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1 Kalman Filter as a causal MMSE estimator

Consider the following state space model (signal and observation model).

Yt = HtXt +Wt, Wt ∼ N (0, R) (1)

Xt = FtXt−1 + Ut, Ut ∼ N (0, Q) (2)

whereX0, {Ut, t = 1, . . .∞}, {Wt, t = 0, . . .∞} are mutually independent andX0 ∼ N (0,Σ0).

Recall that

Cov[X|Y ] , E[(X − E[X|Y ])(X − E[X|Y ])T |Y ].

Define

X̂t|s , E[Xt|Y0:s]
Σt|s , Cov[Xt|Y0:s] = E[(Xt − X̂t|s)(·)T |Y0:s] (3)

Thus X̂t|s is the MMSE estimator of Xt from observations Y0:s and Σt|s is its error covariance

conditioned in Y0:s.

We claim that that X̂t|t and X̂t|t−1 satisfy the following recursion (Kalman filter).

X̂t|t−1 = FtX̂t−1|t−1

Σt|t−1 = FtΣt−1|t−1F
T
t +Q,

Kt = Σt|t−1H
T
t (HtΣt|t−1H

T
t +R)−1

X̂t|t = X̂t|t−1 +Kt(Yt −HtX̂t|t−1)

Σt|t = [I −KtHt]Σt|t−1 (4)

with initialization, X̂0|−1 = 0, Σ0|−1 = Σ0.
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1.1 Conditional Gaussian Distribution

In the proof we will need the following result for jointly Gaussian random variables. If X, Y

have the joint PDF [
Y

X

]
∼ N (

[
µY

µX

]
,

[
ΣY ΣY X

ΣXY ΣX

]
)

then

E[X|Y ] = µX + ΣXY Σ−1Y (Y − µY )

Cov[X|Y ] = ΣX − ΣXY Σ−1Y ΣY X , (5)

Proof: One way to prove this is to write out the expression for the conditional PDF and

use the block matrix inversion lemma. A shorter and nicer proof is as follows. The idea is

to define a r.v. Z that is a linear function of X and Y and is such that Cov(Z, Y ) = 0.

Because it is a linear function, Z and Y are also jointly Gaussian and hence cov = 0 will

imply independence. Then if one writes of X as a linear function of Z and Y , getting the

above quantities becomes very easy because E[f(Z)|Y ] = E[f(Z)].

1. Let Z = X + BY . We want Cov(Z, Y ) = 0. But notice that Cov(Z, Y ) = E[(X −
µX)(Y −µY )T ]+BE[(Y −µY )(Y −µY )T ] = ΣXY +BΣY . Thus if we let B = −ΣXY Σ−1Y

we will get Cov(Z, Y ) = 0 and so using joint-Guassianity Z and Y are independent.

2. Thus, Z = X−ΣXY Σ−1Y Y and so X = Z+ΣXY Σ−1Y Y . Also, Z and Y are independent.

Thus,

E[X|Y ] = E[Z|Y ] + ΣXY Σ−1Y Y = µX − ΣXY Σ−1Y µY + ΣXY Σ−1Y Y (6)

and since Cov(Z|Y ) = Cov(Z), Cov(Y |Y ) = 0 and Cov(Z,BY |Y ) = E[(Z−µZ)|Y ](Y−
µY )T = E[(Z − µZ)](Y − µY )T = 0, we get

Cov[X|Y ] = Cov(Z −BY,Z −BY |Y ) where B := −ΣXY Σ−1Y

= Cov(Z|Y ) + Cov(BY |Y )− Cov(Z,BY |Y )− Cov(BY,Z|Y )

= Cov(Z)

= ΣX + ΣXY Σ−1Y ΣY Σ−1Y ΣXY − ΣXY Σ−1Y ΣXY − ΣXY Σ−1Y ΣXY

= ΣX − ΣXY Σ−1Y ΣY X (7)

1.2 Proof of KF as MMSE estimator

1. Use induction. Base case for t = 0 follows directly from the signal model. Assume that

(4) holds at t− 1.
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2. To compute X̂t|t−1, take E[·|Y0:t−1] on the signal model, (2). Then use the fact that Ut

is independent of Y0:t−1 = f(X0, U0:t−1,W0:t−1) to show that E[Ut|Y0:t−1] = E[Ut] = 0

(since Ut is zero mean).

3. To compute Σt|t−1, take Cov[·|Y0:t−1] on the signal model, (2). Show that the cross-

terms which contain E[(Xt−1 − X̂t−1|t−1)U
T
t |Y0:t−1] or its transpose are zero using the

following approach.

(a) Let Z , Xt−1 − X̂t−1|t−1.

(b) It is easy to see that both Z and Y0:t−1 are functions of X0, U0:t−1,W0:t−1, i.e.

{Z, Y0:t−1} = f((X0, U0:t−1,W0:t−1). Thus, Ut is independent of {Z, Y0:t−1} (using

the model assumption).

(c) U independent of {Z, Y } implies (i) U independent of Y ; (ii) U independent of Z

given Y (conditionally independent).

• Proof: U independent of {Z, Y } implies that f(y, u) =
∫
f(z, y, u)dz =∫

f(z, y)f(u)dz = f(y)f(u). Thus (i) follows. To show (ii), notice that

f(z, u|y) = f(z|y)f(u|z, y) by chain rule. U independent of {Z, Y } im-

plies that f(u|z, y) = f(u). Also, (i) implies that f(u) = f(u|y). Thus,

f(z, u|y) = f(z|y)f(u|y) and thus (ii) holds.

(d) Thus Ut, Z are conditionally independent given Y0:t−1.

(e) Thus the cross term, E[ZUT
t |Y0:t−1] = E[Z|Y0:t−1] E[Ut|Y0:t−1]T = E[Z|Y0:t−1]E[Ut]

T =

0 and the same holds for its transpose. The second equality follows because Ut is

independent of Y0:t−1 while the third follows because Ut is zero mean.

4. For the update step, first derive the expression for the joint pdf of Xt, Yt conditioned

on Y0:t−1, f(xt, yt|y0:t−1), and then use the conditional mean and covariance formula

for joint Gaussians given in (5), to obtain the expression for X̂t|t and Σt|t. To obtain

the joint pdf expression, use the following approach.

(a) Since the three random variables are jointly Gaussian, f(xt, yt|y0:t−1) will also be

Gaussian. Thus we only need expressions for its mean and covariance. Clearly,

f(xt, yt|y0:t−1) = N (

[
xt

yt

]
;

[
X̂t|t−1

HX̂t|t−1

]
,

[
ΣX ΣXY

ΣT
XY ΣX

]
), where

ΣX = Σt|t−1,

ΣXY = Cov[Xt, Yt|Y0:t−1] = E[(Xt − X̂t|t−1)(H(Xt − X̂t|t−1) +Wt)
T |Y0:t−1]

= Σt|t−1H
T + cross1 = Σt|t−1H

T + 0,

ΣY = Cov[Yt|Y0:t−1] = HΣt|t−1H
T +R + cross2 + crossT2 = HΣt|t−1H

T +R + 0 + 0
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(b) To show that cross1 = 0 and cross2 = 0, use the fact that (Xt − X̂t|t−1) and Wt

are conditionally independent given Y0:t−1; Wt is independent of Y0:t−1 and Wt is

zero mean. These can be shown in a fashion analogous to step 3.

This finishes the proof of the induction step and thus of the result.

A few important things to notice are as follows.

1. Since the expressions for Σt|t−1 and Σt|t do not depend on Y0:t−1, thus these are also

equal to the unconditional error covariances, i.e. Σt|t−1 , E[(Xt − X̂t|t−1)(·)T |Y0:t−1] =

E[(Xt − X̂t|t−1)(·)T ] and similarly, Σt|t , E[(Xt − X̂t|t)(·)T |Y0:t] = E[(Xt − X̂t|t)(·)T ]

2. It can be shown that the innovations, Zt , Yt − HX̂t|t−1, are pairwise uncorrelated.

Since they are jointly Gaussian, this means they are mutually independent.

(a) To show uncorrelated-ness one needs to use E[E[Z|Z1, Z2]|Z1] = E[Z|Z1] (law of

iterated expectations applied to Z̃ = Z|Z1).

(b) Consider an s < t,

E[ZtZ
T
s ] = E[E[ZtZ

T
s |Y0:s]]

= E[E[Zt|Y0:s]ZT
s ]

= E[E[(Yt −HX̂t|t−1)|Y0:s]ZT
s ]

= E[(E[Yt|Y0:s]− E[HX̂t|t−1|Y0:s])ZT
s ]

= E[(HX̂t|s − E[HX̂t|t−1|Y0:s])ZT
s ]

= E[(HX̂t|s −HX̂t|s)Z
T
s ]

= 0 (8)

We used E[E[Z|Z1, Z2]|Z1] = E[Z|Z1] to show that E[HX̂t|t−1|Y0:s] = HX̂t|s. Here

Z ≡ Xt, Z1 ≡ Y0:s, Z2 ≡ Ys+1:t.

3. Another expression for Kt:

1.3 Kalman filter with control input

Consider a state space model of the form

Yt = HXt + r(Y1, Y2, . . . Yt−1) +Wt, Wt ∼ N (0, R)

Xt = FXt−1 + q(Y1, Y2, . . . Yt−1) +GUt, Ut ∼ N (0, Q)

with X0, {Ut}∞t=1, {Wt}∞t=0 being mutually independent and X0 ∼ N (0,Σ0).

The above is a state space model, but with a nonzero “feedback control” input in both

equations. To derive the Kalman recursion for this model, use the exact same procedure
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outlined above. Since at time t, the control inputs are functions of Y0:t−1, when we take

E[·|Y0:t−1] of either the signal model or the observation model, r and q just get pulled out as

constants. Thus the expressions for the error covariances does not change at all.

2 Kalman filter as a causal linear MMSE estimator

Consider the state space model of (1), (2), but with the difference that X0, Ut,Wt’s are no

longer Gaussian, but are just some zero mean random variables with the given covariances.

Also, instead of being mutually independent, they are only pairwise uncorrelated.

For this model, the Kalman filter of (4) is the causal linear MMSE estimator, i.e. X̂t|t−1

is the linear MMSE of Xt from Y0:t−1, X̂t|t is the linear MMSE of Xt from Y0:t, and the

unconditional error covariances, E[(Xt − X̂t|t−1)(.)
T ] = Σt|t−1 and E[(Xt − X̂t|t)(.)

T ] = Σt|t.

We show the above using the orthogonality principle: X̂ is the linear MMSE of X from

observations Y0:n−1 if and only if

E[(X − X̂)] = 0 and E[(X − X̂)Y T
l ] = 0, ∀ l = 0, 1, . . . n− 1, (9)

Outline of Proof.

1. Use induction. The base case is easy, since you are using no observations. Assume

that our result holds for t − 1, i.e. X̂t−1|t−1 is linear MMSE of Xt−1 from Y0:t−1 and

E[(Xt−1 − X̂t−1|t−1)(.)
T ] = Σt−1|t−1.

2. The expression for X̂t|t−1 is given in (4). Thus,

E[(Xt − X̂t|t−1)Y
T
l ] = FE[(Xt−1 − X̂t−1|t−1)Y

T
l ] + FE[UtY

T
l ] = 0 + 0, ∀l = 0, 1, . . . t− 1(10)

The first term is zero because of the induction hypothesis and the orthogonality princi-

ple. The second term is zero because of uncorrelated-ness of Ut and Yl (follows because

Yl is a linear function of X0, U1:l,W0:l). Also,

E[(Xt − X̂t|t−1)] = FE[Xt−1 − X̂t−1|t−1] + E[Ut] = 0 (11)

This follows by induction assumption and orthogonality principle and since Ut is zero

mean.

Thus by the orthogonality principle, X̂t|t−1 is the L-MMSE of Xt from Y0:t−1.

3. It is easy to show that E[(Xt − X̂t|t−1)(.)
T ] = FΣt−1|t−1F

T + Q + 0 + 0 = Σt|t−1

by showing that the cross-terms are zero. The cross-terms are of the form E[(Xt−1 −
X̂t−1|t−1)U

T
t ] (or its transpose). They are zero since (Xt−1−X̂t−1|t−1) is a linear function

of X0, U1:t−1,W0:t−1, all of which are uncorrelated with Ut, and Ut is zero mean.
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4. The expression for X̂t|t is given in (4). Using the expression for Yt,

Xt − X̂t|t = Xt − [(I −KtH)X̂t|t−1 +KtYt] = (I −KtH)(Xt − X̂t|t−1) +KtWt (12)

Thus,

E[(Xt − X̂t|t)Y
T
l ] = (I −KtH)E[(Xt − X̂t|t−1)Y

T
l ] +KtE[WtY

T
l ] (13)

For l = 0, 1, . . . t− 1, one can use the previous step; uncorrelated-ness of Wt and Y0:t−1

and Wt being zero mean, to show that the above is zero. Consider l = t.

E[(Xt − X̂t|t)Y
T
t ] = (I −KtH)E[(Xt − X̂t|t−1)Y

T
t ]−KtE[WtY

T
t ]

= (I −KtH)E[(Xt − X̂t|t−1)(HXt +Wt)
T −KtE[WtW

T
t ]

= (I −KtH)Σt|t−1H
T −KtR

= 0 (14)

(a) The last equality follows from the expression for Kt.

(b) The second-last one follows because

i. E[(Xt−X̂t|t−1)X
T
t ] = E[(Xt−X̂t|t−1)(Xt−X̂t|t−1+X̂t|t−1)

T ] = Σt|t−1+E[(Xt−
X̂t|t−1)X̂

T
t|t−1].

ii. E[(Xt − X̂t|t−1)X̂
T
t|t−1] = E[E[(Xt − X̂t|t−1)|Y0:t−1]X̂T

t|t−1] = E[0.X̂T
t|t−1] = 0

iii. Wt and (Xt − X̂t|t−1) are uncorrelated and Wt is zero mean.

(c) The third-last one follows using (1) and the fact that Wt and Xt are uncorrelated

and Wt is zero mean.

Also, using (12),

E[(Xt − X̂t|t)] = (I −KtH)E[Xt − X̂t|t−1] +KtE[Wt] = 0 (15)

The first term is zero by prediction step claim and orthogonality principle; the second

term is zero since Wt is zero mean.

Thus by orthogonality principle, X̂t|t is L-MMSE of Xt from Y0:t.

5. To get the expression for E[(Xt− X̂t|t)(.)
T ], expand it out using the expression for X̂t|t

from (4) and then simplify it using (1) and the expression for Kt.

(a) E[(Xt− X̂t|t)(.)
T ] = (I−KtH)E[(Xt− X̂t|t−1)(.)

T ](I−KtH)T +KtE[WtW
T
t ]KT

t +

cross3 + crossT3 = (I −KtH)Σt|t−1(I −KtH)T +KtRK
T
t + 0 + 0.

(b) The cross term, cross3, contains E[(Xt − X̂t|t−1)W
T
t ] which can be shown to be

zero since Wt and (Xt − X̂t|t−1) are uncorrelated and Wt is zero mean.

(c) Use the expression for Kt and simplify to show that (I−KtH)Σt|t−1(I−KtH)T +

KtRK
T
t = (I −KtH)Σt|t−1: homework problem.
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