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Goal

e (Goal: Reconstruct

— a time sequences of (spatially) sparse signals
— with slowly changing sparsity patterns (support sets)
— from a limited number of incoherent measurements

— in real-time (recursively and causally)

e Examples: real-time dynamic MR imaging, video compression, single-
pixel video, sensor nets for real-time estimation of time-varying fields

e Key assumption: sparsity pattern changes slowly over time
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Slowly Changing Sparsity

e Approx. Sparsity. Size of 99%-energy support set: less than 7% for
the larynx sequence and less than 9% for the cardiac sequence.

e Slow Change in Sparsity Pattern. Maximum size of change in
support: less than 2% of minimum sparsity size in both cases
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Outline

* Problem definition and background

e LS CS-residual (LS-CS) & KF CS-residual (KF-CS)
 Bounding LS CS error

o Conditions for stability of LS and KF CS

e Simulations
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Problem Definition

Recursively reconstruct a sparse vector, r;, from the current obser-
vation, y; := Azr; + w;, & all past observations, yi.;_1

o dim(y;) =n < dim(xt) =m
o x; is S;-sparse with support set, /V;
e the support, IV;, changes slowly over time

e Ais S.-“approximately orthonormal” (dg, < 1/2) and S, > S;

— i.e. ||Az||2 between 0.7 and 1.2 for S, or less sparse vectors x

N. Vaswani: LS-CS and KF-CS




RIP and ROP COnStantS [Candes,Tao]

e Restricted Isometry constant, dg: smallest real number satisfying
(1= 3s)lellz < [[Arell3 < (1+ ds)lle]]3
for all subsets T" with |T'| < S and for all ¢

— Easy to see: ||[(A7"Ap)~t|2 <1/(1—0j7))

e Restricted Orthogonality constant, g s/: smallest real number satistying
e’ A1y A, o] < 05,50 |ca|2]le2]]2
for all disjoint sets 17,75 with |11 < S, |T3] < S’ and for all ¢q, ¢o

— Easy to see: [|Ar,"An,||2 < 01y, 1)
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COm preSSEd Se nSI ng [Candes, Romberg, Tao] [Donoho]

® CS (HO].S@IQSS) [Candes, Romberg, Tao ’05] [Donoho’05]
® CS (nOiS'y - BPDN) [Chen,Donoho] [Tropp’06]

e CS (noisy - Dantzig Selector) [candes, Tao *06]

min ||6]] st [|4'(g — AB)loo < A
We use z; = CS(y;) to denote the solution of above

e If noise is bounded between +A/||A||1 in each dimension, and d3g, < 1/2,

|z — 4ll3 < Ci(St) Sp A°
01(5) — 16/(1 — 525 — 95725)2

(Simpliﬁcati()n of Theorem 1.1 of [Dantzig Selector])
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The Question

e Most existing work: Batch-CS on entire time sequence

[Gamper et al 08 (dynamic MRI)], [Wakin et al (video)]

— Oflline and very slow, but uses few measurements

e Alternative: CS at each time separately (simple CS)

— Causal and fast, but needs many more measurements

e The Question: How can we

— improve simple CS by using past observations, and

— how can we do it recursively, i.e. by only using the previous
signal estimate and the current observation?
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Finding a Recursive Solution

e Given vy; := Axy + wy, x; is sparse with support Vi, INV; changes slowly
over time, A satisfies dg, < 1/2, Sy := | N¢|

e If N; known: easy to compute a restricted-LS estimate

A

iy = restrictedLS(ys, Ny) = (&), = An, ys, (Z¢)ne =0

e If N, unknown: an option is to estimate it by thresholding CS output
N, = threshold(CS(y;)) threshold(z):= {i:2? > a}
and then do the same thing

— But: not using past observations: large error
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CS-fESld Ual Idea [Vaswani, ICIP’08, ICASSP’'09]

o Let T := N,_; (estimated support at t — 1) and A := N; \ N;_q
e Assume that the undetected set, A, is small, i.e.

— the support changes slowly, and

— the support at t — 1 is well estimated

e Use T := N,_; to compute restricted LS estimate, & observation residual

T,init = restrictedLS(y:,T)

Ytres = yt—Aﬂft,init

e CS-residual: 2; =2, 5t + CS(yt res)

— Y res is a noisy measurement of an approx. |A| sparse vector
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Why CS-residual works?

e Notice that y; res = AB; +w; and B := x4 — T, 3543 satisfies

(ﬁt)A — (ﬂft)A
B)r = —ArT(Aa(z)a +wy)

(Be)(ruaye = 0
o If ‘A‘ small enough s.t. HAT/AAHQ < ‘9|T|,|A| small:
— [ small along T, i.e. it is only |A|-approx-sparse
e CS error strongly depends on approx. sparsity size

— CS-residual: much smaller error than CS on y; (simple CS)
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LS CS-residual (LS-CS) algorithm

observ.
Yt

Initial LS

Compute LS estimate,
& residual using T
A

~

X¢ init

Yt res

T 5

Nt—l

CS-residual

Do CS on S’t,res

to estimate 3; :=xy — X

t,init

Xt,CSres

A

— it,init + 0t

Estimate

Suppor

N,

lYt

Final LS

delay

N

y

A

Estimate Support.

t<«—t+1

Either do

estimate using N;

o N, = threshold(Z; csres) (add and delete indices at the same time)

o Or N; = T'Uthreshold(Z¢.csres) (only add new indices) (easier to analyze)
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Bounding LS CS-residual error yaswani icasseog)

e Assume that

2

1. noise bounded b/w £\ /||A||; and has variance ¢ in each dimension

2. number of false additions, [T\ ;| < Sy, and dg,4.5,, < 1/2
3. number of new plus undetected additions, |A| < S;/3
— recall: T := Nt_l, A:=N\T

e Expected CS-residual error given past := y;.;_1 is bounded by

T
Ca(|A]) |A] A + Cs(!AD% 4077 a1 Bl (ze) Al [Past] + 2| T|o”]

— (0%(S), C5(5): linear functions of 1/(1 — dag — O5.25)*

e Final LS usually further improves performance
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Comparison with CS

e If noise bounded and d35, < 1/2, CS error bounded by
Cl(St) ‘A| )\2 4+ Cl(St) (St . |AD )\2
C1(9): linear function of 1/(1 — 25 — 05.25)?

— holds under much stronger assumption

— the constant much larger and second term not much smaller

e If noise bounded and 35 < 1/2 (S < S;), CS error bounded by

Sy — S
. 2 t
5:5221?1/2 Co(S) S A 4+ C3(9) 3

Ell|(t)rest ||*|past]
rest: (S —5) nonzero elements of x; which did not get estimated
— constants same, but second term much larger
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Comparison with CS: special case

o Let S =|A|is the optimal S for CS bound. Also, let S¢, =0

e CS error bound:

Co Al N+ O3 El[(z0)rest]]” past]

e CS-residual error bound:
Cy |A[ N+ Cf [40°E[]|(z4) a|*|past] + 2|T|o”]
— T:=N,_ 1, A:= N, \T', 0 := 07 |a
e CS-residual bound much smaller when

— |A] is small — much smaller than |rest| = S; — |A|
— |A| small — 0% = ‘9|2T|,|A| is small

— SNR large (when SNR too small, nothing works) — ¢ small
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Disclaimer

e \WWe are only comparing upper bounds

 The upper bound on CS error being larger
does not necessarily mean that CS-
residual Is better
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Kalman filtered CS-residual (KF-CS)

[Vaswani, ICIP’08]

e So far only used Nt—1 to improve accuracy of CS at t: did not use z;_1

e If a prior dynamic model for nonzero coefficients of x; is available: do this
by replacing initial LS by a KF for (x:)r

e A possible prior model: random-walk on (z;)y, starting with zo =0
Tt = Tt—1 T Vt, Vg~ N(Oa Qt)a Qt — Ugth

I7: diagonal matrix, 1’s at diagonal locations from set 1T', zero elsewhere

e KF CS-residual:

— dimension-varying KF with current states’ set being 1" := Ny

— compute N, by thresholding output of CS on KF' residual
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KF CS-residual (KF-CS) algorithm

e Initial KF. Let 7 = N,_;. Run a Kalman prediction and update step
using Qt = szS[T and compute the KF residual, y; res, i.e. compute

P11 = P+ Qi, where Q;:=o2Ir

Ky = Py A(APy 1A' +0°)7', Po=(1 - KiA)Py
Tyinit = (I — K1 A)Zi1 + Ky
Ytres = — Az, init

o CS-residual. Compute &t csres = &, init + CS(ye,res)

e Estimate Support. N, =TU Threshold(Z¢,csres)
e Final LS. If N, is equal to N;_ 1, set Ty = T, init

else compute restricted LS estimate using N, and update P, i.e.

Ty = restrictedLS(yt,Nt)
(P)g, 5, = (Ag'Ag )7’
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Convergence to Genie KF/LS waswani icasspos)

e Assume that

the noise is bounded
(x¢)n, follows the Gaussian random walk model
A is incoherent enough to ensure that dsg, < 1/2 for all ¢

addition threshold, «, set large enough to prevent false additions

Or o =

all additions occur before a finite time

e KF (LS) CS-residual estimate converges to the genie-aided KF
(LS) estimate in probability
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CO rO I I al'y Stab | I |ty [Vaswani, ICASSP’'09]

e If replace “all additions before a finite time” by the following

— number of additions at a given time less than Sg maer << S, and

— delay between two addition times is large enough

above: one way to quantify “slowly changing sparsity pattern”

e w.h.p. KF (LS) CS-residual gets to within a small error of the
genie KF (LS), within a finite delay after a new addition time

— (and remains that way until next addition)

20
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Main ldea of Proof

e Bounded noise and d3g, < 1/2 — CS-residual error bounded by a constant
e Addition threshold = error bound — ensures no false additions

e Gaussian random-walk model on (x;)y, — expected value of the square
of any nonzero coefficient keeps increasing linearly with ¢

— w.h.p. it will exceed addition threshold plus error bound within a
finite delay after being added, i.e. will get detected

e All additions before finite time — w.h.p. all detected before a finite time
— LS CS-residual converges to genie LS in probability

e When all nonzero elements detected KF CS-residual runs a time-invariant
KF with correct model parameters

— will converge to genie KF in mean square and hence in probability
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Simulations: random-Gaussian meas.

e Signal length: m=256
e Sparsity size: S, = 8, 2 new additions every 5 time units from t=10 to 50
 Observations: n=72, 02 = 16/9n

« To answer a question raised during the talk

— The above is just one simulation example used to make it similar to the
assumptions used by our theorem

— There could be new additions or deletions at every frame (this happens for
real image sequences, e.g. MRI — see last page) and our algorithm still works

— Even though the above simulation may appear to be solvable using MUSIC,
the general scenario is not. Also MUSIC is NON-CAUSAL, we want a
CASUAL algorithm.

— Also, to use MUSIC one would need to know how long there has been no addition
(this may be possible to detect by thresholding norm of residual)
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Related Work

e Our Kalman filtered CS work first appeared in ICIP’08

e Works not using the current observation to compute the initial
estimate that is then used to compute the observation residual

— k—t FOCUSS [Jung,Ye, ISBI’08]

— Locally Competitive Algorithms for sparse coding [rozel et a1, 1CIP’07]
e Very recent work

— Recursive LasSo [Angelosante, Giannakis, ICASSP’09]

— Dynamic 11 minimization (asif, Romberg, CISs’09]

— KF—CS fOI‘ dynamic MRI [Qiu, Lu, Vaswani, ICASSP’09]
— Modiﬁed—CS [Vaswani, Lu, ISIT’09]
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Summary

o LS CS-residual and KF CS-residual

¢ Bounded LS CS-residual error under mild assumptions

— bound much tighter than CS if sparsity pattern changes slowly enough

¢ KF (LS) CS-residual gets to within a small error of the genie-
aided KF (LS) within a finite delay after a new addition

— proved this under stronger assumptions
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Ongoing/Future Work

e Modified-CS [vaswani, Lu, 1s1T°00]. 24 1S the solution of

1 S.t. Y :Aﬁ

min c
in| |37

— an approach for provably exact reconstruction from noiseless mea-
surements using partly known support, 1" := N;_1

— exact reconstruction if 6,724 < 1/5 (much weaker than CS)

e Combine Modified-CS with CS-residual for noisy/compressible cases
e Prove stability under weaker assumptions

o KF CS—I’GSIdual fOI’ dynamlc MRI [Qiu, Lu, Vaswani, ICASSP’09]
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e Combine Modified-CS with CS-residual for noisy/compressible cases

1+ (1/2)[ye,res — ABII2

min c
3 7”5T

mﬁiMHﬁTc 1+ 187 = (@17 ll{p,, 1 )pr + (1/207)|lye — AB|J

e A good way to delete zero coeflicients
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SImU Iated M RI [Qiu, Lu, Vaswani, ICASSP’09]

e Observations: n =m/2, m = 128 (one column at a time)

e Support size ~ 0.26m, change in support ~ 0.03m

e Variable density undersampling in ky, full resolution in kx
e Select y using the error bound of Tropp’06]
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Cardiac sequence: reconstructed last frame




