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Most notes are based on Chapter IV-B and Chapter V of Poor’s Introduction to Signal

Detection and Estimation book [1].

1 Jointly Gaussian random variables

1. The n× 1 random vector X is jointly Gaussian if and only if the scalar

uTX

is Gaussian distributed for all n× 1 vectors u

2. The random vector X is jointly Gaussian if and only if its characteristic function,

CX(u) := E[eiu
TX ] can be written as

CX(u) = eiu
Tμe−uTΣu/2

where μ = E[X] and Σ = cov(X).

• Proof: X is j G implies that V = uTX is G with mean uTμ and variance uTΣu.

Thus its characteristic function, CV (t) = eitu
Tμe−t2uTΣu/2. But CV (t) = E[eitV ] =

E[eitu
TX ]. If we set t = 1, then this is E[eiu

TX ] which is equal to CX(u). Thus,

CX(u) = CV (1) = eiu
Tμe−uTΣu/2.

• Proof (other side): we are given that the charac function ofX, CX(u) = E[eiu
TX ] =

eiu
Tμe−uTΣu/2. Consider V = uTX. Thus, CV (t) = E[eitV ] = CX(tu) = eiu

Tμe−t2uTΣu/2.

Also, E[V ] = uTμ, var(V ) = uTΣu. Thus V is G.

3. The random vector X is jointly Gaussian if and only if its joint pdf can be written as

fX(x) =
1

(
√
2π)ndet(Σ)

e−(X−μ)T Σ−1(X−μ)/2 (1)
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• Proof: follows by computing the characteristic function from the pdf and vice

versa

4. The random vector X is j G if and only if it can be written as an affine function of

i.i.d. standard Gaussian r.v’s.

• Proof: if X = AZ + a where Z ∼ N (0, I), then easy to show that X has joint

pdf given by (1) and thus it is j G.

• Proof (other side): if X is j G, then it has the joint pdf given by (1). Then

can show that Z := Σ−1/2(X − μ) ∼ N (0, I), i.e. it is i.i.d. standard G. Thus,

X = Σ1/2Z + μ, i.e. it is an affine function of Z.

5. The random vector X is j G if and only if it can be written as an affine function of

jointly Gaussian r.v’s.

• Proof: Suppose X is an affine function of a j G r.v. Y , i.e. X = BY + b. Since Y

is j G, by 4, it can be written as Y = AZ + a where Z ∼ N (0, I) (i.i.d. standard

Gaussian). Thus, X = BAZ + (Ba + b), i.e. it is an affine function of Z, and

thus, by 4, X is j G.

• Proof (other side): X is j G. So by 4, it can be written as X = BZ + b. But

Z ∼ N (0, I) i.e. Z is a j G r.v.

Properties

1. If X1, X2 are j G, then the conditional distribution of X1 given X2 is also j G

2. If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements

of their covariance matrix are zero), then they are also mutually independent.

3. Any subset of X is also j G.

2 Bayesian Minimum Mean Squared Error (MMSE)

estimation

1. X is the unknown, Y is the observation. We assume that X itself is a random variable

with a prior distribution that is known. We are also given the conditional distribution

of Y given X.

2. Bias of a Bayesian estimator X̂(Y ) is defined as

E[X̂(Y )]− E[X] (2)

where E[.] means we take expectation over all random variables (here X, Y ).
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3. Bayesian MSE of an estimator X̂(Y ) is

E[‖X − X̂(Y )‖2] (3)

4. Claim: E[X|Y ] is the minimum MSE (MMSE) estimator of X from Y . Proof:

(a) We try to show that

E[‖X − E[X|Y ]‖2] ≤ E[‖X − X̂(Y )‖2] (4)

(b) To do this, add and subtract E[X|Y ] from RHS, expand and show that the cross

term is zero. To show cross term is zero, use law of iterated expectations. Thus,

E[‖X − X̂(Y )‖2] = E[‖X − E[X|Y ] + E[X|Y ]− X̂(Y )‖2]
= E[‖X − E[X|Y ]‖2] + E[‖E[X|Y ]− X̂(Y )‖2] + 2cross (5)

where

cross = E[(E[X|Y ]− X̂(Y ))T (X − E[X|Y ])]

= EY [E[(E[X|Y ]− X̂(Y ))T (X − E[X|Y ])|Y ]]

= EY [(E[X|Y ]− X̂(Y ))TE[(X − E[X|Y ])|Y ]]

= EY [(E[X|Y ]− X̂(Y ))T [E[X|Y ]− E[X|Y ])]] = 0 (6)

The second row uses law of iterated expectations, the third row follows because

E[X|Y ] and X̂(Y ) are constants given Y . The last row follows because E[X|Y ] is

a constant given Y .

(c) Using the above and since E[‖E[X|Y ]− X̂(Y )‖2] ≥ 0, the result follows.

5. Claim: Variance of the error of E[X|Y ] is smallest in any direction, i.e. for any unit

vector, c,

cTE[(X − E[X|Y ])(.)T ]c ≤ cTE[(X − X̂(Y ))(.)T ]c (7)

Proof:

(a) Consider Z := cTX. By the previous result, its MMSE estimator is E[Z|Y ] =

cTE[X|Y ]. Thus,

E[(cTX − cTE[X|Y ])2] ≤ E[(Z − Ẑ(Y ))2] (8)

(b) Using (cTv)2 = cTvvT c and using Z = cTX, we get

E[cT (X − E[X|Y ])(.)T c] ≤ E[(cTX − Ẑ(Y ))2] (9)
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(c) The above is true for all estimators of Z, Ẑ(Y ). In particular, it is true if we

consider the class of estimators that can be written as Ẑ(Y ) = cT X̂(Y ). Thus,

E[cT (X − E[X|Y ])(.)T c] ≤ E[cT (X − X̂(Y ))(.)T c] (10)

This finishes the proof.

6. By letting c = ei (ei is a vector with a one at the ith location and zero everywhere

else), we see that E[Xi|Y ] is the MMSE of Xi from Y .

7. Claim: E[X|Y ] is unbiased, i.e. E[E[X|Y ]]− E[X] = 0.

(a) Proof: This follows because E[E[X|Y ]] = E[X ].

8. Read Chapter IV-B of Poor’s book.

3 Linear MMSE estimation

1. We call this linear MMSE estimation, but that is a misnomer, we actually look for the

minimum MSE estimator among all affine functions of the observation, i.e. among all

functions of the form HY + c.

2. Let the set of affine estimators of X from Y be

H := {X̂(Y ) : X̂(Y ) = HY + c}

The linear MMSE estimator X̂LMMSE(Y ) is defined as the solution of

min
X̂(Y )∈H

E[‖X − X̂(Y )‖2] (11)

for a matrix H and a vector c.

3. Orthogonality Principle 1: X̂L(Y ) ∈ H is the linear MMSE of X from Y if and only if

E[(X − X̂L(Y ))ZT ] = 0 for all Z ∈ H (12)

Proof (one side):

(a) Suppose X̂L(Y ) ∈ H satisfies (12), but it is not the LMMSE, i.e. there exists an

X̂0(Y ) �= X̂L(Y ) such that X̂0(Y ) ∈ H and

E[‖X − X̂0(Y )‖2] ≤ E[‖X − X̂L(Y )‖2] (13)

(b) We can write the LHS as E[‖X−X̂0(Y )‖2] = E[‖X−X̂L(Y )+X̂L(Y )−X̂0(Y )‖2] =
E[‖X − X̂L(Y )‖2] + E[‖X̂L(Y )− X̂0(Y )‖2] + 2cross where

cross = E[(X̂L(Y )− X̂0(Y ))T (X − X̂L(Y ))] (14)
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(c) Since X̂L(Y ) ∈ H and X̂0(Y ) ∈ H, thus (X̂L(Y ) − X̂0(Y )) ∈ H. Thus by (12),

E[(X − X̂L(Y ))(X̂L(Y )− X̂0(Y ))T ] = 0.

(d) Using trace(AB) = trace(BA) and the fact that trace is a linear operator, we can

see that for any two n dimensional vectors X1, X2,

E[XT
2 X1] = E[trace(XT

2 X1)] = E[trace(X1X
T
2 )] = trace(E[X1X

T
2 ]) (15)

(e) Using (15), cross = trace(E[(X − X̂L(Y ))(X̂L(Y )− X̂0(Y ))T ]), thus cross = 0.

(f) Thus, E[‖X − X̂0(Y )‖2] = E[‖X − X̂L(Y )‖2] + E[‖X̂L(Y )− X̂0(Y )‖2] ≥ E[‖X −
X̂L(Y )‖2] and this is a contradiction to (13) unless X̂0(Y ) = X̂L(Y ).

Proof (other side):

(a) Suppose X̂L(Y ) is the LMMSE but it does not satisfy (12), i.e. there exists a

Z0 ∈ H for which E[(X − X̂L(Y ))ZT
0 ] �= 0.

(b) Define another estimator, X̂0 = X̂L +BZ0.

(c) Let us try to find B to minimize the MSE, E[‖X−X̂L−BZ0‖2]. If we differentiate
this and set to zero, we get Bmin = E[(X − X̂)ZT

0 ]E[Z0Z
T
0 ]

−1. Thus, we consider

the estimator X̂0 = X̂L +BminZ0.

(d) Consider E[‖X − X̂0‖2] and simplify it:

E[‖X − X̂0‖2] = E[‖X − X̂L − BminZ0‖2]
= E[‖X − X̂L‖2] + E[ZT

0 B
T
minBminZ0]− 2E[ZT

0 B
T
min(X − X̂L)] (16)

(e) Using (15), we can rewrite the second term of (16) as

E[ZT
0 B

T
minBminZ0] = trace(E[BminZ0Z

T
0 B

T
min])

= trace(BminE[Z0Z
T
0 ]B

T
min]

= trace(E[(X − X̂)ZT
0 ]E[Z0Z

T
0 ]

−1
E[(X − X̂)ZT

0 ]
T ) (17)

(f) Using (15) we can also rewrite the third term of (16) as

E[ZT
0 B

T
min(X − X̂L)] = trace(E[(X − X̂L)Z

T
0 B

T
min])

= trace(E[(X − X̂L)Z
T
0 ]B

T
min)

= trace(E[(X − X̂L)Z
T
0 ]E[Z0Z

T
0 ]

−1
E[(X − X̂)ZT

0 ]
T )(18)

(g) Substituting the last two equations into (16),

E[‖X − X̂0‖2] = E[‖X − X̂L‖2]− trace(E[(X − X̂L)Z
T
0 ]E[Z0Z

T
0 ]

−1
E[(X − X̂)ZT

0 ]
T ) (19)

The second term is the trace of a positive semi-definite matrix and hence it is

non-negative. Thus, E[‖X − X̂0‖2] ≤ E[‖X − X̂L‖2], i.e. X̂L is not the LMMSE.

This is a contradiction.
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4. Orthogonality Principle 2: X̂L(Y ) ∈ H is the linear MMSE of X from Y if and only if

E[(X − X̂L(Y ))] = 0 and E[(X − X̂L(Y ))Y T ] = 0 (20)

Proof (one side): follows easily from the first one.

(a) Suppose X̂L(Y ) is the LMMSE. Then by orthogonality principle 1,

E[(X − X̂L(Y ))ZT ] = 0 for allZ ∈ H

(b) If we set H = 0 in H, then we get E[(X − X̂L(Y ))cT ] = 0. Since c is a constant,

this means that E[(X − X̂L(Y ))] = 0.

(c) If we set H = I, c = 0, in H, then we get E[(X − X̂L(Y ))Y T ] = 0.

Proof (other side): follows directly from first one

(a) Suppose E[(X − X̂L(Y ))] = 0 and E[(X − X̂L(Y ))Y T ] = 0. Thus, E[(X −
X̂L(Y ))Y THT ] = 0.

(b) Using, E[(X − X̂L(Y ))] = 0 we get E[(X − X̂L(Y ))cT ] = 0.

(c) Combining the above two, we get E[(X−X̂L(Y ))(Y THT+cT )] = E[(X−X̂L(Y ))(HY+

c)T ] = 0.

(d) Thus, E[(X−X̂L(Y ))ZT ] = 0 for all Z ∈ H. By orthogonality principle 1, X̂L(Y )

is the linear MMSE.

5. Wiener-Hopf equations: using the orthogonality principle 2, we can derive the Weiner-

Hopf equations to compute an LMMSE estimate.

(a) The LMMSE estimate is of the form X̂L = HLY + cL. Using the ortho principle,

this satisfies

E[(X −HLY − cL)] = 0, and

E[(X −HLY − cL)Y
T ] = 0 (21)

(b) Using the first equation of (21)

cL = E[(X −HLY )] = E[X ]−HLE[Y ] (22)

Using the second equation of (21) and above,

E[(X −HLY − cL)Y
T ] = E[((X − E[X])−HL(Y − E[Y ]))Y T ] = 0 (23)
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(c) Thus,

E[(X − E[X])Y T ] = HLE[(Y − E[Y ]))Y T ] (24)

Since cov(X, Y ) := E[(X − E[X])(Y − E[Y ])T ] = E[(X − E[X])Y T ], thus, we get

HL = cov(X, Y )cov(Y, Y )−1 (25)

and so

cL = E[X]− cov(X, Y )cov(Y, Y )−1
E[Y ] (26)

6. Special cases:

(a) If the sequence Y1, Y2, . . . Yn is wide sense stationary, then cov(Y, Y ) is a Toeplitz

matrix. This allows for efficient matrix inversion: O(n2) cost compared to O(n3)

for any general matrix.

(b) If Y = [Y1, Y2, . . . Yt] and X = Yt+1, then X, Y are jointly wide sense stationary.

In this case, the Levinson algorithm can be used to find the solution efficiently.

(c) Non-causal Wiener filter: estimate Xt using {Yτ}∞τ=−∞, when they are jointly

WSS

• Due to joint WSS assumption, the problem can be converted into frequency

domain, and one gets an expression for the squared magnitude of the filter’s

frequency response.

• Since the filter can be non-causal, one can just pick a zero phase filter.

(d) Causal Wiener: estimate Xt using {Yτ}tτ=−∞ when they are jointly WSS

• Can design a causal Wiener filter also in the frequency domain (see Chapter

V of Poor’s book or see DSP texts).

• If Xt’s and Yt’s satisfy the linear dynamic model (model used by Kalman

filter) and are jointly WSS, then the Kalman filter update exactly gives the

causal Wiener solution.
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