Jointly Gaussian random variables, MMSE and linear MMSE estimation

Namrata Vaswani, Iowa State University

April 8, 2012

Most notes are based on Chapter IV-B and Chapter V of Poor's Introduction to Signal Detection and Estimation book [1].

1 Jointly Gaussian random variables

1. The $n \times 1$ random vector X is jointly Gaussian if and only if the scalar

$$
u^{T} X
$$

is Gaussian distributed for all $n \times 1$ vectors u
2. The random vector X is jointly Gaussian if and only if its characteristic function, $C_{X}(u):=\mathbb{E}\left[e^{i u^{T} X}\right]$ can be written as

$$
C_{X}(u)=e^{i u^{T} \mu} e^{-u^{T} \Sigma u / 2}
$$

where $\mu=\mathbb{E}[X]$ and $\Sigma=\operatorname{cov}(X)$.

- Proof: X is j G implies that $V=u^{T} X$ is G with mean $u^{T} \mu$ and variance $u^{T} \Sigma u$. Thus its characteristic function, $C_{V}(t)=e^{i t u^{T} \mu} e^{-t^{2} u^{T} \Sigma u / 2}$. But $C_{V}(t)=\mathbb{E}\left[e^{i t V}\right]=$ $\mathbb{E}\left[e^{i t u^{T} X}\right]$. If we set $t=1$, then this is $\mathbb{E}\left[e^{i u^{T} X}\right]$ which is equal to $C_{X}(u)$. Thus, $C_{X}(u)=C_{V}(1)=e^{i u^{T} \mu} e^{-u^{T} \Sigma u / 2}$.
- Proof (other side): we are given that the charac function of $X, C_{X}(u)=\mathbb{E}\left[e^{i u^{T} X}\right]=$ $e^{i u^{T} \mu} e^{-u^{T} \Sigma u / 2}$. Consider $V=u^{T} X$. Thus, $C_{V}(t)=\mathbb{E}\left[e^{i t V}\right]=C_{X}(t u)=e^{i u^{T} \mu} e^{-t^{2} u^{T} \Sigma u / 2}$. Also, $\mathbb{E}[V]=u^{T} \mu, \operatorname{var}(V)=u^{T} \Sigma u$. Thus V is G.

3. The random vector X is jointly Gaussian if and only if its joint pdf can be written as

$$
\begin{equation*}
f_{X}(x)=\frac{1}{(\sqrt{2 \pi})^{n} \operatorname{det}(\Sigma)} e^{-(X-\mu)^{T} \Sigma^{-1}(X-\mu) / 2} \tag{1}
\end{equation*}
$$

- Proof: follows by computing the characteristic function from the pdf and vice versa

4. The random vector X is $\mathrm{j} G$ if and only if it can be written as an affine function of i.i.d. standard Gaussian r.v's.

- Proof: if $X=A Z+a$ where $Z \sim \mathcal{N}(0, I)$, then easy to show that X has joint pdf given by (1) and thus it is j G.
- Proof (other side): if X is j G , then it has the joint pdf given by (1). Then can show that $Z:=\Sigma^{-1 / 2}(X-\mu) \sim \mathcal{N}(0, I)$, i.e. it is i.i.d. standard G. Thus, $X=\Sigma^{1 / 2} Z+\mu$, i.e. it is an affine function of Z.

5. The random vector X is $\mathrm{j} G$ if and only if it can be written as an affine function of jointly Gaussian r.v's.

- Proof: Suppose X is an affine function of a j G r.v. Y, i.e. $X=B Y+b$. Since Y is j G, by 4 , it can be written as $Y=A Z+a$ where $Z \sim \mathcal{N}(0, I)$ (i.i.d. standard Gaussian). Thus, $X=B A Z+(B a+b)$, i.e. it is an affine function of Z, and thus, by $4, X$ is j G.
- Proof (other side): X is j G. So by 4 , it can be written as $X=B Z+b$. But $Z \sim \mathcal{N}(0, I)$ i.e. Z is a j G r.v.

Properties

1. If X_{1}, X_{2} are j G , then the conditional distribution of X_{1} given X_{2} is also j G
2. If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements of their covariance matrix are zero), then they are also mutually independent.
3. Any subset of X is also j G.

2 Bayesian Minimum Mean Squared Error (MMSE) estimation

1. X is the unknown, Y is the observation. We assume that X itself is a random variable with a prior distribution that is known. We are also given the conditional distribution of Y given X.
2. Bias of a Bayesian estimator $\hat{X}(Y)$ is defined as

$$
\begin{equation*}
\mathbb{E}[\hat{X}(Y)]-E[X] \tag{2}
\end{equation*}
$$

where $\mathbb{E}[$.$] means we take expectation over all random variables (here X, Y$).
3. Bayesian MSE of an estimator $\hat{X}(Y)$ is

$$
\begin{equation*}
\mathbb{E}\left[\|X-\hat{X}(Y)\|^{2}\right] \tag{3}
\end{equation*}
$$

4. Claim: $\mathbb{E}[X \mid Y]$ is the minimum MSE (MMSE) estimator of X from Y. Proof:
(a) We try to show that

$$
\begin{equation*}
\mathbb{E}\left[\|X-\mathbb{E}[X \mid Y]\|^{2}\right] \leq \mathbb{E}\left[\|X-\hat{X}(Y)\|^{2}\right] \tag{4}
\end{equation*}
$$

(b) To do this, add and subtract $\mathbb{E}[X \mid Y]$ from RHS, expand and show that the cross term is zero. To show cross term is zero, use law of iterated expectations. Thus,

$$
\begin{align*}
\mathbb{E}\left[\|X-\hat{X}(Y)\|^{2}\right] & =\mathbb{E}\left[\|X-\mathbb{E}[X \mid Y]+\mathbb{E}[X \mid Y]-\hat{X}(Y)\|^{2}\right] \\
& =\mathbb{E}\left[\|X-\mathbb{E}[X \mid Y]\|^{2}\right]+\mathbb{E}\left[\|\mathbb{E}[X \mid Y]-\hat{X}(Y)\|^{2}\right]+2 \operatorname{cross} \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
\operatorname{cross} & =\mathbb{E}\left[(\mathbb{E}[X \mid Y]-\hat{X}(Y))^{T}(X-\mathbb{E}[X \mid Y])\right] \\
& =\mathbb{E}_{Y}\left[\mathbb{E}\left[(\mathbb{E}[X \mid Y]-\hat{X}(Y))^{T}(X-\mathbb{E}[X \mid Y]) \mid Y\right]\right] \\
& =\mathbb{E}_{Y}\left[(\mathbb{E}[X \mid Y]-\hat{X}(Y))^{T} \mathbb{E}[(X-\mathbb{E}[X \mid Y]) \mid Y]\right] \\
& \left.=\mathbb{E}_{Y}\left[(\mathbb{E}[X \mid Y]-\hat{X}(Y))^{T}[\mathbb{E}[X \mid Y]-\mathbb{E}[X \mid Y])\right]\right]=0 \tag{6}
\end{align*}
$$

The second row uses law of iterated expectations, the third row follows because $\mathbb{E}[X \mid Y]$ and $\hat{X}(Y)$ are constants given Y. The last row follows because $\mathbb{E}[X \mid Y]$ is a constant given Y.
(c) Using the above and since $\mathbb{E}\left[\|\mathbb{E}[X \mid Y]-\hat{X}(Y)\|^{2}\right] \geq 0$, the result follows.
5. Claim: Variance of the error of $\mathbb{E}[X \mid Y]$ is smallest in any direction, i.e. for any unit vector, c,

$$
\begin{equation*}
c^{T} \mathbb{E}\left[(X-\mathbb{E}[X \mid Y])(.)^{T}\right] c \leq c^{T} \mathbb{E}\left[(X-\hat{X}(Y))(.)^{T}\right] c \tag{7}
\end{equation*}
$$

Proof:
(a) Consider $Z:=c^{T} X$. By the previous result, its MMSE estimator is $\mathbb{E}[Z \mid Y]=$ $c^{T} \mathbb{E}[X \mid Y]$. Thus,

$$
\begin{equation*}
\mathbb{E}\left[\left(c^{T} X-c^{T} \mathbb{E}[X \mid Y]\right)^{2}\right] \leq \mathbb{E}\left[(Z-\hat{Z}(Y))^{2}\right] \tag{8}
\end{equation*}
$$

(b) Using $\left(c^{T} v\right)^{2}=c^{T} v v^{T} c$ and using $Z=c^{T} X$, we get

$$
\begin{equation*}
\mathbb{E}\left[c^{T}(X-\mathbb{E}[X \mid Y])(.)^{T} c\right] \leq \mathbb{E}\left[\left(c^{T} X-\hat{Z}(Y)\right)^{2}\right] \tag{9}
\end{equation*}
$$

(c) The above is true for all estimators of $Z, \hat{Z}(Y)$. In particular, it is true if we consider the class of estimators that can be written as $\hat{Z}(Y)=c^{T} \hat{X}(Y)$. Thus,

$$
\begin{equation*}
\mathbb{E}\left[c^{T}(X-\mathbb{E}[X \mid Y])(.)^{T} c\right] \leq \mathbb{E}\left[c^{T}(X-\hat{X}(Y))(.)^{T} c\right] \tag{10}
\end{equation*}
$$

This finishes the proof.
6. By letting $c=e_{i}$ (e_{i} is a vector with a one at the $i^{\text {th }}$ location and zero everywhere else), we see that $\mathbb{E}\left[X_{i} \mid Y\right]$ is the MMSE of X_{i} from Y.
7. Claim: $\mathbb{E}[X \mid Y]$ is unbiased, i.e. $\mathbb{E}[\mathbb{E}[X \mid Y]]-E[X]=0$.
(a) Proof: This follows because $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$.
8. Read Chapter IV-B of Poor's book.

3 Linear MMSE estimation

1. We call this linear MMSE estimation, but that is a misnomer, we actually look for the minimum MSE estimator among all affine functions of the observation, i.e. among all functions of the form $H Y+c$.
2. Let the set of affine estimators of X from Y be

$$
\mathcal{H}:=\{\hat{X}(Y): \hat{X}(Y)=H Y+c\}
$$

The linear MMSE estimator $\hat{X}_{L M M S E}(Y)$ is defined as the solution of

$$
\begin{equation*}
\min _{\hat{X}(Y) \in \mathcal{H}} \mathbb{E}\left[\|X-\hat{X}(Y)\|^{2}\right] \tag{11}
\end{equation*}
$$

for a matrix H and a vector c.
3. Orthogonality Principle 1: $\hat{X}_{L}(Y) \in \mathcal{H}$ is the linear MMSE of X from Y if and only if

$$
\begin{equation*}
\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) Z^{T}\right]=0 \text { for all } Z \in \mathcal{H} \tag{12}
\end{equation*}
$$

Proof (one side):
(a) Suppose $\hat{X}_{L}(Y) \in \mathcal{H}$ satisfies (12), but it is not the LMMSE, i.e. there exists an $\hat{X}_{0}(Y) \neq \hat{X}_{L}(Y)$ such that $\hat{X}_{0}(Y) \in \mathcal{H}$ and

$$
\begin{equation*}
\mathbb{E}\left[\left\|X-\hat{X}_{0}(Y)\right\|^{2}\right] \leq \mathbb{E}\left[\left\|X-\hat{X}_{L}(Y)\right\|^{2}\right] \tag{13}
\end{equation*}
$$

(b) We can write the LHS as $\mathbb{E}\left[\left\|X-\hat{X}_{0}(Y)\right\|^{2}\right]=\mathbb{E}\left[\left\|X-\hat{X}_{L}(Y)+\hat{X}_{L}(Y)-\hat{X}_{0}(Y)\right\|^{2}\right]=$ $\mathbb{E}\left[\left\|X-\hat{X}_{L}(Y)\right\|^{2}\right]+\mathbb{E}\left[\left\|\hat{X}_{L}(Y)-\hat{X}_{0}(Y)\right\|^{2}\right]+2$ cross where

$$
\begin{equation*}
\operatorname{cross}=\mathbb{E}\left[\left(\hat{X}_{L}(Y)-\hat{X}_{0}(Y)\right)^{T}\left(X-\hat{X}_{L}(Y)\right)\right] \tag{14}
\end{equation*}
$$

(c) Since $\hat{X}_{L}(Y) \in \mathcal{H}$ and $\hat{X}_{0}(Y) \in \mathcal{H}$, thus $\left(\hat{X}_{L}(Y)-\hat{X}_{0}(Y)\right) \in \mathcal{H}$. Thus by (12), $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right)\left(\hat{X}_{L}(Y)-\hat{X}_{0}(Y)\right)^{T}\right]=0$.
(d) Using $\operatorname{trace}(A B)=\operatorname{trace}(B A)$ and the fact that trace is a linear operator, we can see that for any two n dimensional vectors X_{1}, X_{2},

$$
\begin{equation*}
\mathbb{E}\left[X_{2}^{T} X_{1}\right]=\mathbb{E}\left[\operatorname{trace}\left(X_{2}^{T} X_{1}\right)\right]=\mathbb{E}\left[\operatorname{trace}\left(X_{1} X_{2}^{T}\right)\right]=\operatorname{trace}\left(\mathbb{E}\left[X_{1} X_{2}^{T}\right]\right) \tag{15}
\end{equation*}
$$

(e) Using (15), cross $=\operatorname{trace}\left(\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right)\left(\hat{X}_{L}(Y)-\hat{X}_{0}(Y)\right)^{T}\right]\right)$, thus cross $=0$.
(f) Thus, $\mathbb{E}\left[\left\|X-\hat{X}_{0}(Y)\right\|^{2}\right]=\mathbb{E}\left[\left\|X-\hat{X}_{L}(Y)\right\|^{2}\right]+\mathbb{E}\left[\left\|\hat{X}_{L}(Y)-\hat{X}_{0}(Y)\right\|^{2}\right] \geq \mathbb{E}[\| X-$ $\left.\hat{X}_{L}(Y) \|^{2}\right]$ and this is a contradiction to (13) unless $\hat{X}_{0}(Y)=\hat{X}_{L}(Y)$.

Proof (other side):
(a) Suppose $\hat{X}_{L}(Y)$ is the LMMSE but it does not satisfy (12), i.e. there exists a $Z_{0} \in \mathcal{H}$ for which $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) Z_{0}^{T}\right] \neq 0$.
(b) Define another estimator, $\hat{X}_{0}=\hat{X}_{L}+B Z_{0}$.
(c) Let us try to find B to minimize the MSE, $\mathbb{E}\left[\left\|X-\hat{X}_{L}-B Z_{0}\right\|^{2}\right]$. If we differentiate this and set to zero, we get $B_{\min }=\mathbb{E}\left[(X-\hat{X}) Z_{0}^{T}\right] \mathbb{E}\left[Z_{0} Z_{0}^{T}\right]^{-1}$. Thus, we consider the estimator $\hat{X}_{0}=\hat{X}_{L}+B_{\min } Z_{0}$.
(d) Consider $\mathbb{E}\left[\left\|X-\hat{X}_{0}\right\|^{2}\right]$ and simplify it:

$$
\begin{align*}
\mathbb{E}\left[\left\|X-\hat{X}_{0}\right\|^{2}\right] & =\mathbb{E}\left[\left\|X-\hat{X}_{L}-B_{\min } Z_{0}\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|X-\hat{X}_{L}\right\|^{2}\right]+\mathbb{E}\left[Z_{0}^{T} B_{\min }^{T} B_{\min } Z_{0}\right]-2 \mathbb{E}\left[Z_{0}^{T} B_{\min }^{T}\left(X-\hat{X}_{L}\right)\right] \tag{16}
\end{align*}
$$

(e) Using (15), we can rewrite the second term of (16) as

$$
\begin{align*}
\mathbb{E}\left[Z_{0}^{T} B_{\min }^{T} B_{\min } Z_{0}\right] & =\operatorname{trace}\left(\mathbb{E}\left[B_{\min } Z_{0} Z_{0}^{T} B_{\min }^{T}\right]\right) \\
& =\operatorname{trace}\left(B_{\min } \mathbb{E}\left[Z_{0} Z_{0}^{T}\right] B_{\min }^{T}\right] \\
& =\operatorname{trace}\left(\mathbb{E}\left[(X-\hat{X}) Z_{0}^{T}\right] \mathbb{E}\left[Z_{0} Z_{0}^{T}\right]^{-1} \mathbb{E}\left[(X-\hat{X}) Z_{0}^{T}\right]^{T}\right) \tag{17}
\end{align*}
$$

(f) Using (15) we can also rewrite the third term of (16) as

$$
\begin{aligned}
\mathbb{E}\left[Z_{0}^{T} B_{\min }^{T}\left(X-\hat{X}_{L}\right)\right] & =\operatorname{trace}\left(\mathbb{E}\left[\left(X-\hat{X}_{L}\right) Z_{0}^{T} B_{\min }^{T}\right]\right) \\
& =\operatorname{trace}\left(\mathbb{E}\left[\left(X-\hat{X}_{L}\right) Z_{0}^{T}\right] B_{\min }^{T}\right) \\
& =\operatorname{trace}\left(\mathbb{E}\left[\left(X-\hat{X}_{L}\right) Z_{0}^{T}\right] \mathbb{E}\left[Z_{0} Z_{0}^{T}\right]^{-1} \mathbb{E}\left[(X-\hat{X}) Z_{0}^{T}\right]^{T} \downarrow 18\right)
\end{aligned}
$$

(g) Substituting the last two equations into (16),

$$
\begin{equation*}
\mathbb{E}\left[\left\|X-\hat{X}_{0}\right\|^{2}\right]=\mathbb{E}\left[\left\|X-\hat{X}_{L}\right\|^{2}\right]-\operatorname{trace}\left(\mathbb{E}\left[\left(X-\hat{X}_{L}\right) Z_{0}^{T}\right] \mathbb{E}\left[Z_{0} Z_{0}^{T}\right]^{-1} \mathbb{E}\left[(X-\hat{X}) Z_{0}^{T}\right]^{T}\right) \tag{19}
\end{equation*}
$$

The second term is the trace of a positive semi-definite matrix and hence it is non-negative. Thus, $\mathbb{E}\left[\left\|X-\hat{X}_{0}\right\|^{2}\right] \leq \mathbb{E}\left[\left\|X-\hat{X}_{L}\right\|^{2}\right]$, i.e. \hat{X}_{L} is not the LMMSE. This is a contradiction.
4. Orthogonality Principle 2: $\hat{X}_{L}(Y) \in \mathcal{H}$ is the linear MMSE of X from Y if and only if

$$
\begin{equation*}
\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right)\right]=0 \text { and } \mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) Y^{T}\right]=0 \tag{20}
\end{equation*}
$$

Proof (one side): follows easily from the first one.
(a) Suppose $\hat{X}_{L}(Y)$ is the LMMSE. Then by orthogonality principle 1 ,

$$
\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) Z^{T}\right]=0 \text { for all } Z \in \mathcal{H}
$$

(b) If we set $H=0$ in \mathcal{H}, then we get $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) c^{T}\right]=0$. Since c is a constant, this means that $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right)\right]=0$.
(c) If we set $H=I, c=0$, in \mathcal{H}, then we get $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) Y^{T}\right]=0$.

Proof (other side): follows directly from first one
(a) Suppose $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right)\right]=0$ and $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) Y^{T}\right]=0$. Thus, $\mathbb{E}[(X-$ $\left.\left.\hat{X}_{L}(Y)\right) Y^{T} H^{T}\right]=0$.
(b) Using, $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right)\right]=0$ we get $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) c^{T}\right]=0$.
(c) Combining the above two, we get $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right)\left(Y^{T} H^{T}+c^{T}\right)\right]=\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right)(H Y+\right.$ c) $\left.{ }^{T}\right]=0$.
(d) Thus, $\mathbb{E}\left[\left(X-\hat{X}_{L}(Y)\right) Z^{T}\right]=0$ for all $Z \in \mathcal{H}$. By orthogonality principle $1, \hat{X}_{L}(Y)$ is the linear MMSE.
5. Wiener-Hopf equations: using the orthogonality principle 2 , we can derive the WeinerHopf equations to compute an LMMSE estimate.
(a) The LMMSE estimate is of the form $\hat{X}_{L}=H_{L} Y+c_{L}$. Using the ortho principle, this satisfies

$$
\begin{array}{r}
\mathbb{E}\left[\left(X-H_{L} Y-c_{L}\right)\right]=0, \text { and } \\
\mathbb{E}\left[\left(X-H_{L} Y-c_{L}\right) Y^{T}\right]=0 \tag{21}
\end{array}
$$

(b) Using the first equation of (21)

$$
\begin{equation*}
c_{L}=\mathbb{E}\left[\left(X-H_{L} Y\right)\right]=\mathbb{E}[X]-H_{L} \mathbb{E}[Y] \tag{22}
\end{equation*}
$$

Using the second equation of (21) and above,

$$
\begin{equation*}
\mathbb{E}\left[\left(X-H_{L} Y-c_{L}\right) Y^{T}\right]=\mathbb{E}\left[\left((X-\mathbb{E}[X])-H_{L}(Y-\mathbb{E}[Y])\right) Y^{T}\right]=0 \tag{23}
\end{equation*}
$$

(c) Thus,

$$
\begin{equation*}
\left.\mathbb{E}\left[(X-\mathbb{E}[X]) Y^{T}\right]=H_{L} \mathbb{E}[(Y-\mathbb{E}[Y])) Y^{T}\right] \tag{24}
\end{equation*}
$$

Since $\operatorname{cov}(X, Y):=\mathbb{E}\left[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])^{T}\right]=\mathbb{E}\left[(X-\mathbb{E}[X]) Y^{T}\right]$, thus, we get

$$
\begin{equation*}
H_{L}=\operatorname{cov}(X, Y) \operatorname{cov}(Y, Y)^{-1} \tag{25}
\end{equation*}
$$

and so

$$
\begin{equation*}
c_{L}=\mathbb{E}[X]-\operatorname{cov}(X, Y) \operatorname{cov}(Y, Y)^{-1} \mathbb{E}[Y] \tag{26}
\end{equation*}
$$

6. Special cases:
(a) If the sequence $Y_{1}, Y_{2}, \ldots Y_{n}$ is wide sense stationary, then $\operatorname{cov}(Y, Y)$ is a Toeplitz matrix. This allows for efficient matrix inversion: $O\left(n^{2}\right)$ cost compared to $O\left(n^{3}\right)$ for any general matrix.
(b) If $Y=\left[Y_{1}, Y_{2}, \ldots Y_{t}\right]$ and $X=Y_{t+1}$, then X, Y are jointly wide sense stationary. In this case, the Levinson algorithm can be used to find the solution efficiently.
(c) Non-causal Wiener filter: estimate X_{t} using $\left\{Y_{\tau}\right\}_{\tau=-\infty}^{\infty}$, when they are jointly WSS

- Due to joint WSS assumption, the problem can be converted into frequency domain, and one gets an expression for the squared magnitude of the filter's frequency response.
- Since the filter can be non-causal, one can just pick a zero phase filter.
(d) Causal Wiener: estimate X_{t} using $\left\{Y_{\tau}\right\}_{\tau=-\infty}^{t}$ when they are jointly WSS
- Can design a causal Wiener filter also in the frequency domain (see Chapter V of Poor's book or see DSP texts).
- If X_{t} 's and Y_{t} 's satisfy the linear dynamic model (model used by Kalman filter) and are jointly WSS, then the Kalman filter update exactly gives the causal Wiener solution.

References

[1] H. Vincent Poor, An Introduction to Signal Detection and Estimation, Springer, second edition.

