Deformable Contour Tracking & System Identification

Namrata Vaswani Dept. of Electrical & Computer Engineering Iowa State University http://www.ece.iastate.edu/~namrata

Goals

- Sequentially segment deforming objects or Regions of Interest (ROIs) from video or from spatial image sequences
 - Do this offline ("smoothing") or online ("tracking")
 - O/P of a tracker is input to a smoothing algorithm

- Given a sequence of contours, estimate effective dimension of deformation & sequence dynamics
 - "System Identification"

Brain MRI slices: Tumor sequence (actual deformations)

Partial occlusion of car by street light

Perspective effect: Plane tracked by UAV (frequent camera viewpoint changes)

Outline

- The Tracking Problem
 - Main Issues, Particle Filtering
 - Existing Work & Our Key Ideas
 - Proposed Solutions: Affine & Deform PF-MT
 - Extension to Smoothing (offline segmentation)
- System Identification: Spatial PSD
- Summary & Open Issues

The Tracking Problem

- Causally segment a moving & deforming object from a sequence of images
- Formulate as a "tracking problem": estimate the state at time t from observations until t when
 - States (contour, contour velocity): Markov model
 - State transition prior (STP) known: $p(X_t|X_{t-1})$
 - Observation (image or edge map) at t depends only on state at t
 - Observation Likelihood (OL) known: p(Y_t|X_t)

State Space Model

- System Model (State Dynamics). State, X_t=[C_t,v_t]
 - Contour = Previous contour + velocity
 - Gauss-Markov model on contour velocity
 - Contour velocity: global (affine) + local deformation
- Observation Model. Observation, Y_t
 - Image, Y_t = noisy & nonlinear function of contour, C_t
 - OL: $p(Y_t|X_t) = p(Y_t|C_t) \propto exp[-E(Y_t,C_t)/\sigma^2]$
 - E = any segmentation energy functional
 - e.g. E = Chan-Vese, edge energy, or sum of both

Tracking Framework

IOWA STATE UNIVERSITY Becoming the best.

Definitions

- State transition prior (STP): p(X_t | X_{t-1})
 PDF of X_t conditioned on a value of X_{t-1}
- Observation Likelihood (OL): p(Y_t | X_t)
 Probability of Y_t taking a certain value conditioned on a value of X_t
 - "OL multimodal": OL has multiple local maxima (modes) as a function of X_t

Main Issues, Particle Filtering

Main Issues

- Observation Likelihood (OL) is often multimodal
 - e.g. clutter, occlusions, low contrast images
 - If STP narrow enough, posterior is unimodal: adapt KF
 - If STP broad (fast deforming sequence): require a Particle Filter (PF)
- Deforming contours: Large dim state space (LDSS)
 - If constrained motion, e.g. rigid/affine: easy to use PF
 - LDSS: PF expensive (requires impractically large N)

Narrow STP: Unimodal posterior

Broad STP: Multimodal posterior

Examples: Multimodal OL

- As a function of affine deformation
 - Background clutter due to separate objects
 - Background clutter due to concentric contours
- As a function of non-affine deformation
 - Overlapping background clutter
 - Partial occlusions
 - Low contrast (weak edges: multiple edge responses)
 - Outliers

Becoming the best.

Examples: Deforming contours

- Actual deformations: biological images
 - Human tracking: surveillance, sports videos,...
 - Animals such as a fish
 - Medical sequences: ROIs in brain or heart
- Changing region of partial occlusions
 - Automatic vehicle navigation
 - Robot navigation

Becoming the best.

- Frequently changing camera viewpoint
 - Tracking using a UAV

Separate clutter (multiple fishes) + deformation

Overlapping clutter (light grey object) + deformation

STATE UNIVERSITY

Becoming the best.

Low contrast + deforming contours (large deformation per frame)

Low contrast + Frequent viewpoint changes (small deformation per frame)

Partial occlusion of car by street light: 3 contour modes, 2 are deforming contours

Other LDSS problems

- Image Sequences
 - Spatially varying illumination change of moving objects
 - Optical flow (motion of each pixel)
- Sensor Networks
 - Spatially varying physical quantities, e.g. temperature
 - Boundary of a chemical spill or target emissions
- Time-varying system transfer functions
 - Time-varying STRF: repr. for neuronal transfer functions
 - Time varying AR model for speech (e.g STV-PARCOR)

Particle Filter (PF) [GSS'93]

- A sequential Monte Carlo technique to approx Bayes' recursion for computing the posterior $\pi_t(X_{1:t}) = p(X_{1:t}|Y_{1:t})$
- Does this sequentially at each t using Sequential Importance Sampling along with a Resampling step (to throw away particles with very small importance weights)

Monte Carlo, Importance Sampling

- Goal: compute $E_p[\gamma(X)] = \int_X \gamma(x) p(x) dx$ (compute expected value of any function of X, when X ~ p)
- Monte Carlo:
- $\begin{array}{ll} \mathsf{E}_{\mathsf{p}}\left[\gamma(\mathsf{X})\right] = \int_{\mathsf{X}} \gamma(\mathsf{x}) \, \mathsf{p}(\mathsf{x}) \, \mathsf{d}\mathsf{x} \\ & \approx (1/\mathsf{N}) \sum_{i} \gamma(\mathsf{X}^{i}), \quad \mathsf{X}^{i} \sim \mathsf{p} \end{array}$
- Imp Sampling: If cannot compute p (e.g. p is a posterior), or cannot sample efficiently from it:
- $$\begin{split} \mathsf{E}_{\mathsf{p}}\left[\gamma(\mathsf{X})\right] &= \mathrm{E}_{\mathsf{q}}\left[\gamma(\mathsf{x})\;p(\mathsf{x})/q(\mathsf{x})\;\right] \\ &\approx (1/\mathsf{N})\sum_{i}\gamma(\mathsf{X}^{i})\;w^{i}, \quad \mathsf{X}^{i} \sim \mathsf{q} \\ &w^{i} \propto p(\mathsf{X}^{i})\;/\;q(\mathsf{X}^{i}) \end{split}$$

PF: Seq Importance Sampling

Seq Imp Sampling to approx p($X_{1:t} | Y_{1:t}$)

- Choose Imp Sampling density s.t. it factorizes as q_{t,Y1:t}(X_{1:t}) = q_{t-1,Y1:t-1}(X_{1:t-1}) q_{Xt-1,Yt}(X_t) – Allows for recursive computation of weights
- Seq Imp Sample: At each t, for each particle i,
 - Importance Sample: $X_t^i \sim q_{X_{t-1}^i,Y_t}(X_t)$
 - Weight:

 $w_t^{~i} \propto w_{t\text{-}1}^{~i} ~ p(Y_t \mid X_t^{~i}) ~ p(X_t^{~i} \mid X_{t\text{-}1}^{~i}) ~ / ~ q_{X_{t\text{-}1}^{~i},Y_t}(X_t^{~i})$

Existing Work & Our Key Ideas

Existing Work

ATE UNIVERSITY

Becoming the best.

- Kalman Filter [BIR,CDC'94][TZ'92][P,PAMI'99][BB,CDC'94]
 Finite dim contour rep, Assumed posterior unimodal
- Particle Filter [Condensation, ECCV'96]
 - Handled multimodal posterior (modeled clutter & occlusion probability in OL). But tracked only on a 6-dim space of affine deformations.
- Approx linear observer + level set [JYS,CDC'04][NT,CDC'4]
 - Infinite dim contour rep. (level set method). But assumed posterior unimodal.
- Exemplars + PF [TB, ICCV'01][ZF, ICCV'03]
 - Choose from a set of exemplars of possible deformations

Existing Work: Problems

- Finite dim. rep. + linear observer: not handle changes in contour length/ topology, or multimodal posterior
- Condensation: handled multimodal posteriors, but PF tracked only on 6-dim space of affine deformation
- Approx. linear observers + level set method
 - Level set method: handled infinite dim deformation
 - Did not handle multimodal posteriors
 - Uncoupled observers for global & local deformation
- Exemplars: very restrictive

UNIVERSITY

Becoming the best.

Condensation fails

Non-affine deformation due to frequent viewpoint changes. Multimodal OL (due to low contrast)

A Possible Solution

- Use level set representation
- Replace the approx. linear observer by a particle filter
 - Can track nonlinear systems: coupled observer
 - Can handle multimodal posteriors
- But brute force PF on space of deforming contours (very large dim space) expensive

Key Idea 1: "LDSS" [Vaswani etal,ICASSP'06]

- Even though space of contour deformation is very large dim, in most cases,
 - At any given time, most of the contour deformation occurs in a small # of dims (effective basis) while the deformation in the rest of the dims (residual space) is small

– Different from dimension reduction (PCA) assumption

- Effective basis dim can change with time

Key Idea 2: "Unimodality" [Vaswani, ICASSP'07]

- If residual deformation small enough (its STP narrow enough) compared to distance b/w OL modes (contour modes in image), can show that the "residual posterior" is unimodal
 - "residual posterior": posterior of residual deformation conditioned on effective basis states
- This is ensured by choosing enough dims as part of effective basis

Key Idea 3: "IS-MT" [Vaswani, ICASSP'07]

- If residual deformation still smaller (its STP still narrower), the residual posterior is unimodal & also narrow
- If an importance sampling (IS) density is unimodal & narrow, any sample from it is close to its mode with high probability
 - A valid approx is to just use its mode as the sample: Mode Tracking (MT) approx of IS or IS-MT
 - Resulting algorithm is called PF-MT

Affine PF-MT

Affine PF-MT [Rathi et al, CVPR'05, PAMI'07]

- Contour represented using level sets
- Use Importance Sampling to track on the 6-dim space of affine deformations (effective basis)
- For each affine deformed contour particle, track the unique mode of the posterior of non-affine deformation (residual space): Mode Tracking (MT)
- Very efficient. Importance sampling dimension was only K=6: small N sufficed for given accuracy

Affine PF-MT algorithm

At each t, for each particle i, do

- Importance Sample
 - Sample on 6D space of affine deformations
 - Apply affine deformation, $A_t^{\ i}$ to each contour particle, $C_{t\text{-}1}$, to get $\hat{C}_t^{\ i}$
- Mode Track on residual (non-affine) deformation – Compute the single mode of $p(C_t | \hat{C}_t^i, Y_t)$ $m_t^i = \arg \min_C [E(C) + d^2(C, \hat{C}_t^i) / \Delta]$
 - Set $C_t^i = m_t^i$ (replacing IS by MT)
- Weight & Resample

UNIVERSITY

Becoming the best.

 $w_t^{~i} \propto w_{t\text{-}1}^{~i} ~\text{exp}[\text{-E}(C_t^{~i})] ~\text{exp}[\text{-}~d^2(C_t^{~i},~\hat{C}_t^{~i})/\Delta_r]$

Affine PF-MT assumes

- Assumes posterior of non-affine deformation (conditioned on affine def) is unimodal
 - Much weaker than assuming posterior unimodal
- This is satisfied whenever either
 - Small non-affine deformation per frame
 - OR
 - OL modes (contour modes in image) separated only by translation or scale or other affine deformation

Examples where assumption holds

- Images w/ non-overlapping clutter
- Images w/ cluttering object separated by scale
- Overlapping clutter/partial occlusions/low contrast (multiple non-affine OL modes), but small nonaffine deformation per frame
 - e.g. rigid body viewed under camera viewpoint changes in low contrast imagery
 - e.g. human body contour from a distance

Becoming the best.

Tracking multiple slow deforming objects from low contrast images

Posterior multimodal

Low contrast, viewpoint changes

• Deformation due to perspective camera effects (changing viewpoints), e.g. UAV tracking a plane

Condensation fails

Affine PF-MT works

Assumption does not hold...

- Assumption fails when large non-affine deformation per frame (fast deforming sequence) and OL multimodal as a function of non-affine deformation (low contrast images, overlapping clutter or partial occlusions)
- Results in multimodal residual posterior of nonaffine deformation

Overlapping Background clutter

Small non-affine deformation per frame: Affine PF-MT works

Large non-affine deformation per frame: Affine PF-MT fails

Large non-affine deformation per frame: Deform PF-MT works

Deform PF-MT

Deform PF-MT [Vaswani et al,CDC'06]

- For multimodal posterior of non-affine deformation, need an importance sampling step in PF that also samples on space of local deformations
 - This is a very large dim space: regular PF inefficient
- Again use PF-MT but with deformation at a subsampled set of K contour points (basis points) & translation as the effective basis
- K = # of basis points: fixed or time varying

Deform PF-MT Algorithm

At each t, for each particle i, do

- Importance Sampling (IS)
 - IS on translation & move contour (its level set fn)
 - IS deformation at K subsampled basis points
 - Interpolate to get deformation at all contour points
 - Obtain extension velocity & use it to move level set fn
- Mode Tracking (MT)
 - Compute unique mode of residual deformation posterior (assumed unimodal)
 - Set contour particle equal to this mode
- Weight & Resample

UNIVERSITY

Becoming the best.

Many Implementation Issues

- Imp. Sample + Level Set Rep of contour: CFL?
 - Interpolate & compute extension velocity efficiently
 - Using multiple iterations to deform a contour: slow
- How to parameterize contour deformation?
 - As as a function of arclength: Expensive to implement using level sets, Cannot handle topology change
 - As function of radial/tangent angle: Fails if 2 contour points far along arclength are close along angle
- Estimate/Change effective basis dimension?
 Use spatial freq response of deformation "signal"

Deform PF-MT assumes

- Residual deformation variance small enough compared to distance between OL modes, s.t.
 - Its posterior is unimodal and
 - Its posterior is narrow enough to justify IS-MT
- May need to change K over time to satisfy assumptions

Low contrast images, large def per frame: Brain MRI (Tumor, Ventricle)

• Multiple nearby modes due to low contrast

(b) Attempt to track the right ventricle (black region in the center) using Algorithm 2. Notice the low contrast imagery.

Outlier: multiple nearby modes

- Every even frame: outlier frame
- Multiple nearby modes separated by non-affine deformation

Affine PF-MT fails

Deform PF-MT works

Relation to Other Work

- PF-MT
 - Extension of PF-Doucet [Doucet'98]
 - Approx to Rao-Blackwellized PF [Chen-Liu'00]
- **PF for tracking Heart LV** [Sun et al, MICCAI'04]
 - PF-MT with PCA effective basis + retaining MAP particle
- Approx linear observer + level sets [JYS'04]
 PF-MT with zero dimensional effective basis
- Condensation [IB'96]
 - PF-MT with zero dimensional residual space
- Stochastic Active Contours
 - Annealing for segmentation

PF Smoother

- Implemented tracking, even though sequential segmentation is often an offline problem
- Smoother: gives a non-causal estimate, better if algorithm is accurate enough
 - Use [Godsill et al,JASA'04] to approx $p(X_{1:T}|Y_{1:T})$. X_t = contour, deformation velocity
 - Uses tracker output as starting point.

System Identification

System Id Problem

 Contour deformation sequence: time sequence of periodic spatial "signals"
 – "signal": spatially stationary or p.w. stationary

- Given a deformation sequence
 - Estimate effective dimension (K)
 - Learn temporal dynamics

Estimating Effective Dimension

- Assume $v_t = C_t C_{t-1}$ temporally stationary
- Eigen effective basis
 - Problems: data dependent basis, need fixed dim of v_t
- Fourier effective basis
 - Periodic & spatially stationary: PSD = eigenvalue
 - Compute PSD of v_t . Choose f_{min} s.t. sum of residual PSD small enough
 - Nyquist: $\alpha_s = 1/(2f_{min})$, K = $\lceil L / \alpha_s \rceil = \lceil L . 2f_{min} \rceil$

Computing PSD & K: Simulated Seq

PSD computation steps

For 0.05% residual deformation, $f_{min} = 0.0332$ Hz. M = L = 178, K = $\lceil M. 2f_{min} \rceil = 12$

IOWA STATE UNIVERSITY Becoming the best.

Background object: spatially stationary 10 frame PSD estimate

PSD using v_3 to v_{12} stretched & resampled to M = 256 points. For 5% residual deformation, $f_{min} = 0.012$ Hz, K = $[M.2f_{min}] = 6$

IOWA STATE UNIVERSITY Becoming the best.

Temporal Dynamics

- System model in Fourier domain
 - AR model for time series of FT coefficients
 - Periodic & spatially stationary: FT = KLT
 - FT coefficients uncorrelated: separate AR model for each coefficient
- Get equivalent model in the space domain

Applications of Spatial PSD

- Estimate K offline or while tracking/smoothing
- Recognition & Change detection
 - Recognition by model comparison, e.g. disease progression models (schizophrenia, tumor shape change)
 - Changes in a sequence, by detecting change in K, in entire PSD or in temporal dynamics, e.g. detect abnormal changes in heart beat patterns or in brain shape deformation during surgery

Tumor contour sequence

Summary & Ongoing Work

• Affine PF-MT

Becoming the best.

- Use when small non-affine deformation per frame
- Deform PF-MT & Smoother: Fixed or changing K
 - Human body contour tracking
 - Heart LV, Brain ROIs, Lung ROIs
- System Id + Recognition or Change Detection
 - Models for disease progression, e.g. schizophrenia
 - Heartbeat patterns: identifying abnormality
 - Abnormal brain shape deformations during surgery?

Open Issues

- PF smoother for offline sequence segmentation
- Extensions to surface tracking
- Observation models, tracking intensity variations
- Level Set Rep. + Imp Sampling: speedup, CFL
- System id
 - Parametrizing deformation: arclength or angle?
 - Warping of spatial axis (change in arclength) over time
 - Spatially or temporally nonstationary deformation

Collaborators

Affine & Deform PF-MT

Yogesh Rathi, Anthony Yezzi & Allen
 Tannenbaum at Georgia Tech

System Identification

 Ongoing work with my student, Wei Lu

Other applications of PF-MT

- Spatially varying illumination change of moving objects
 - Moving into lighted room, face tracking [Kale et al, ICASSP'07]
 - Vehicle tracking through changing illuminations
- Change in spatially varying physical quantities using sensor networks
 - Tracking temperature change [Vaswani, ICASSP'07]
- Deformations of shapes of landmark points using the nonstationary shape activity model

UNIVERSITY

Becoming the best.

Illumination Tracking: PF-MT [Kale et al'07]

• State = Motion (3 dim) + Illumination (7 dim)

- PF on motion (3 dim) & MT on illumination
 - Illumination change very slow
 - OL usually unimodal as a function of illumination
 - If OL multimodal (e.g. occlusions), modes usually far apart compared to illumination change variance

Face tracking results

Error from ground truth

Comparing with 10 dim regular PFs (original, Auxiliary) & with PF- K dim (not track illumination at all)

Sensor nets: Temperature tracking

- Dim(X_t) =10
- K = 1, i.e. Δ_s =10, Δ_r =1, & OL multimodal
- N = 50 particles
- Plotting RMSE from ground truth
- PF-MT better than all full PFs (PF-EIS, PF-D) & PF-K dim (dim reduced PF)

wa State University

Becoming the best.

Landmark Shape Tracking

- Tracking deformations of shapes of landmark points using nonstationary SA (NSSA) model
- NSSA better models larger & nonstationary shape changes than existing methods (ASMs)
 - Existing ASM work uses piecewise ASMs to track long sequences, e.g separate ASM for systolic & diastolic heart motion, or hierarchical ASMs
 - Cannot model transitions b/w pieces very well
 - Cannot detect change while tracking

Landmark Shape Tracking

Landmark Shape Tracking

- Compared modeling error of our method (NSSA) with Active Shape Models for CMU MOCAP dataset (human action sequences)
- For all sequences, modeling error of our method much smaller than ASM

Modeling Error Comparison

- Defined 10 dimensional PCA space for ASM and for shape velocity (our method)
- Defined AR model for ASM & for shape velocity. Total modeling error

Crawl: ASM: 0.00870, Shape Velocity: 0.00030

Sit: ASM: 0.00760, Shape Velocity: 0.00005

Interview: ASM: 0.00450, Shape Velocity: 0.00020

