Particle Filtering for Large Dimensional Problems with Multimodal Likelihoods

Namrata Vaswani Dept of Electrical & Computer Engineering Iowa State University

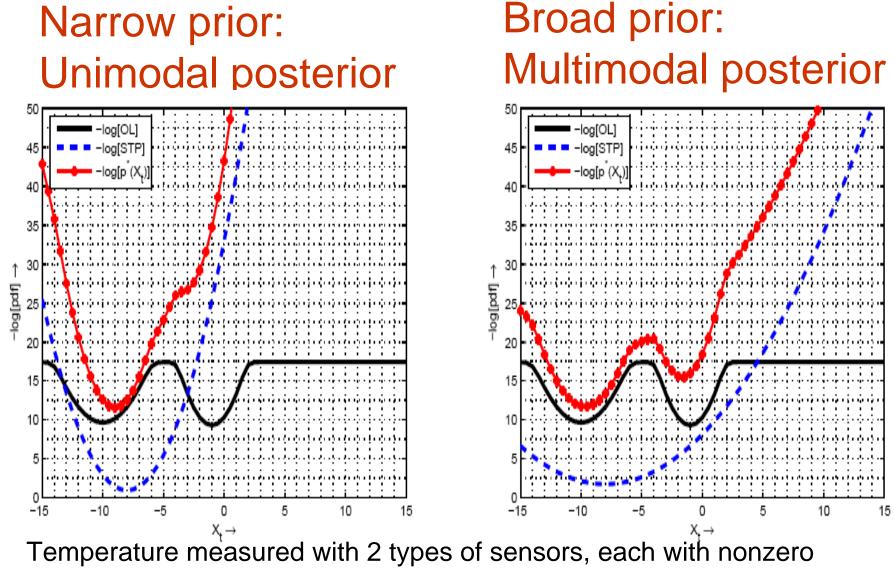
http://www.ece.iastate.edu/~namrata

HMM Model & Tracking

- Hidden state sequence: {X_t}, observations: {Y_t}
 - state sequence, $\{X_t\}$, is a Markov chain
 - Y_t independent of past & future given X_t
 - $p(X_t|X_{t-1})$: state transition prior (known)
 - $p(Y_t|X_t)$: observation likelihood (known)
- Tracking: recursively get the optimal estimate of X_t at each t using observations, Y_{1:t}
 - compute/approximate the posterior, $\pi_t(X_t) := p(X_t|Y_{1:t})$
 - use π_t to compute any "optimal" state estimate, e.g. MMSE, MAP,...

Problem Setup

- Observation Likelihood is often multimodal or heavy-tailed
 - e.g. some sensors fail or are nonlinear
 - e.g. clutter, occlusions, low contrast images
 - If the state transition prior is narrow enough, posterior will be unimodal: can adapt KF, EKF
 - If not (fast changing sequence): req. a Particle Filter
- Large dimensional state space (LDSS)
 - e.g. tracking the temperature field in a large area
 - e.g. deformable contour tracking
 - PF expensive: requires impractically large N



failure probability

IOWA STATE UNIVERSITY Becoming the best.

PF for Large Dim & Multimodal Problems

4

Large Dim. & Multimodal Examples

- Sensor Networks
 - Spatially varying physical quantities, e.g. temperature
 - Boundary of a chemical spill or target emissions
- Image Sequences
 - Boundary contour of moving & deforming objects
 - Deforming shapes of "landmark" points
 - Rigid motion & Illumination variation (over space & time)
- Time-varying system transfer functions
 - Time varying AR model for speech (e.g STV-PARCOR)
- Observation likelihood is frequently multimodal in most of the above problems

Multimodal likelihood examples - 1

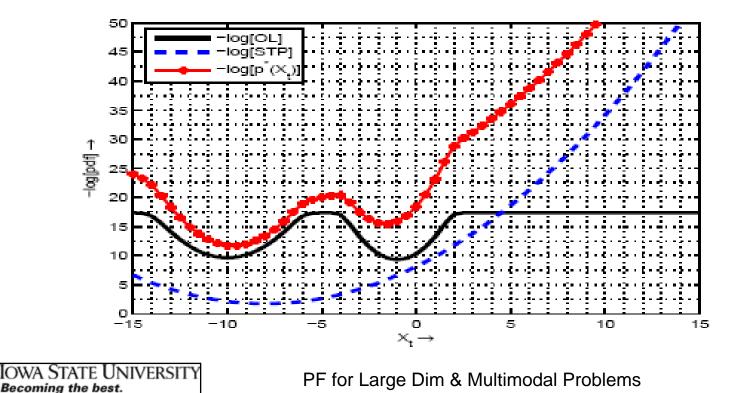
- Nonlinear sensor [Gordon et al'93]
 - sensor measuring the square of temperature corrupted by Gaussian noise

 $Y_t = X_t^2 + w_t, w_t \sim N(0,\sigma^2)$

- whenever $Y_t > 0$, $p(Y_t|X_t)$ is bimodal as a function of X_t with modes at $X_t = Y_t^{1/2}$, $-Y_t^{1/2}$
- Observⁿ = many-to-one function of state + noise
 - $Y_t = h(X_{t,1})g(X_{t,2}) + w_t$: h, g monotonic functions
 - e.g. illumination & motion tracking [Kale-Vaswani'07]

Multimodal likelihood examples - 2

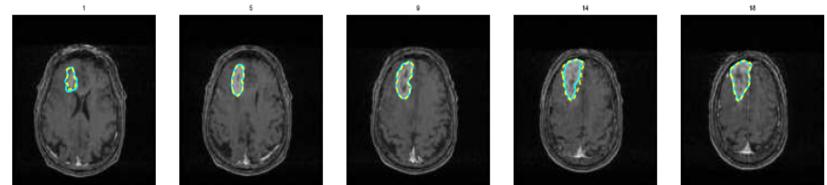
- Sensors with nonzero failure probability
 - temperature measured with 2 sensors, each with some probability of failure
 - bimodal likelihood if any of them fails



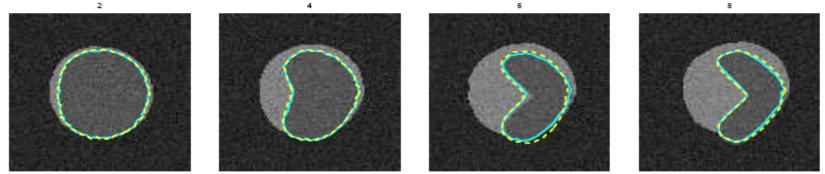
Multimodal likelihood examples - 3

• Deformable contour tracking [Isard-Blake'96][Vaswani et al'06]

through low contrast images (tumor region in brain MRI)



through overlapping background clutter



Particle Filter [Gordon et al'93]

- Sequential Monte Carlo technique to approx the Bayes' recursion for computing the posterior $\pi_t(X_{1:t}) = p(X_{1:t}|Y_{1:t})$
 - approximation approaches true posterior as the # of M.C. samples ("particles")→ ∞ in most cases
- Does this sequentially at each time, t, using Sequential Importance Sampling along with a Resampling step (to eliminate particles with very small importance weights)
 - Our work: design of efficient importance densities

Particle Filter: Seq. Imp Sampling

- Sequential Imp Sampling for an HMM model
 - Replace Y by $Y_{1:t}$, replace X by $X_{1:t}$
 - Choose Imp Sampling density s.t. it factorizes as

$$q_{t,Y_{1:t}}(X_{1:t}) = q_{t-1,Y_{1:t-1}}(X_{1:t-1}) s_{X_{t-1},Y_t}(X_t)$$

allows for recursive computation of weights

- Seq Imp Sampling: At each t, for each i,
 - Importance Sample: $X_t^i \sim s_{X_{t-1}^i,Y_t}(X_t)$

A STATE UNIVERSITY

Becoming the best.

– Weight: $w_t^i \propto w_{t-1}^i p(Y_t|X_t^i) p(X_t^i|X_{t-1}^i) / s_{X_{t-1}^i,Y_t}(X_t^i)$

- Posterior,
$$\pi_t(X_{1:t}) \approx \pi_t^N(X_{1:t}) = \sum_i w_t^i \delta(X_{1:t} - X_{1:t}^i)$$

Outline

- Goal & Key Ideas
- PF Efficient Importance Sampling (PF-EIS)
- Testing for posterior unimodality
- PF-EIS with Mode Tracking (PF-EIS-MT)
- Some More Applications & Open Issues

Our Goal

- Design efficient importance sampling techniques for PF, when
 - the likelihood is multimodal and the state transition prior is broad in at least some dimensions
 - and/or
 - the state space dimension is large (compared to the available particle budget, N)

Key Idea 1: "LDSS property"

- In most cases, at any given time, most of the state change occurs in a small number of dimensions
- The state change in the rest of the dimensions is small (state transition prior narrow)
 - Different from dim. reduction or from marginalizing over stationary distribution [Chorin et al'04] [Givon et al'08]
 - Related to the "compressibility" assumption used in lossy compression & in compressed sensing

Key Idea 2: "Unimodality"

- Split the state space s.t. the posterior conditioned on a **small "multimodal"** part of the current state is unimodal
 - Possible to do this if the state change in the rest of dimensions is small enough (LDSS property)
 - We derive sufficient conditions to test for unimodality
- When this holds, we can
 - sample the "multimodal" states from the prior
 - use existing efficient sampling techniques for unimodal posteriors for the rest of the states ("unimodal states")

Key Idea 3: "IS-MT"

- If for a part of the "unimodal" state space, state change still smaller: its conditional posterior will be quite narrow (besides being unimodal)
- If a sampling density is unimodal & narrow enough:
 - Any sample from it will be close to its mode w.h.p.
 - A valid approximation: use the mode as the sample
- Mode tracking (MT) approx. of importance sampling (IS) introduces some extra error but greatly reduces IS dimension
 - Lower approx. error when available N is small

PF with Efficient Importance Sampling (PF-EIS)

The Problem (recap)

- Observation likelihood is frequently multimodal
- State transition prior is broad and/or multimodal in at least some dimensions

Existing Work

- PF-Original: Importance Sample from prior [Gordon et al'93]
 always applicable but is inefficient
- Optimal IS density: $p^*(X_t) := p(X_t | X_{t-1}, Y_t)$ [D'98][older works]
 - cannot be computed in closed form most cases
- When the optimal IS density, p*, is unimodal
 - Adapt KF, EKF, PMT [Brockett et al'94][TZ'92][Jackson et al'04]
 - Possible if the posterior is unimodal too
 - PF-D: IS from Gaussian approx to p* [Doucet'98]
 - Unscented PF [VDDW,NIPS'01]: UKF to approx to p*
- MHT, IMM, Gaussian Sum PF [Kotecha-Djuric'03], ...
 - practical only if total # of (possible) modes is small

PF-Efficient IS (PF-EIS)

[Vaswani, Trans. SP, Oct'08]

- Large dim problems w/ freq. multimodal likelihoods
 - No. of possible likelihood modes large: MHT, GSPF impractical
 - Prior broad in at least some dims: p* multimodal
- But, because of the LDSS property (small state change in most dimensions), it is possible to

 split the state, X_t, into X_{t,s} ("multimodal" state) & X_{t,r} ("unimodal" state) s.t. p* conditioned on X_{t,s} is unimodal
- Modify existing algorithms as follows
 - sample $X_{t,s}$ from its state transition prior
 - sample $X_{t,r}$ from a Gaussian approx. to p* given $X_{t,s}$

PF-EIS algorithm

- Split $X_t = [X_{t,s}, X_{t,r}]$
- At each t, for each particle i
 - Imp Sample $X_{t,s}^{i} \sim p(X_{t,s}^{i}|X_{t-1}^{i})$
 - Compute mode of p^* conditioned on $X_{t,s}^{i}$ as
 - $m_t^i = arg min_x [log p(Y_t | x) + log p(x | X_{t-1}^i, X_{t,s}^i)]$
 - Imp Sample $X_{t,r}^{i} \sim N(m_t^{i}, \Sigma_t^{i})$
 - Weight

WA STATE UNIVERSITY

Becoming the best.

- $w_t^i \propto w_{t-1}^i p(Y_t | X_t^i) p(X_{t,r}^i | X_{t-1}^i, X_{t,s}^i) / N(X_{t,r}^i; m_t^i, \Sigma_t^i)$
- Resample when needed

Testing for Posterior Unimodality

PF for Large Dim & Multimodal Problems

The Problem (Simplified Version)

[Vaswani, Trans. SP, Oct'08]

- Posterior \propto likelihood . prior
 - $p(\mathbf{x}|\mathbf{y}) = \alpha p(\mathbf{y}|\mathbf{x}) p(\mathbf{x})$
- The Problem:
 - Likelihood is multimodal
 - E(x) := -log p(y|x) has multiple local minima
 - Typically prior is strongly log-concave, e.g. Gaussian
 - D(x) := -log p(x) is strongly convex with a unique min. at x₀
 - How narrow should the prior be for the posterior to be unimodal
 - i.e. for L(x) := -log p(x|y) = E(x) + D(x) to have a unique minimizer?

Sufficient Conditions [Vaswani, Trans. SP, Oct'08]

- A posterior is unimodal if
 - the prior strongly log-concave, e.g. Gaussian
 - its unique mode, x_0 , is close enough to a likelihood mode s.t. likelihood is locally log-concave at x_0
 - spread of the prior narrow enough s.t. \exists an ϵ_{o} > 0 s.t.

$$\begin{bmatrix} \inf_{x \in \cap_p (A_p \cup Z_p)} \max_p \gamma_p(x) \end{bmatrix} > 1$$

$$\gamma_p(x) := \begin{cases} \frac{|[\nabla D(x)]_p|}{\epsilon_0 + |[\nabla E(x)]_p|} & x \in A_p \\\\ \frac{|[\nabla E(x)]_p|}{\epsilon_0 - |[\nabla E(x)]_p|} & x \in Z_p \end{cases}$$

$$Z_p := R_{LC}' \cap \{x : [\nabla E]_p \cdot [\nabla D]_p \ge 0, |[\nabla E]_p| < \epsilon_0\}$$

$$A_p := R_{LC}' \cap \{x : [\nabla E]_p \cdot [\nabla D]_p < 0\}$$

IOWA STATE UNIVERSITY Becoming the best.

PF for Large Dim & Multimodal Problems

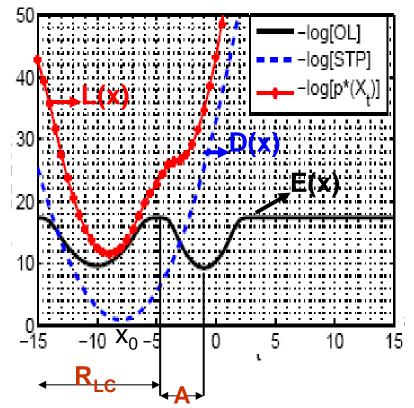
Implications: Posterior unimodal if

- Either the likelihood is unimodal or
- The prior is Gaussian-like and

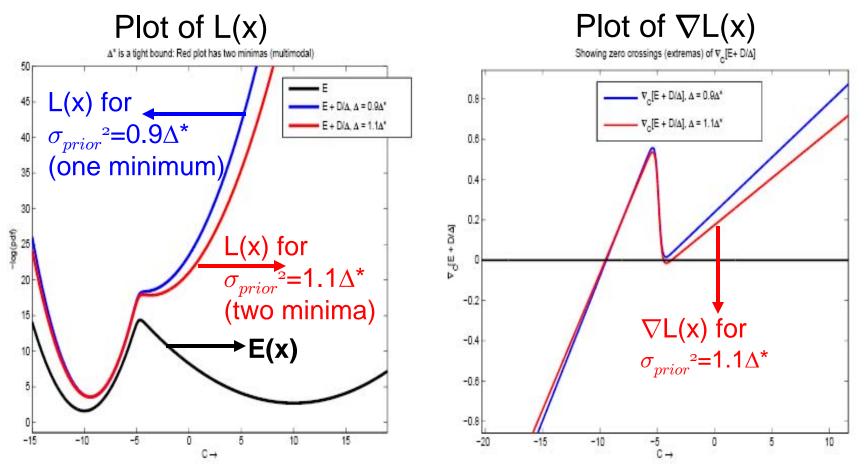
 its mode, x₀, is close enough to a likelihood mode
 - its maximum variance is small compared to distance b/w nearest & second-nearest likelihood mode to x₀
- Max variance upper bound increases with decreasing strength of second-nearest mode

OWA STATE UNIVERSI

Becoming the best.



Scalar case: Plots of L(x), ∇ L(x)

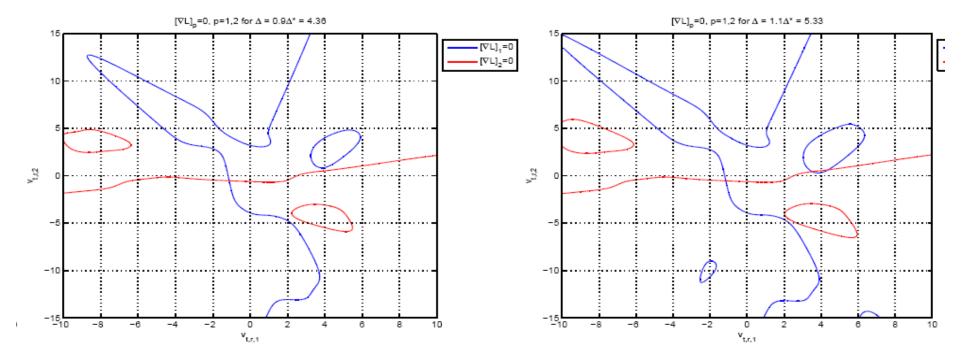


 ∇ L has 1 zero crossing (stationary pt) for $\sigma_{prior}^2 = 0.9\Delta^*$ ∇ L has 3 zero crossings (stationary pts) for $\sigma_{prior}^2 = 1.1\Delta^*$

IOWA STATE UNIVERSITY Becoming the best.

PF for Large Dim & Multimodal Problems

Vector case (2D): Contours of $[\nabla L(x)]_1=0$ (blue), $[\nabla L(x)]_2=0$ (red)



PF for Large Dim & Multimodal Problems

Application: Tracking random fields

- State transition model: State, $X_t = [C_t, v_t]$
 - temperature vector at time t, $C_t = C_{t-1} + Bv_t$
 - temperature change (Bv_t) is spatially correlated
 - temperature change coefficients along eigen-directions, (v_t): Gaussian random walk
- Observation, $Y_t = sensor measurements$
 - different sensor measurements independent given X_t
 - with probability $\alpha_{\rm j}$, sensor j can fail
 - likelihood multimodal w.r.t. temperature at node j, if sensor at node j fails (or sees outlier noise)

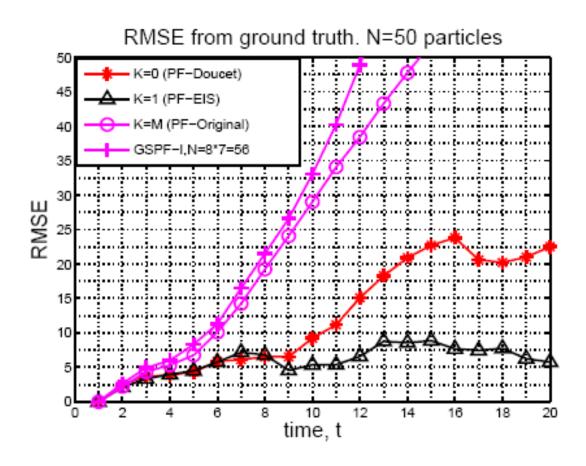
Choosing multimodal state, X_{t,s}

Practical heuristics motivated by the unimodality result

- Get the eigen-directions of the covariance of temperature change
- If one node has older sensors (higher failure probability) than other nodes:

- choose temperature change along eigendirections (a) which are most correlated to temperature at this node and (b) which have the Margestreigenvalues, as Xuttimodal Problems

Simulation Results: Sensor failure

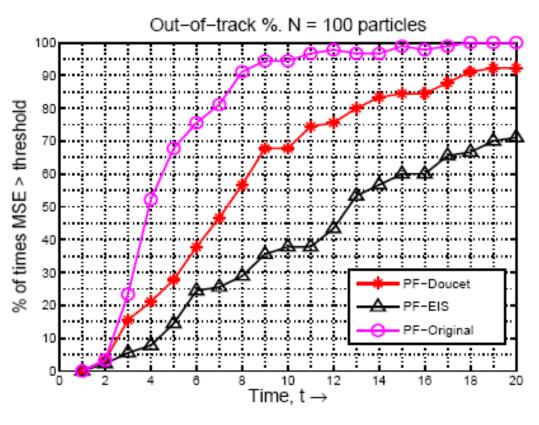


- Tracking temperature at M=3 sensor nodes, each with 2 sensors
- Node 1 had much higher failure probability than rest

• PF-EIS:
$$X_{t,s} = V_{t,1}$$

 PF-EIS (black) outperforms PF-D, PF-Original & GSPF

Simulation Results: Nonlinear sensor



- Tracking temperature at M=3 nodes, each with 1 sensor per node
- Node 1 has a squared sensor (measures square of temperature in Gaussian noise)
 - likelihood
 multimodal when
 Y_t>0
- PF-EIS (black) outperforms all others

PF-EIS with Mode Tracker (PF-EIS-MT)

The Problem (recap)

- As importance sampling dimension increases, N required for accurate tracking also increases
 - effective particle size reduces
- Regular PF impractical for very large dimensional problems

Existing Work

- If a large part of state space conditionally linear Gaussian or can be vector quantized
 – use Rao Blackwellized PF [Chen-Liu'00][SGN,TSP'05]
- If a large part of state space is asymp. stationary – marginalize over it using MC [Chorin et al'04][Givon et al'08]
- If cannot do either: **PF-EIS with Mode Tracker**
- Other work: Resampling modifications
 - Look ahead resampling: Auxiliary PF [Pitt-Shepherd'99]
 - Repeated resampling within a single t [Oudjane et al'03]

PF-EIS with Mode Tracking

[Vaswani, Trans. SP, Oct'08]

- If for a part of the unimodal state ("residual state"), the conditional posterior is narrow enough,
 - it can be approx. by a Dirac delta function at its mode
- Mode Tracking (MT) approx of Imp Sampling (IS)
 - MT approx of IS: introduces some error
 - But it reduces IS dimension by a large amount (improves effective particle size)
 - Net effect: lower error when N is small (if residual states carefully chosen)

PF-EIS-MT algorithm design

- Select the multimodal state, X_{t,s}, using heuristics motivated by the unimodality result, the rest of the states are X_{t,r}
- Split X_{t,r} further into X_{t,r,s}, X_{t,r,r} s.t. the conditional posterior of X_{t,r,r} (residual state) is narrow enough to justify IS-MT

PF-EIS-MT algorithm

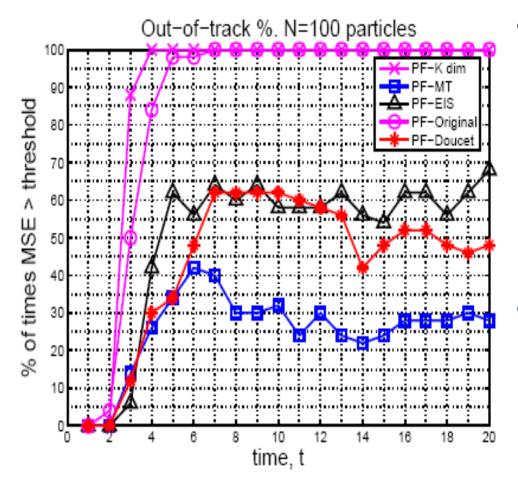
At each t, split $X_t = [X_{t,s}, X_{t,r,s}, X_{t,r,r}] \&$

- for each particle, i,
 - sample $X_{t,s}^{i}$ from its state transition prior
 - compute the conditional posterior mode of $X_{t,r}$
 - sample $X_{t,r,s}^{i}$ from Gaussian approx about mode
 - compute mode of conditional posterior of $X_{t,r,r}$ and set $X_{t,r,r}{}^i$ equal to it
 - weight appropriately
- resample

PF-MT

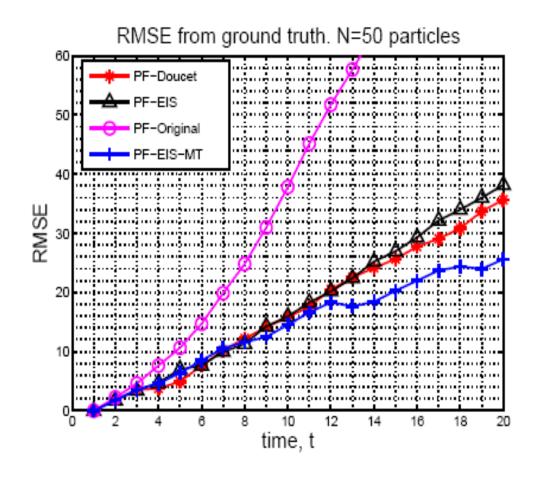
- PF-MT: computationally simpler version of PF-EIS-MT
 - Combine $X_{t,s} \& X_{t,r,s} \&$ sample from the state transition prior for both
 - Mode Track $X_{t,r,r}$: compute conditional posterior mode of $X_{t,r,r}$ and set $X_{t,r,r}$ equal to it

Simulation Results: Sensor failure



- Tracking on M=10 sensor nodes, each with two sensors per node. Node 1 has much higher failure prob than rest
- PF-MT (blue) has least RMSE
 - using K=1 dim multimodal state

Simulation Results: Modeling error



- Tracking on M=5 sensor nodes, each with one sensor per node
- Actual p_{fail} of node 1 much larger than modeled one
- PF-EIS-MT (blue) has least RMSE
 Using K=1, K₂=2

IOWA STATE UNIVERSITY Becoming the best.

PF for Large Dim & Multimodal Problems

More Applications

Applications

- Tracking changes in spatially varying physical quantities, using a network of sensors [Vaswani, Trans. SP, Oct 2008]
- Tracking spatially varying illumination change of moving objects [Kale et al, ICASSP'07]
- Deformable contour tracking
 - Affine PF-MT [Rathi et al, CVPR'05, PAMI'07]
 - Deform PF-MT [Vaswani et al, CDC'06, Trans IP (to appear)]
- Global motion & shape change of a large set of "landmarks" (feature points of interest) from image sequences [Vaswani et al, Asilomar'07]
 - group of interacting people from a distance, human body parts during an action, e.g. dancing

Illumination & Motion Tracking: PF-MT [Kale et al, ICASSP'07]

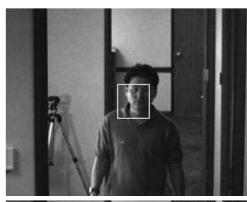
- Large dim: spatially & temporally varying illumination (object near enough to light source)
 State = Motion (3 dim) + Illumination (7 dim)
- IS on motion (3 dim) & MT on illumination
 - Illumination changes very slowly
 - Image likelihood is usually unimodal conditioned on motion (i.e. as a function of illumination)
 - even if it is multimodal (e.g. in case of occlusions), the modes are usually far apart compared to the illumination change variance

Face tracking results (N=100)[Kale et al'07]

PF-MT



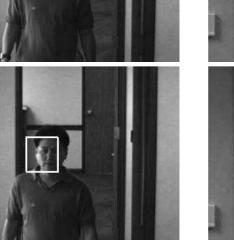
3 dim PF (no illum)



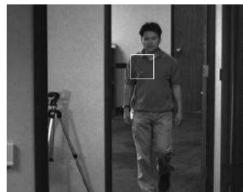
10-dim Auxiliary PF

IOWA STAT

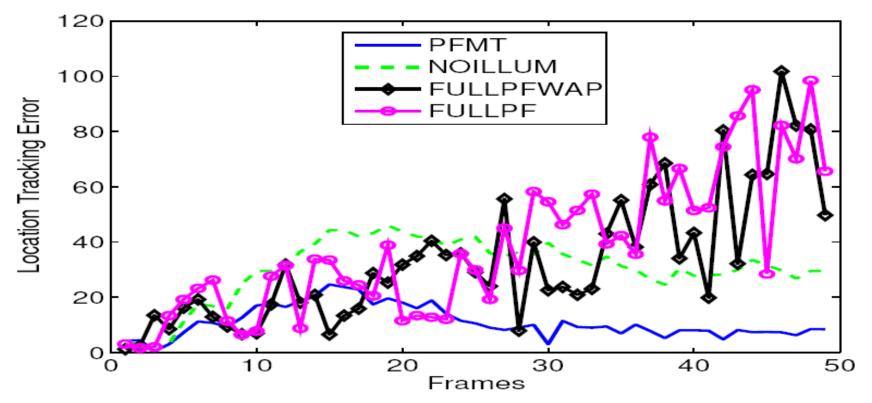
Becoming the best.



PF for Large DIM & WUITIMODAI Problems



Face tracking: RMSE from ground truth [Kale et al, ICASSP'07]



Comparing PF-MT with 10 dim regular PFs (original, auxiliary) & with PF- K dim (not track illumination at all). N = 100

Deformable Contour Tracking

- State: contour, contour point velocities
- Observation: image intensity and/or edge map
- Likelihood: neg. expo. of segmentation energies
 - Region based: observation = image intensity
 - Likelihood = probability of image being generated by the contour
 - Multimodal in case of low contrast images
 - Edge based: observation = edge locations (edge map)
 - Likelihood = probability of a subset of these edges being generated by the contour; of others being generated by clutter or occlusions or being missed due to low contrast
 - Multimodal due to clutter or occlusions or low contrast

Two proposed PF-MT algorithms

- Affine PF-MT [Rathi et al, CVPR'05, PAMI'07]
 - Imp sample on 6-dim space of affine deformations, Mode Track on residual deformation
 - Assumes either that likelihood modes separated only by affine deformation **or** that non-affine deformation per frame is small (slowly deforming sequence)
- Deform PF-MT [Vaswani et al, CDC'06, Trans IP (to appear)]
 - Imp sample on translation & on deformation at K subsampled locations around the contour
 - Useful when likelihood modes separated by non-affine deformation (e.g. due to overlapping clutter or low contrast) & large non-affine deformation per frame

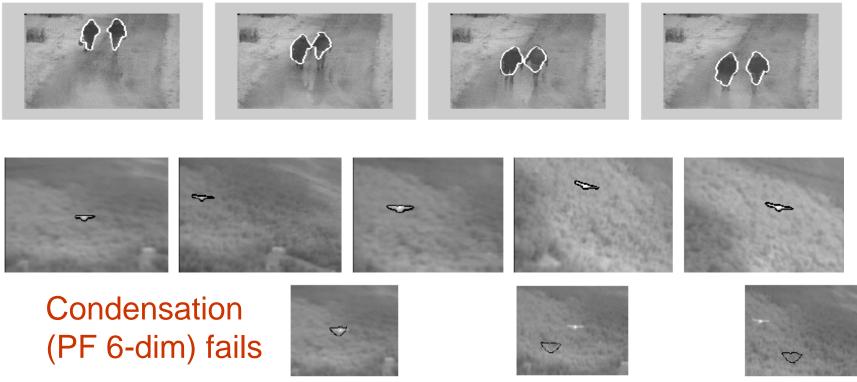
Tracking using Affine PF-MT

[Rathi et al, CVPR'05, PAMI'07]

IOWA STATE UNIVERSITY

Becoming the best.

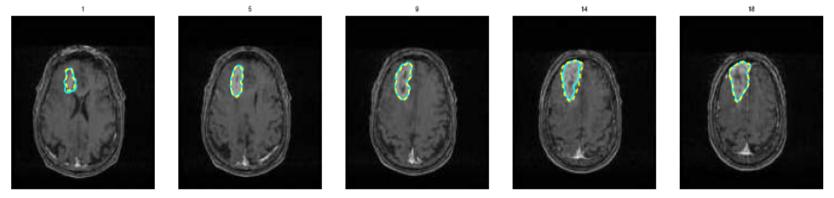
- Tracking humans from a distance (small deformation per frame)
- Deformation due to perspective camera effects (changing viewpoints), e.g. UAV tracking a plane



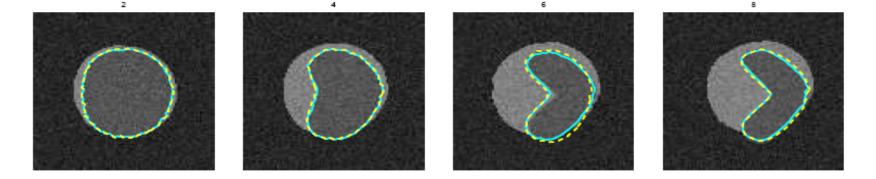
PF for Large Dim & Multimodal Problems

Tracking using Deform PF-MT

Low contrast images (tumor region in brain MRI)



Overlapping background clutter



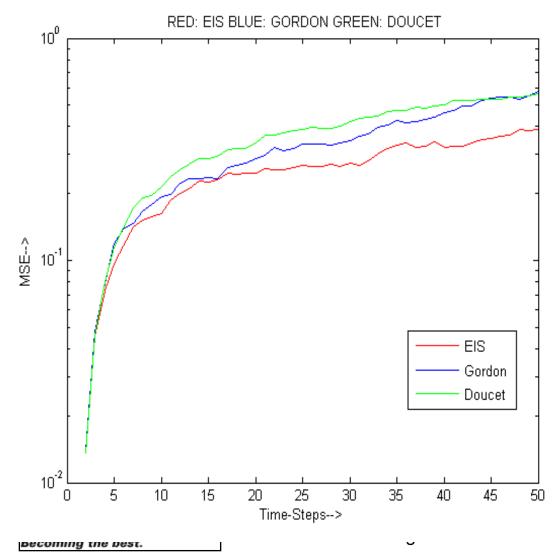
PF for Large Dim & Multimodal Problems

Landmark Shape Tracking

- Track change in shape & global motion of a set of M "landmarks" from a seq. of images
- Advantage separating shape & motion dynamics
 - Learn shape dynamics with any camera, learn motion dynamics of the camera used for tracking
- State = [motion, shape, shape velocity]
- Observation = [M strongest edge locations]
 - or KLT-points or motion blobs or local PCA matching

Landmark Shape Tracking

PF-EIS: Red, PF-Gordon: blue, PF-Doucet: green



- PF-Gordon samples from STP: low effective particle size
- N=50 particles
- PF-D: assumes unimodal p*

roblems

 Often samples around wrong mode when p* multimodal

Summary

- Efficient Importance Sampling techniques that do not require unimodality of optimal IS density
- Derived sufficient conditions to test for posterior unimodality
 - developed for the conditional posterior, $p^{**}(X_{t,r}) := p(X_{t,r} | X_{t,s}^{i}, X_{t-1}^{i}, Y_{t})$
 - used these to guide the choice of multimodal state, $X_{t,s}$, for PF-EIS
- If the state transition prior of a part of X_{t,r} is narrow enough, its conditional posterior will be unimodal & also very narrow
 - approx by a Dirac delta function at its mode: IS-MT
 - improves effective particle size: net reduction in error
- Demonstrated applications in
 - tracking spatially varying physical quantities using unreliable sensors
 - deformable contour tracking, landmark shape tracking, illumination

Collaborators

- Deformable contour tracking
 - Anthony Yezzi, Georgia Tech
 - Yogesh Rathi, Georgia Tech
 - Allen Tannenbaum, Georgia Tech
- Illumination tracking

 Amit Kale, Siemens Corporate Tech, Bangalore
- Landmark shape tracking
 Samarjit Das, Iowa State Univ. (my student)

Open Issues

- Parallel implementations, speed-up posterior mode comp.
- Current conditions for posterior unimodality expensive to verify, depend on previous particles & current observation
 - develop heuristics based on the result to efficiently select multimodal states on-the-fly, or
 - modify the result s.t. unimodality can be checked offline (select multimodal states offline)
- Residual space directions usually change over time
 - How do we either dimension-reduce (for PF-EIS) or select the MT directions (for PF-EIS-MT) on-the-fly
 - can we use Compressed Sensing or Kalman filtered CS [Vaswani'08] on the state change vector to do this?
- Analyze the IS-MT approx, prove stability of PF-MT

[Gordon et al'93] out-of-track

