Analyzing Least Squares & Kalman Filtered Compressed Sensing

Namrata Vaswani Dept. of Electrical & Computer Engineering Iowa State University <u>http://www.ece.iastate.edu/~namrata/</u>

Goal

- Goal: Reconstruct
 - a time sequences of (spatially) sparse signals
 - with slowly changing sparsity patterns (support sets)
 - from a limited number of incoherent measurements
 - in real-time (recursively and causally)
- **Examples:** real-time dynamic MR imaging, video compression, singlepixel video, sensor nets for real-time estimation of time-varying fields
- Key assumption: sparsity pattern changes slowly over time

Slowly Changing Sparsity

- Approx. Sparsity. Size of 99%-energy support set: less than 7% for the larynx sequence and less than 9% for the cardiac sequence.
- Slow Change in Sparsity Pattern. Maximum size of change in support: less than 2% of minimum sparsity size in both cases

Outline

- Problem definition and background
- LS CS-residual (LS-CS) & KF CS-residual (KF-CS)
- Bounding LS CS error
- Conditions for stability of LS and KF CS
- Simulations

Problem Definition

Recursively reconstruct a sparse vector, x_t , from the current observation, $y_t := Ax_t + w_t$, & all past observations, $y_{1:t-1}$

- $dim(y_t) = n < dim(x_t) = m$
- x_t is S_t -sparse with support set, N_t
- the support, N_t , changes slowly over time
- A is S_* -"approximately orthonormal" ($\delta_{S_*} < 1/2$) and $S_* > S_t$

- i.e. $||Ax||_2$ between 0.7 and 1.2 for S_* or less sparse vectors x

RIP and ROP constants [Candes, Tao]

• Restricted Isometry constant, δ_S : smallest real number satisfying

 $(1 - \delta_S) ||c||_2^2 \le ||A_T c||_2^2 \le (1 + \delta_S) ||c||_2^2$

for all subsets T with $|T| \leq S$ and for all c

- **Easy to see:** $||(A_T A_T)^{-1}||_2 \le 1/(1 - \delta_{|T|})$

• Restricted Orthogonality constant, $\theta_{S,S'}$: smallest real number satisfying

$$|c_1' A_{T_1}' A_{T_2} c_2| \le \theta_{S,S'} ||c_1||_2 ||c_2||_2$$

for all disjoint sets T_1, T_2 with $|T_1| \leq S, |T_2| \leq S'$ and for all c_1, c_2

- Easy to see: $||A_{T_1}'A_{T_2}||_2 \le \theta_{|T_1|,|T_2|}$

Compressed Sensing [Candes, Romberg, Tao] [Donoho]

- CS (noiseless) [Candes, Romberg, Tao '05] [Donoho'05]
- CS (noisy BPDN) [Chen, Donoho] [Tropp'06]
- CS (noisy Dantzig Selector) [Candes, Tao '06]

$$\min_{\beta} ||\beta||_1 \text{ s.t. } ||A'(y_t - A\beta)||_{\infty} < \lambda$$

We use $\hat{x}_t = \mathbf{CS}(y_t)$ to denote the solution of above

• If noise is bounded between $\pm \lambda/||A||_1$ in each dimension, and $\delta_{3S_t} < 1/2$,

$$||x_t - \hat{x}_t||_2^2 \leq C_1(S_t) S_t \lambda^2$$

$$C_1(S) := \frac{16}{(1 - \delta_{2S} - \theta_{S,2S})^2}$$

(simplification of Theorem 1.1 of [Dantzig Selector])

The Question

- Most existing work: Batch-CS on entire time sequence [Gamper et al '08 (dynamic MRI)], [Wakin et al (video)]
 - Offline and very slow, but uses few measurements
- Alternative: CS at each time separately (simple CS)
 - Causal and fast, but needs many more measurements
- The Question: How can we
 - improve simple CS by using past observations, and
 - how can we do it recursively, i.e. by only using the previous signal estimate and the current observation?

Finding a Recursive Solution

- Given $y_t := Ax_t + w_t$, x_t is sparse with support N_t , N_t changes slowly over time, A satisfies $\delta_{S_t} < 1/2$, $S_t := |N_t|$
- If N_t known: easy to compute a restricted-LS estimate

$$\hat{x}_t = \text{restrictedLS}(y_t, N_t) := (\hat{x}_t)_{N_t} = A_{N_t}^{\dagger} y_t, \ (\hat{x}_t)_{N_t^c} = 0$$

• If N_t unknown: an option is to estimate it by thresholding CS output

 \hat{N}_t = threshold(CS(y_t)) threshold(x) := { $i : x_i^2 > \alpha$ }

and then do the same thing

- But: not using past observations: large error

CS-residual idea [Vaswani, ICIP'08, ICASSP'09]

- Let $T := \hat{N}_{t-1}$ (estimated support at t-1) and $\Delta := N_t \setminus \hat{N}_{t-1}$
- Assume that the undetected set, Δ , is small, i.e.
 - the support changes slowly, and
 - the support at t-1 is well estimated
- Use $T := \hat{N}_{t-1}$ to compute restricted LS estimate, & observation residual

$$\hat{x}_{t,\text{init}} = \text{restrictedLS}(y_t, T)$$

 $y_{t,\text{res}} = y_t - A\hat{x}_{t,\text{init}}$

- **CS-residual:** $\hat{x}_t = \hat{x}_{t,\text{init}} + \text{CS}(y_{t,\text{res}})$
 - $y_{t,res}$ is a noisy measurement of an approx. $|\Delta|$ sparse vector

Why CS-residual works?

• Notice that $y_{t,res} = A\beta_t + w_t$ and $\beta_t := x_t - \hat{x}_{t,init}$ satisfies

$$\begin{aligned} (\beta_t)_{\Delta} &= (x_t)_{\Delta} \\ (\beta_t)_T &= -A_T^{\dagger} (A_{\Delta}(x_t)_{\Delta} + w_t) \\ (\beta_t)_{(T \cup \Delta)^c} &= 0 \end{aligned}$$

• If $|\Delta|$ small enough s.t. $||A_T'A_\Delta||_2 < \theta_{|T|,|\Delta|}$ small:

- β_t small along T, i.e. it is only $|\Delta|$ -approx-sparse

• CS error strongly depends on approx. sparsity size

- CS-residual: much smaller error than CS on y_t (simple CS)

LS CS-residual (LS-CS) algorithm

Estimate Support. Either do

- $\hat{N}_t = \text{threshold}(\hat{x}_{t,CSres})$ (add and delete indices at the same time)
- Or $\hat{N}_t = T \cup \text{threshold}(\hat{x}_{t,CSres})$ (only add new indices) (easier to analyze)

Bounding LS CS-residual error [Vaswani, ICASSP'09]

• Assume that

- 1. noise bounded b/w $\pm \lambda/||A||_1$ and has variance σ^2 in each dimension
- 2. number of false additions, $|T \setminus N_t| \leq S_{fa}$ and $\delta_{S_t+S_{fa}} < 1/2$
- 3. number of new plus undetected additions, $|\Delta| < S_t/3$ - recall: $T := \hat{N}_{t-1}, \Delta := N_t \setminus T$
- Expected CS-residual error given past $:= y_{1:t-1}$ is bounded by

$$C_2(|\Delta|) |\Delta| \lambda^2 + C_3(|\Delta|) \frac{|T|}{|\Delta|} [4\theta_{|T|,|\Delta|}^2 E[||(x_t)_{\Delta}||^2|\text{past}] + 2|T|\sigma^2]$$

- $C_2(S)$, $C_3(S)$: linear functions of $1/(1 - \delta_{2S} - \theta_{S,2S})^2$

• Final LS usually further improves performance

Comparison with CS

• If noise bounded and $\delta_{3S_t} < 1/2$, CS error bounded by

 $C_1(S_t) |\Delta| \lambda^2 + C_1(S_t) (S_t - |\Delta|) \lambda^2$

 $C_1(S)$: linear function of $1/(1 - \delta_{2S} - \theta_{S,2S})^2$

- holds under much stronger assumption
- the constant much larger and second term not much smaller
- If noise bounded and $\delta_{3S} < 1/2$ (S < S_t), CS error bounded by

$$\min_{S:\delta_{3S}<1/2} C_2(S) \ S \ \lambda^2 \ + \ C_3(S) \ \frac{S_t - S}{S} \ E[||(x_t)_{\text{rest}}||^2|\text{past}]$$

rest: $(S_t - S)$ nonzero elements of x_t which did not get estimated

– constants same, but second term much larger

Comparison with CS: special case

- Let $S = |\Delta|$ is the optimal S for CS bound. Also, let $S_{fa} = 0$
- CS error bound:

 $C_2 |\Delta| \lambda^2 + C'_3 E[||(x_t)_{\text{rest}}||^2|\text{past}]$

• CS-residual error bound:

 $C_2 |\Delta| \lambda^2 + C'_3 [4\theta^2 E[||(x_t)_{\Delta}||^2 |\text{past}] + 2|T|\sigma^2]$

- $-T := \hat{N}_{t-1}, \, \Delta := N_t \setminus T, \, \theta := \theta_{|T|, |\Delta|}$
- CS-residual bound much smaller when

$$- |\Delta|$$
 is small \rightarrow much smaller than $|\text{rest}| = S_t - |\Delta|$

$$- |\Delta| \text{ small} \to \theta^2 = \theta^2_{|T|,|\Delta|} \text{ is small}$$

– SNR large (when SNR too small, nothing works) $\rightarrow \sigma^2$ small

Disclaimer

- We are only comparing upper bounds
- The upper bound on CS error being larger does not necessarily mean that CSresidual is better

Kalman filtered CS-residual (KF-CS)

[Vaswani, ICIP'08]

- So far only used \hat{N}_{t-1} to improve accuracy of CS at t: did not use \hat{x}_{t-1}
- If a prior dynamic model for nonzero coefficients of x_t is available: do this by replacing initial LS by a KF for $(x_t)_T$
- A possible prior model: random-walk on $(x_t)_{N_t}$ starting with $x_0 = 0$

$$x_t = x_{t-1} + \nu_t, \ \nu_t \sim \mathcal{N}(0, Q_t), \ Q_t = \sigma_s^2 I_{N_t}$$

 I_T : diagonal matrix, 1's at diagonal locations from set T, zero elsewhere

• KF CS-residual:

- dimension-varying KF with current states' set being $T := \hat{N}_{t-1}$
- compute \hat{N}_t by thresholding output of CS on KF residual

KF CS-residual (KF-CS) algorithm

• Initial KF. Let $T = \hat{N}_{t-1}$. Run a Kalman prediction and update step using $\hat{Q}_t = \sigma_{sys}^2 I_T$ and compute the KF residual, $y_{t,res}$, i.e. compute

$$P_{t|t-1} = P_{t-1} + \hat{Q}_t, \text{ where } \hat{Q}_t := \sigma_s^2 I_T$$

$$K_t = P_{t|t-1} A' (A P_{t|t-1} A' + \sigma^2 I)^{-1}, P_t = (I - K_t A) P_{t|t-1}$$

$$\hat{x}_{t,\text{init}} = (I - K_t A) \hat{x}_{t-1} + K_t y_t$$

$$y_{t,\text{res}} = y_t - A \hat{x}_{t,\text{init}}$$

- **CS-residual.** Compute $\hat{x}_{t,CSres} = \hat{x}_{t,\text{init}} + \text{CS}(y_{t,\text{res}})$
- Estimate Support. $\hat{N}_t = T \cup \text{Threshold}(\hat{x}_{t,CSres})$
- Final LS. If \hat{N}_t is equal to \hat{N}_{t-1} , set $\hat{x}_t = \hat{x}_{t,\text{init}}$, else compute restricted LS estimate using \hat{N}_t and update P_t , i.e.

$$\hat{x}_t = \text{restrictedLS}(y_t, \hat{N}_t)$$
$$(P_t)_{\hat{N}_t, \hat{N}_t} = (A_{\hat{N}_t} A_{\hat{N}_t})^{-1} \sigma^2$$

N. Vaswani: LS-CS and KF-CS

Convergence to Genie KF/LS [Vaswani, ICASSP'09]

• Assume that

- 1. the noise is bounded
- 2. $(x_t)_{N_t}$ follows the Gaussian random walk model
- 3. A is incoherent enough to ensure that $\delta_{3S_t} < 1/2$ for all t
- 4. addition threshold, α , set large enough to prevent false additions
- 5. all additions occur before a finite time
- KF (LS) CS-residual estimate converges to the genie-aided KF (LS) estimate in probability

Corollary: Stability [Vaswani, ICASSP'09]

- If replace "all additions before a finite time" by the following
 - number of additions at a given time less than $S_{a,max} \ll S_t$, and
 - delay between two addition times is large enough

above: one way to quantify "slowly changing sparsity pattern"

• w.h.p. KF (LS) CS-residual gets to within a small error of the genie KF (LS), within a finite delay after a new addition time

- (and remains that way until next addition)

Main Idea of Proof

- Bounded noise and $\delta_{3S_t} < 1/2 \rightarrow \text{CS-residual error bounded by a constant}$
- Addition threshold = error bound \rightarrow ensures no false additions
- Gaussian random-walk model on $(x_t)_{N_t} \to$ expected value of the square of any nonzero coefficient keeps increasing linearly with t
 - w.h.p. it will exceed addition threshold plus error bound within a finite delay after being added, i.e. will get detected
- All additions before finite time \rightarrow w.h.p. all detected before a finite time
 - LS CS-residual converges to genie LS in probability
- When all nonzero elements detected KF CS-residual runs a time-invariant KF with **correct model parameters**
 - will converge to genie KF in mean square and hence in probability

Simulations: random-Gaussian meas.

- Signal length: m=256
- Sparsity size: $S_1 = 8$, 2 new additions every 5 time units from t=10 to 50
- Observations: n=72, $\sigma^2 = 16/9n$
- To answer a question raised during the talk
 - The above is just one simulation example used to make it similar to the assumptions used by our theorem
 - There could be new additions or deletions at every frame (this happens for real image sequences, e.g. MRI – see last page) and our algorithm still works
 - Even though the above simulation may appear to be solvable using MUSIC, the general scenario is not. Also MUSIC is NON-CAUSAL, we want a CASUAL algorithm.
 - Also, to use MUSIC one would need to know how long there has been no addition (this may be possible to detect by thresholding norm of residual)

Related Work

- Our Kalman filtered CS work first appeared in ICIP'08
- Works not using the current observation to compute the initial estimate that is then used to compute the observation residual
 - k-t FOCUSS [Jung, Ye, ISBI'08]
 - Locally Competitive Algorithms for sparse coding [Rozell et al, ICIP'07]
- Very recent work
 - Recursive Lasso [Angelosante, Giannakis, ICASSP'09]
 - Dynamic 11 minimization [Asif, Romberg, CISS'09]
 - KF-CS for dynamic MRI [Qiu, Lu, Vaswani, ICASSP'09]
 - Modified-CS [Vaswani, Lu, ISIT'09]

Summary

- LS CS-residual and KF CS-residual
- Bounded LS CS-residual error under mild assumptions
 - bound much tighter than CS if sparsity pattern changes slowly enough
- KF (LS) CS-residual gets to within a small error of the genieaided KF (LS) within a finite delay after a new addition
 - proved this under stronger assumptions

Ongoing/Future Work

• Modified-CS [Vaswani, Lu, ISIT'09]. \hat{x}_t is the solution of

 $\min_{\beta} ||\beta_{T^c}||_1 \quad \text{s.t.} \quad y_t = A\beta$

- an approach for provably exact reconstruction from noiseless measurements using partly known support, $T := \hat{N}_{t-1}$
- exact reconstruction if $\delta_{|T|+2|\Delta|} < 1/5$ (much weaker than CS)
- Combine Modified-CS with CS-residual for noisy/compressible cases
- Prove stability under weaker assumptions
- KF CS-residual for dynamic MRI [Qiu, Lu, Vaswani, ICASSP'09]

• Combine Modified-CS with CS-residual for noisy/compressible cases $\min_{\beta} \gamma ||\beta_{T^c}||_1 + (1/2)||y_{t,res} - A\beta||_2^2$ $\min_{\beta} \gamma ||\beta_{T^c}||_1 + ||\beta_T - (\hat{x}_{t-1})_T||_{(P_{t|t-1})_{T,T}}^2 + (1/2\sigma^2)||y_t - A\beta||_2^2$

• A good way to delete zero coefficients

Simulated MRI [Qiu, Lu, Vaswani, ICASSP'09]

- Observations: n = m/2, m = 128 (one column at a time)
- Support size ~ 0.26m, change in support ~ 0.03m
- Variable density undersampling in ky, full resolution in kx
- Select γ using the error bound of [Tropp'06]

Cardiac sequence: reconstructed last frame