
An Introduction to Probabilistic
Graphical Models

Reading:

• Chapters 17 and 18 in Wasserman.
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Directed Graphs

We wish to identify simple structure in large and complex
probabilistic models arising e.g. in sensor networks. Graphical
models are a suitable tool for this purpose.

Definition 1. A directed graph consists of nodes (or vertices)
X,Y, . . . and arrows (or edges) connecting some of the nodes.
More formally, we define a set of vertices V and an edge set E
of ordered pairs of vertices.

Definition 2. Consider random variables X,Y , and Z. X
and Y are conditionally independent given Z, written

X ⊥⊥ Y |Z

if
fX,Y | Z(x, y | z) = fX | Z(x | z) fY | Z(y | z)

for all x, y, and z.
In words: Knowing Z renders Y irrelevant for predicting X.
Knowing Z renders X irrelevant for predicting Y .
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Lemma. Clearly,

X ⊥⊥ Y |Z

if and only if

fX | Y ,Z(x | y, z) = fX | Z(x | z).

Theorem 1. The following implications hold:

X ⊥⊥ Y |Z =⇒ Y ⊥⊥ X |Z (1)

Y ⊥⊥ X |Z =⇒ Y ⊥⊥ h(X) |Z (2)

Y ⊥⊥ X |Z =⇒ Y ⊥⊥ X | {Z, h(X)} (3)

Y ⊥⊥ X |Z and W ⊥⊥ X | {Y, Z} =⇒ {Y,W} ⊥⊥ X |Z (4)

Y ⊥⊥ X |Z and Z ⊥⊥ X |Y =⇒ {Y, Z} ⊥⊥ X. (5)

[Property (5) requires that all its events have positive
probability.]

We show (2) assuming the discrete-distribution case, for
simplicity. We know

pX,Y | Z(x, y | z) = pX | Z(x | z) · pY | Z(y | z)
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and, therefore, for U = h(X),

pU,Y | Z(u, y | z) =
∑

ξ:h(ξ)=u

pX,Y | Z(ξ, y | z)

=
∑

ξ:h(ξ)=u

pX | Z(ξ | z)︸ ︷︷ ︸
pU |Z(u | z)

·pY | Z(y | z)

i.e.
Y ⊥⊥ U︸︷︷︸

h(X)

|Z.

Proof of (3):
Y ⊥⊥ X |Z

means
fY |X,Z(y |x, z) = fY | Z(y | z)

which further implies

fY | Z(y | z) = fY |X,Z(y |x, z) = fY |X,h(X),Z(y |x, h(x), z)

i.e.
Y ⊥⊥ X | {h(X), Z}.

Possibly a more natural statement than (3) is

Y ⊥⊥ X |Z =⇒ Y ⊥⊥ {X,h(X)} |Z

which is equivalent to (3).
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Definition 3. If an arrow (pointing in either direction)
connects nodes X and Y , we call these nodes adjacent.

Definition 4. If an arrow points from X to Y , we say that
X is a parent of Y and Y is a child of X.
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Definition 5. A set of arrows beginning at X and ending at
Y is called a directed path between X and Y .

Example:

In this example (in the above figure), we have a directed path
from X to W and a directed path from Y to W .

Definition 6. A sequence of adjacent vertices starting at X
and ending at Y without reference to the direction of the
arrows is an undirected path.

Definition 7. If there is a directed path from X to Y (or if
X = Y ), we say that X is an ancestor of Y and that Y is a
descendant of X.
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• X and Z are adjacent,

• X and Y are not adjacent,

• X is a parent of Z,

• X is an ancestor of W ,

• Z is a child of X,

• W is a descendant of X,

• there is a directed path from X to W ,

• there is an undirected path from X to W

• there is an undirected path from X to Y .
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Definition 8. A sequence of vertices constituting an
undirected path X to Y has a collider at Z if there are
two arrows along the path pointing to Z.

Definition 9. When vertices with arrows pointing into a
collider at Z are not adjacent, then we say that the collider is
unshielded.

An undirected path X to Y has a collider at Z. Z is an
unshielded collider on the undirected path X − Z − Y .

On the undirected path X − Z −W , Z is not a collider!

Definition 10. A directed path that starts and ends at the
same vertex is called a cycle. A directed graph is called acyclic
if it has no cycles.

Abbreviation: DAG ≡ directed acyclic graph.
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Denote by G a DAG. From now on, as far as directed graphs
are concerned, we only deal with DAGs.

Definition 11. Consider a DAG G with vertices

X = [X1, X2, . . . , XK]T

where “T” denotes a transpose. Then, a distribution F for X
is Markov to G or G represents F if and only if

pX(x) =
K∏
i=1

pXi |Xpai
(xi |xpai)

where pai ≡ set of parents of node i in G. The set of
distributions F that are represented by G is denoted by M(G).

Notational Comments: Here, we interchangeably denote a
node either by its index i or by its random variable Xi. Also, we
adopt the following notation: X· = {Xj | j ∈ ·}. For example,
Xpai = {Xj | j ∈ pai}.
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Example:

G

X
Z

Y

W

What does it mean to say that G in the above figure represents
a joint distribution for [X,Y, Z,W ]T?

Answer:

fX,Y ,Z,W(x, y, z, w) = pX(x)·pZ(z)·pY |X,Z(y |x, z)·pW | Y (w | y).
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Example: Suppose that our measurement vector X = x given
µ, σ2 follows

fX |µ,Σ2(x |µ, σ2)

and that we choose independent priors for µ and σ2:

fµ,Σ2(µ, σ2) = fµ(µ) fΣ2(σ2).

µ σ2

X

The joint pdf of X, µ, and Σ2 is

fX,µ,Σ2(x, µ, σ2) = fµ(µ) fΣ2(σ2) fX |µ,Σ2(x |µ, σ2).
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In general, if a DAG G represents F , we can say that

fXi | (X\Xi)(xi | (x\xi)) ∝ terms in f(x) containing xi

∝
“prior”︷ ︸︸ ︷

fXi |Xpai
(xi |xpai) ·

∏
j, xi∈xpaj

fXj |Xpaj
(xj |xpaj)︸ ︷︷ ︸

“likelihood”

where (x\xi) is the collection of all vertices except xi (read
“x remove xi”). The first term is the pdf (pmf) of xi given
its parents and the second is the product of pdfs (pmfs) in
which xi is a parent.
Hence, the nodes that are involved in the above full
conditional pdf (pmf) are: Xi, its parents, children, and
co-parents, where co-parents are defined as nodes that share
a child (at least one, could be more).

Theorem 2. A distribution is represented by a DAG G if and
only if, for every Xi,

Xi ⊥⊥ X̃i |Xpai Markov condition

where X̃i stands for all other entries of X except parents and
descendants of Xi.

Proof. (A Rough Proof.) Adopt a topological ordering of the
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nodes such that pai ⊂ {1, 2, . . . , i − 1}, which we can always
do on a DAG. Here, we focus on

X̃i = {Xk | k ∈ {1, 2, . . . , i− 1}\pai}.

(This X̃i is not necessarily the same as the X̃i in the statement

of the theorem, but we can use this definition of X̃i without
loss of generality, due to the fact that we can always find node
ordering so that this X̃i is the same as that in the statement
of Theorem 2).

Suppose first that G represents F , implying

p(x1, x2, . . . , xi) =
∑

xi+1,...,xK

p(x1, x2, . . . , xK)

= p(x1) p(x2 |xpa2
) . . . p(xi |xpai).

We wish to prove that Xi ⊥⊥ X̃i |Xpai or, equivalently, that

p(xi | x̃i, xpai)︸ ︷︷ ︸
p(xi | x1,...,xi−1)

= p(xi |xpai).

Clearly
p(x1) = p(x1 |xpa1

) = p(x1 | ∅)
since X1 has no parents, and, consequently,

p(x1 | x̃1, xpa1
) = p(x1 |xpa1

).
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For X1 and X2, we have

p(x1, x2)
chain rule= p(x2 |x1) · p(x1) = p(x2 |xpa2

) · p(x1)

implying
p(x2 |x1) = p(x2 |xpa2

).
Assume now that

p(xi |x1, . . . , xi−1) = p(xi |xpai).

for all i ≤ j and consider j + 1:

p(x1, . . . , xj−1, xj, xj+1) = p(x1) p(x2 |x1) · · · p(xj+1 |x1, . . . , xj)
ind. hyp.

= p(x1) p(x2 |xpa2
) · · · p(xj |xpaj) p(xj+1 |x1, . . . , xj)

G represents F
= p(x1) p(x2 |xpa2

) · · · p(xj |xpaj) p(xj+1 |xpaj+1
)

which implies

p(xj+1 |x1, . . . , xj) = p(xj+1 |xpaj+1
)

thus completing the induction proof.

The other direction is easy: we start from

p(xi | x̃i, xpai)︸ ︷︷ ︸
p(xi | x1,...,xi−1)

= p(xi |xpai)
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and the chain rule immediately gives us

p(x1, . . . , xK) = p(x1) p(x2 |x1)︸ ︷︷ ︸
p(x2 | xpa2)

· · · p(xK |x1, . . . , xK−1)︸ ︷︷ ︸
p(xK | xpaK

)

which directly implies that G represents F . 2

(Back to) Example:

G

X
Z

Y

W

What about conditional independence between X and Z? X
has no parents, so conditioning is on nothing. Hence, if G
represents F , Theorem 2 tells us that

X ⊥⊥ Z.
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We can also conclude that

W ⊥⊥ {X,Z} | Y.

Here, the conditioning is on Y because Y is the parent of W .

Question: In addition to the results of Theorem 2, what other
conditional independence relationships follow from the fact that
F is represented by DAG G?

Example: Suppose that this graph represents a probability
distribution F :

X2X1

X4

X5

X3

What do we know about F that is represented by this graph?
The Markov condition in Theorem 2 implies the following
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(condition on parents, exclude parents and descendants):

X1 ⊥⊥ X2 (X1 and X2 have no parents)

X2 ⊥⊥ {X1, X4}
X3 ⊥⊥ X4 | {X1, X2}
X4 ⊥⊥ {X2, X3} | X1

X5 ⊥⊥ {X1, X2} | {X3, X4}.

Furthermore, Theorem 2 tells us that the above relationships
are equivalent to the Markov property in Definition 11. But,
they do not exhaust all that can be said; for example,

X2 ⊥⊥ {X4, X5} | {X1, X3}.

This is true, but does not immediately follow from Theorem 2.

To easily identify independence relationships beyond the
definition of “G represents F” (Definition 11) or Theorem
2, we need new results.

Definition 12. Let i and j be distinct vertices of a DAG and
Q be a set of vertices not containing i or j. Then, X and
Y are d-connected given Q if there is an undirected path P
between i and j such that

(i) every collider in P has a descendant in Q and
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(ii) no other vertex [besides possibly those mentioned in (i)]
on P is in Q.

If i and j are not d-connected given Q, they are d-separated
given Q.

Abbreviation: d-separation ≡ directed separation etc.

Definition 13. If A,B, and Q are non-overlapping sets of
vertices in a DAG and A and B are not empty, then

A and B are d-separated given Q

if, for every i ∈ A and j ∈ B, i and j are d-separated given Q.
If A and B are not d-separated given Q, they are d-connected
given Q.

Theorem 3. Let A,B, and C be disjoint sets in a DAG
representing F . Then

XA ⊥⊥ XB | XC

if and only if A and B are d-separated by C.
(Recall that X· = {Xi | i ∈ ·}.)
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Bayes-Ball Approach to Determining
d-Separation Between Node Sets A and B

1. First, mark (e.g. shade) the nodes C that are conditioned
on.

2. Start the ball within the nodes in set A and bounce it around
the graph according to the conditional-independence rules
stated below.

3. Finally, evaluate the results:

• if the ball can reach a node in B, then A and B are
d-connected,

• if the ball cannot reach B, then the nodes in A and B
are d-separated.

Bayes-ball rules. Here are the rules that govern the bouncing
of the ball:
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In words: When moving from X to Z (or Z to X) in the
above canonical graphs,

• when Y is not a collider, the ball passes through Y if we do
not condition on Y ;

• when Y is not a collider, the ball bounces off of Y if we
condition on Y ;

• when X and Z collide at Y , the ball bounces off of Y if we
do not condition on Y ;

• when X and Z collide at Y , the ball passes through Y if we
condition on Y .

Finally, conditioning on the descendant of a collider has the
same effect as conditioning on the collider. For example,
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Suppose that X corresponds to burglary, Z to earthquake, Y
to an event where an alarm is activated in your building, W
to friend’s report (e.g. friend hears the alarm and calls to tell
you).

In general, the chances of a burglary or an earthquake are
independent. But, if an alarm goes off in your building, then
your suspicions of the cause (either burglary or earthquake) are
highly dependent upon conditioning on Y . Suppose now that
you do not hear the alarm, but a friend tells you that the alarm
went off. In this case, we condition on W and, again, the
events of burglary or an earthquake are no longer independent
(upon conditioning on Y ).

Here is an amusing example:

aliens
watch

”late” (did not show up when you expected)
G
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Your friend appears to be late for a meeting with you. There
are two explanations:

• she was abducted by aliens or

• you forgot to set your watch ahead one hour for daylight
savings time.

The variables “aliens” and “watch” are blocked by a collider,
which implies that they are independent. This is a reasonable
model: before we know anything about your friend not showing
up when you expected, we would expect these variables to be
independent. But, upon learning that she did not show up,
“aliens” and “watch” become highly dependent.

Example: Suppose that our measurement vector X = x given
µ, σ2 follows

fX |µ,Σ2(x |µ, σ2)
and that we choose independent priors for µ and σ2:

fµ,Σ2(µ, σ2) = fµ(µ) fΣ2(σ2).

µ σ2

X
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Here, µ and σ2 are d-connected given the observations X and,
therefore, are not conditionally independent given X in general.

Example:

X7

X1

X4

X2

X5

X3

X6

1 and 3 are d-separated (given the empty set ∅)

1 and 3 are d-connected given {6, 7}.

1 and 3 are d-separated given {6, 7, 2}.
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(Back to) an Earlier Example: Recall that we wish to prove

X2 ⊥⊥ {X4, X5} | {X1, X3}

which we stated on p. 17.

C

X1

X4

X5

X3

X2

A

B

A = {4, 5}, B = {2}, C = {1, 3}.

Note that

• 2 and 4 are d-separated given C and

• 2 and 5 are d-separated given C

implying that A andB are d-separated given C. Then, Theorem
3 implies that {X4, X5} ⊥⊥ X2 | {X1, X3}, which completes the
proof.
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Example: Simple Markov chain graph.

Are the following conditional independence relationships true?

X1 ⊥⊥ X3 |X2 (6)

X1 ⊥⊥ X5 | {X3, X4}. (7)

To determine if (6) is true, we shade node X2. This blocks
balls traveling from X1 to X3 and proves that (6) is valid.

Similarly, after shading nodes X3 and X4, we find that no ball
can travel between X1 and X5 and hence (7) holds.
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Example:

Are the following conditional independence relationships true?

X4 ⊥⊥ {X1, X3} |X2 (8)

X1 ⊥⊥ X6 | {X2, X3} (9)

X2 ⊥⊥ X3 | {X1, X6} (10)

To prove (8), we must show that X4 ⊥⊥ X1 |X2 and X4 ⊥⊥
X3 |X2. Can we find a path for the Bayes ball from X4 to X1

once X2 is shaded? Can we find a path for the Bayes ball from
X4 to X3 once X2 is shaded? No, so (8) is true!

Can we find a path for the Bayes ball from X1 to X6 once X2

and X3 are shaded? No, so (9) is true!
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Can we find a path for the Bayes ball from X2 to X3 once X1

and X6 are shaded?

Yes, so (10) is false!
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Markov Equivalent Graphs

Graphs that look different may actually correspond to the same
independence relations.

Definition 14. (A few definitions) Consider a DAG G. We
denote by I(G) all the independence statements implied by
G.

Now, two DAGs G1 and G2 defined over the same random
variables V are Markov equivalent if

I(G1) = I(G2).

Given a DAG G, let skeleton(G) denote the undirected graph
obtained by replacing the arrows with undirected edges.

Theorem 4. Two DAGs G1 and G2 are Markov equivalent if
and only if

(i) skeleton(G2) = skeleton(G2) and

(ii) G1 and G2 have the same unshielded colliders.
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Example: The following three DAGs are Markov equivalent:

Z

X Y Z

X Y Z

X Y

But this DAG:

X Y Z

is not Markov equivalent to the above three graphs, because
condition (ii) in Theorem 4 is not satisfied.

EE 527, Detection and Estimation Theory, An Introduction to Probabilistic Graphical Models 29



Probability and Undirected Graphs

Definition 15. An undirected graph G = (V ,E) has a finite
set of vertices (nodes) V and a set of edges E that consists
of pairs of vertices.

Definition 16. A subset U ⊂ V with all edges connecting
the vertices in U is called a subgraph of G.

Definition 17. Two vertices X and Y are adjacent if there is
an edge between them, and this is written

X ∼ Y.

Definition 18. A graph is called complete if there is an edge
between every pair of vertices.

Definition 19. A sequence of vertices X0, X1, . . . , Xn is
called a path if

Xi−1 ∼ Xi for each i.
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Example:

X

Y

Z
G

V = {X,Y, Z} and E = {(X,Y ), (Y, Z)}. In undirected
graphs, there is no notion of order when defining the edges.

Definition 20. If A,B, and C are disjoint subsets of V , we
say that C separates A and B provided that every path from
an X in A to a Y in B contains a vertex in C.
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Example:

Y

W X

Z

{Y,W} and {Z} are separated by {X}.

{W} and {Z} are separated by {X}.

Definition 21. (Pairwise Markov) For F a joint distribution
of (X1, X2, . . . , XK), we associate a pairwise-Markov graph G
with F if the following holds:

do not connect Xi and Xj with an edge if and only if

Xi ⊥⊥ Xj |Xrest

where “rest” refers to all other nodes besides i and j.

Theorem 5. Let G be a pairwise Markov graph for F . Let
A,B, and C be non-overlapping subsets of V such that C
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separates A and B. Then

XA ⊥⊥ XB |XC

where X· = {Xi | i ∈ ·}.

Here is a short statement of the above theorem:

XA ⊥⊥ XB |XC ⇐⇒ C separates A and B.

Remarks:

• If A and B are not connected, we may regard them as
“being separated by the empty set.” Hence, Theorem 5
implies that XA ⊥⊥ XB.

• Theorem 5 defines the “Bayes-ball approach” for undirected
graphs. Here, it is straightforward to establish conditional
independence.

Example: Suppose that we have a distribution F for
(X1, X2, X3, X4, X5) with associated pairwise Markov graph:

X2
X1

X5

X3 X4
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Then, Theorem 5 implies that

(X1, X2, X5) ⊥⊥ (X3, X4) (conditional on nothing)

X2 ⊥⊥ X5 | X1.

Definition 22. (Global Markov) For F a joint distribution of
(X1, X2, . . . , XK) and G an undirected graph, we say that F
is globally G Markov if and only if, for non-overlapping sets
A,B, and C,

XA ⊥⊥ XB |XC ⇐⇒ C separates A and B.

The pairwise and global Markov properties are equivalent, i.e.

Theorem 6. F is globally G Markov ⇐⇒ G is a pairwise
Markov graph associated with F .

Example:

X Y Z W

X ⊥⊥ Z | Y
X ⊥⊥ W | Z
X ⊥⊥ W | Y
X ⊥⊥ W | (Z, Y ).
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Question

What can we say about the pdf/pmf of X =
[X1, X2, . . . , XK]T based on an undirected pairwise Markov
graph?

Definition 23. A clique is a set of vertices on a graph that
are all adjacent to each other.

Definition 24. A clique is maximal if it is not possible to add
another vertex to it and still have a clique.

Definition 25. Any positive function might be called a
potential.

Result: Under certain conditions (positivity), a pdf/pmf p for
X = [X1, X2, . . . , XK]T is globally G Markov if and only if
there exist potentials ψC(xC) such that

p(x) ∝
∏
C∈C

ψC(xC)

where C is the set of maximal cliques. Of course, it does
not cost us anything to add more cliques (in addition to the
maximal ones), so we can write

p(x) ∝
∏
C∈C′

ψC(xC)
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where C′ is the set of all cliques, say.

(Back to) Example:

X

Y

Z
G

The maximal cliques in this example are C1 = {X,Y } and
C2 = {Y, Z}. Hence, under certain conditions, F is globally G
Markov if and only if

p(x, y, z) ∝ ψ1(x, y) · ψ2(y, z)

for some positive functions ψ1 and ψ2.

Suppose that we know that p(x, y, z) factorizes as

p(x, y, z) ∝ ψ1(x, y) · ψ2(y, z).

We can then draw the above graph G to represent this
factorization and conclude by separation properties (say) that
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X ⊥⊥ Z |Y . We can do this analytically as well:

p(x | y, z) ∝ p(x, y, z) ∝ ψ1(x, y) · ψ2(y, z) ∝ ψ1(x, y)

implying that

p(x | y, z) = p(x | y) ⇐⇒ X ⊥⊥ Z |Y.

Example:

X6X1

X2

X3

X4

X5

Here are the maximal cliques: {X1, X2}, {X1, X3}, {X2, X5, X6}, {X2, X4},
{X3, X5}. Hence, under certain conditions, F is globally G
Markov if and only if

p(x) ∝ ψ12(x1, x2) · ψ13(x1, x3) · ψ24(x2, x4) · ψ35(x3, x5)

·ψ256(x2, x5, x6).
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Factorization of the Multivariate
Gaussian Pdf

Consider a multivariate Gaussian random vector x distributed
as Nn(µ,Σ ) with Σ positive definite:

p(x;µ,Σ ) = (2π)−n/2 · |K|1/2 · exp
[
−1

2 (x− µ)TK(x− µ)
]

where K = Σ−1 is the precision matrix of the distribution.

This Gaussian density factorizes with respect to G if and only if

i � j =⇒ Ki,j = 0

for i, j = 1, 2, . . . , n. In words: the precision matrix has zero
entries for non-adjacent vertices.
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Summary

For a Markov graph G (directed or undirected), the following
result holds: if node sets A and B are separated given C, then

XA ⊥⊥ XB |XC.

But, what can we say about conditional dependence of XA

and XB if A and B are connected given C? Nothing. In
general

A and B are connected given C ; XA ⊥/⊥ XB |XC.

For example, if this DAG

represents a probability distribution, then

p(x1, x2) = p(x1) p(x2 |x1)

but we have complete freedom to choose p(x2 |x1). If we
choose p(x2 |x1) = p(x2), then X1 and X2 are independent!
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Moralization: Conversion of DAGs to
Undirected Graphs

The moral graph Gm of a DAG G is obtained by adding
undirected edges between unmarried parents (i.e. joining or
“marrying” parents of unshielded colliders) and subsequently
dropping directions, as in the example below:

Proposition. If F factorizes with respect to G (i.e. G
represents F ), then it factorizes with respect to its moral
graph Gm.

This is seen directly from the factorization:

pX(x) =
∏
i∈V

pXi |Xpai
(xi |xpai) ∝

∏
i∈V

ψ{i}∪pai
(x{i}∪pai

)

since {i} ∪ pai are all cliques in Gm.
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A Bit About Factor Graphs
(which are Popular in Coding Theory)

Motivation: So far, our focus has been on conditional-
independence statements that are represented by a graph G.
What if we wish to represent pdf/pmf factorization? Consider
the following graph:

At the first glance, we see a 3-clique and we can only give
the following (totally noninformative) representation of the
corresponding distribution:

p(x) ∝ ψ123(x1, x2, x3) Model (a) (11)

but, suppose that we know that there exist only pairwise
interactions; then a special case of (11) which takes this
knowledge into account is:

p(x) ∝ ψ12(x1, x2) · ψ23(x2, x3) · ψ13(x1, x3) Model (b)
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but its undirected-graph representation is the same 3-clique!

Add a new factor node for every product term (factor)
in the pdf/pmf representations. Connect the factor boxes with
the variables that they “touch.” (Hence, in a factor graph,
edges exist only between the variable nodes and factor nodes.)

Here are factor graphs:

for model (a)

X3

X1
X2
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and for model (b)

φ23

X1
X2

X3

ψ13

ψ12

A bit more rigorously, we can say that the ingredients of factor
graphs are

• V = {1, 2, . . . , N} ≡ set of vertices depicting random
variables;

• Ψ = {a, b, c, . . .} ≡ index sets of factors;

• E ≡ set of edges

describing the factorization

p(x) ∝
∏
a∈Ψ

ψa(xa).

(Recall that Xa = {Xi | i ∈ a}.)

Any directed or undirected graph can be converted into a
factor graph.

EE 527, Detection and Estimation Theory, An Introduction to Probabilistic Graphical Models 43



Example: An undirected graphical model:

8

1

2

3

4

5

6

7

and its (possible) factor graph:

8

1

2

3

4

5

6

7
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Example: A directed graphical model:

Y6

X1
X2 X3 X4 X5 X6

U1
U2

U3 U4 U5

Y1
Y2 Y3

Y4 Y5

and its factor graph:

Y6

X1
X2 X3 X4 X5 X6

U1
U2

U3 U4 U5

Y1
Y2 Y3

Y4 Y5

Belief-propagation algorithms can be derived for factor graphs.
This topic will not be discussed here, but understanding the
basic belief-propagation algorithm for undirected tree graphs
is key to understanding its version for factor trees (i.e. factor
graphs that have no loops). Unlike the basic belief-propagation
algorithm (covered later in this class), its version for factor
trees has two types of messages: messages from variable to
factor nodes and messages from factor nodes to variable nodes.
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Example: Application of Graphical
Models to Coding Theory

An example, roughly taken from

(Wainwright & Jordan 03) M.J. Wainwright and M.I.
Jordan, “Graphical models, exponential families, and variational
inference,” Report no. 649, Department of Statistics, University
of California, Berkeley, CA, 2003.

Consider this DAG representation of a small parity-check code:

X6

z134 = 0

z256 = 0

z135 = 0

z246 = 0

X1

X2

X3

X4

x5

where Xi ∈ {0, 1}, i = 1, 2, . . . , 6.
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The code is defined by setting each parity variable
zs,t,u, (s, t, u) ∈ {{1, 3, 4}, {1, 3, 5}, {2, 5, 6}, {2, 4, 6}} to
zero. Hence, the variables zs,t,u(s, t, u) ∈
{{1, 3, 4}, {1, 3, 5}, {2, 5, 6}, {2, 4, 6}} are “observed,” which
is why they are shaded. Also, the pmf p(z134 |x1, x3, x4) (say)
is simply the pmf table describing the x1 ⊕ x3 ⊕ x4 operation.
Now, suppose that the random variables X1, X2, . . . , X6 are
hidden and that we observe only their noisy realizations
y1, y2, . . . , y6:

y6

z134

z256

z135

z246

X1

X2

X3

X4

X5

X6

y1

y2

y3

y4

y5

Then, our decoding problem can be posed as determining the
marginal posterior pdfs

p(xi | y1, y2, y3, y4, y5, y6, z134 = 0, z256 = 0, z135 = 0, z246 = 0)

for i = 1, 2, . . . , 6.
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