly deforming sequence)

• Deform PF-MT [Vaswani et al, CDC’06, Trans IP (to appear)]
– Imp sample on translation & on deformation at K sub-

sampled locations around the contour
– Useful when likelihood modes separated by non-affine 

deformation (e.g. due to overlapping clutter or low 
contrast) & large non-affine deformation per frame
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Tracking using Affine PF-MT
[Rathi et al,CVPR’05, PAMI’07]

• Tracking humans from a distance (small deformation per frame)
• Deformation due to perspective camera effects (changing 

viewpoints), e.g. UAV tracking a plane

Condensation 
(PF 6-dim) fails
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Tracking using Deform PF-MT

Overlapping background clutter

Low contrast images (tumor region in brain MRI)
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Landmark Shape Tracking

• Track change in shape & global motion of a set 
of M “landmarks” from a seq. of images

• Advantage separating shape & motion dynamics
– Learn shape dynamics with any camera, learn motion 

dynamics of the camera used for tracking

• State = [motion, shape, shape velocity]
• Observation = [M strongest edge locations] 

– or KLT-points or motion blobs or local PCA matching
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Landmark Shape Tracking

• PF-Gordon samples 
from STP: low 
effective particle 
size

• N=50 particles

• PF-D: assumes 
unimodal p*

• Often samples 
around wrong mode 
when p* multimodal

PF-EIS: Red, PF-Gordon: blue, PF-Doucet: green
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Summary
• Efficient Importance Sampling techniques that do not 

require unimodality of optimal IS density

• Derived sufficient conditions to test for posterior unimodality
– developed for the conditional posterior, p**(Xt,r) := p(Xt,r | Xt,s

i, Xt-1
i,Yt)

– used these to guide the choice of multimodal state, Xt,s, for PF-EIS

• If the state transition prior of a part of Xt,r is narrow enough, 
its conditional posterior will be unimodal & also very narrow
– approx by a Dirac delta function at its mode: IS-MT
– improves effective particle size: net reduction in error

• Demonstrated applications in 
– tracking spatially varying physical quantities using unreliable sensors
– deformable contour tracking, landmark shape tracking, illumination
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Collaborators
• Deformable contour tracking

– Anthony Yezzi, Georgia Tech
– Yogesh Rathi, Georgia Tech
– Allen Tannenbaum, Georgia Tech

• Illumination tracking
– Amit Kale, Siemens Corporate Tech, Bangalore

• Landmark shape tracking
– Samarjit Das, Iowa State Univ. (my student)
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Open Issues
• Parallel implementations, speed-up posterior mode comp.

• Current conditions for posterior unimodality expensive to 
verify, depend on previous particles & current observation
– develop heuristics based on the result to efficiently select 

multimodal states on-the-fly, or
– modify the result s.t. unimodality can be checked offline (select 

multimodal states offline)

• Residual space directions usually change over time
– How do we either dimension-reduce (for PF-EIS) or select the MT 

directions (for PF-EIS-MT) on-the-fly
• can we use Compressed Sensing or Kalman filtered CS 

[Vaswani’08] on the state change vector to do this?

• Analyze the IS-MT approx, prove stability of PF-MT
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[Gordon et al’93] out-of-track


