
Hidden Markov Models

Namrata Vaswani, Iowa State University

April 24, 2014

1 Hidden Markov Model Definitions and Examples

Definitions:

1. A hidden Markov model (HMM) refers to a set of “hidden” statesX0, X1, . . . , Xt, . . . , XT

and a set of observations, Y1, . . . , Yt, . . . , YT with the following joint PMF or PDF:

p(x0:T , y1:T) = [p(x0)[
T∏

τ=1

p(xτ |xτ−1)]][[
T∏

τ=1

p(yτ |xτ)]] (1)

2. The sequence is an HMM if and only if

(a) given Xt, Xt+1 is independent of X0:t−1 (past-X) and

(b) given Xt, Yt is independent of X0:t−1, Xt+1:T (all-X) and Y0:t−1 (past-Y)

This follows by writing out the expression for p(x0:t, y0:t) using chain rule and then

using (1) and comparing coefficients. By chain rule,

p(x0:T , y1:T) = p(x0)
T∏

τ=1

p(xτ |xτ−1, x0:τ−2)
T∏

τ=1

p(yτ |x0:T , y1:τ−1) (2)

Compare this with (1). In both equations integrate over y1:T and cancel out p(x1|x0)
to get

T∏
τ=2

p(xτ |xτ−1, x0:τ−2) =
T∏

τ=2

p(xτ |xτ−1).

Now integrate also over x3:T on both sides to get p(x2|x1, x0) = p(x2|x1). Next,

integrate over only x4:T and use this to conclude that p(x2|x1, x0)p(x3|x2, x1, x0) =

p(x2|x1)p(x3|x2) and so p(x3|x2, x1, x0) = p(x3|x2). Proceed in a similar fashion to

conclude that p(xt|x0:t−1) = p(xt|xt−1) for each t, i.e. item (a) holds.

At the end of the above, we conclude that

T∏
τ=1

p(yτ |x0:T , y1:τ−1) =
T∏

τ=1

p(yτ |xτ).

1

Integrate over y2:T to conclude that p(y1|x0:T) = p(y1|x1). Use this and integrate over

only y3:T to conclude that p(y2|x0:T , y1) = p(y2|x2). Proceed in a similar fashion to

conclude that p(yt|x0:T , y1:t−1) = p(yt|xt) for each t, i.e. item (b) holds.

3. The sequence is an HMM if and only if

(a) given Xt, Xt+1 is independent of X0:t−1 (past-X) and Y0:t (past-Y)

(b) given Xt, Yt is independent of X0:t−1 (past-X) and Y0:t−1 (past-Y)

This also follows by writing out the expression for p(x0:t, y0:t) using chain rule and then

using (1) and comparing coefficients.

Either of the above can also be concluded by using results from the Graphical Models

handout.

The following can be shown either using Theorem 2 of the Graphical Models handout or

directly.

1. The joint PMF or PDF of the hidden states given by

p(x0:T) = p(x0)
T∏

τ=1

p(xτ |xτ−1) (3)

This follows using (1) and integrating over y1:T .

2. Given Xt, Xt+1:T are conditionally independent (c.i.) of past-X (X0:t−1) and of past-Y

(Y0:t).

3. Given Xt, Yt:T are c.i. of past-X (X0:t−1) and of past-Y (Y0:t−1).

4. Given Xt−k, Yt:T is c.i. of Y0:t−k and of X0:t−k−1 for k > 0.

5. given Xt, Xt+1 is c.i. of past-X (X0:t−1) and of past-Y (Y0:t), and

6. given Xt, Yt is c.i. of all-X (X0:t−1, Xt+1:T) and all-Y (Y0:t−1, Y0:t+1:T).

7. By reversing the Markov chain {Xt}, we can also claim that given Xt, Xt−1 is c.i. of

all future-X (Xt+1:T) and all future-Y (Yt:T).

8. Given Xt−k, Yt:T is c.i. of X0:t−k−1 and Y0:t−k for k > 0. If k = 0, replace Y0:t−k by

Y0:t−1

9. By reversing the Markov chain {Xt}, the opposite of 3 can also be shown for future.

10. Many more

2

Let us try to prove item 2. We get

p(xt+1:T |xt, x0:t−1, y0:t) = p(xt+1|xt, x0:t−1, y0:t)p(xt+2:T |xt+1, x0:t, y0:t)

= p(xt+1|xt)p(xt+2:T |xt+1, x0:t, y0:t)

= p(xt+1|xt)p(xt+2|xt+1, x0:t, y0:t)p(xt+3:T |xt+2, x0:t+1, y0:t)

= p(xt+1|xt)p(xt+2|xt+1)p(xt+3:T |xt+2, x0:t+1, y0:t) (4)

The first equality uses chain rule, the second uses (a) of definition 3, the third uses chain

rule. The fourth uses (a) of definition 3 and the following fact with X ≡ Xt+2, W ≡ Xt+1,

Z ≡ Y0:t and Y ≡ Yt+1.

Fact 1 X independent of {Z, Y } implies that X independent of Z. Similarly given W , X

c.i. of {Z, Y } implies that given W , X c.i. of Z. The proof of this follows by writing

p(x, z, y|w) = p(x|w)p(z, y|w) and integrating over y.

Proceeding in a similar fashion, we finally get

p(xt+1:T |xt, x0:t−1, y0:t) =
T∏

τ=t+1

p(xτ |xτ−1)

Using (a) of Definition 2 and Fact 1, p(xt+1:T |xt) =
∏T

τ=t+1 p(xτ |xτ−1) and thus we get

p(xt+1:T |xt, x0:t−1, y0:t) = p(xt+1:T |xt)

i.e. the result follows.

The other conclusions given above can be proved similarly.

HMM Examples.

1. The state space model used for defining the Kalman filter was an example of an HMM

with continuous states, Xt and continuous observations, Yt.

2. Xt refers to today’s weather which can take one of three possible values, {rainy, cloudy,
sunny}. Yt is a binary random variable which can take two possible values {class occurs,
no class occurs}. It is natural to claim that today’s weather depends only on yesterday’s

weather, i.e. given yesterday’s weather, today’s weather is c.i. of past weather or of

whether class occurred yesterday or in the past or not. Also, the chance that class will

occur today or not is governed only by today’s weather (if it is sunny, it is more likely

that the class will not occur!) and given today’s weather, the chance is independent

of all past or future weather and also of whether classes occurred in the past or in

the future. This, of course models, an irresponsible professor who does not care about

whether the material is covered or not!

3

3. Speech recognition, Xt: different phonems, Yt: linear prediction coefficients (LPC’s) of

the AR model describing observed speech.

4. Gesture recognition, Xt: different gestures out of a set, Yt: outer contour of the ob-

served hand shape (for hand gestures)

5. In last two examples, Xt is discrete, Yt is continuous, that is allowed too.

Causal Posterior Computation.

1. We refer to p(xt|y0:t) as the causal posterior. In real-time applications, there is a need

to compute it recursively, for example, to be able to compute the causal MMSE or

causal MAP estimate.

2. “Recursive computation” means use the causal posterior and t − 1 and the current

observation to compute the causal posterior at t.

3. Using Bayes’ rule and HMM properties, the causal posterior satisfies

p(xt|y0:t) ∝ p(xt, yt|y0:t−1)

= p(xt|y0:t−1)p(yt|xt, y0:t−1)

= p(xt|y0:t−1)p(yt|xt) (using HMM definition 3)

= p(yt|xt)
∫
p(xt, xt−1|y0:t−1)dxt−1

= p(yt|xt)
∫
p(xt−1|y0:t−1)p(xt|xt−1, y0:t−1)dxt−1

= p(yt|xt)
∫
p(xt−1|y0:t−1)p(xt|xt−1)dxt−1 (using HMM definition 3)(5)

4. The above recursion is another way to derive the Kalman filter recursion: the causal

MMSE estimate, E[Xt|Y0:t], is the expectation of Xt under the causal posterior. Since

everything there is jointly Gaussian, the posteriors will also be Gaussian and hence

completely specified by the mean and covariance. Kay’s book does it this way.

5. The same rules apply for discrete states: just replace
∫
by

∑
.

2 Discrete-state HMM

We study the set of techniques developed for discrete-state HMM’s. The material is

based on Rabiner’s tutorial (Proc. IEEE, February 1989).

Thus any Xt is a discrete random variable which takings one of N possible values, i =

1, 2, . . . N . Yt is either discrete or continuous.

4

2.1 Notation

A time-homogenous discrete state HMM is completely specified by

πi , P (Xt = i)

ai,j , P (Xt = j|Xt−1 = i)

bj(y) , P (Yt = y|Xt = j) (if Yt is continuous this is replaced by the conditional PDF)

(6)

The following notation is used in efficient computation of various quantities.

αt(i) , p(y0:t, xt = i)

βt(i) , p(yt+1:T |xt = i)

γt(i) , p(xt = i|y0:T) (note this conditions on all observations)

ξt(i, j) , p(xt = i, xt+1 = j|y0:T) (note this conditions on all observations)

(7)

2.2 Recursion for αt, βt, γt, ξt

Consider αt

αt(i) , p(y0:t, xt = i)

=
N∑
j=1

p(y0:t, xt = i, xt−1 = j)

=
N∑
j=1

p(y0:t−1, xt−1 = j)p(xt = i|xt−1 = j, y0:t−1)p(yt|xt = i, xt−1 = j, y0:t−1)

=
N∑
j=1

p(y0:t−1, xt−1 = j)p(xt = i|xt−1 = j)p(yt|xt = i) (using HMM definition 3)

=
N∑
j=1

p(y0:t−1, xt−1 = j)ajibi(yt)

= bi(yt)
N∑
j=1

αt−1(j)aj,i (8)

5

Consider βt

βt(i) , p(yt+1:T |xt = i)

=
N∑
j=1

p(yt+1:T , xt+1 = j|xt = i)

=
N∑
j=1

p(xt+1 = j|xt = i)p(yt+1|xt+1 = j, xt = i)p(yt+2:T |xt+1 = j, xt = i, yt+1)

=
N∑
j=1

p(xt+1 = j|xt = i)p(yt+1|xt+1 = j)p(yt+2:T |xt+1 = j) (using HMM definition 3)

=
N∑
j=1

ai,jbj(yt+1)βt+1(j) (9)

Consider γt. Using definitions of αt(i) and βt(i), it is clear that γt(i) ∝ αt(i)βt(i). Thus,

γt(i) =
1∑N

j=1 αt(j)βt(j)
αt(i)βt(i) (10)

Consider ξt

ξt(i, j) , p(xt = i, xt+1 = j|y0:T)

=
1

p(y0:T)
p(y0:T , xt = i, xt+1 = j)

=
1

p(y0:T)
p(xt = i, y0:t)p(xt+1 = j|xt = i, y0:t)p(yt+1:T |xt+1 = j, xt = i, y0:t)

=
1

p(y0:T)
p(xt = i, y0:t)p(xt+1 = j|xt = i)p(yt+1:T |xt+1 = j) (using HMM definition 3)

=
1

p(y0:T)
αt(i)ai,jβt(j)

=
1∑

i′
∑

j′ αt(i′)ai′,j′βt(j′)
αt(i)ai,jβt(j) (11)

2.3 Computing p(y0:T): Forward algorithm, Backward algorithm

Brute force computation of p(y0:T) will require evaluating

p(y0:T) =
∑
x0:T

p(x0)[
T∏
t=1

p(xt|xt−1)]p(y0|x0)[
T∏
t=1

p(yt|xt)] (12)

will require O(NT) computations.

6

2.3.1 Forward algorithm

A fast and causal way to compute p(y0:T) is to go forward in time

p(y0:T) =
∑
i

αT (i) (13)

The recursion for αt(i) is given in (8). This takes O(N2T) computation only.

2.3.2 Backward Algorithm

Another O(N2T) way to compute p(y0:T) is going backwards in time

p(y0:T) =
∑
i

β0(i)πi (14)

The recursion for βt(i) is given in (9).

Typically one would use the forward algorithm to compute this, since that is also causal.

There may be situations, e.g. if this is done offline and if observations are stored as last-in-

first-out where one may need to use the backward algorithm.

2.4 EM algorithm for discrete-state HMM parameter estimation:

Baum Welch algorithm

Let θ denote the set of parameters. In this case, θ includes all elements {ai,j}, {πi} and the

parameters of bi(y).

Assumption 1 Assume for the discussion below that Yt’s are also discrete and take M

possible values, 1, 2, . . .M . Thus, in bi(y), y can be 1, 2, . . .M .

Then θ = {πi}i=1,...,N , {ai,j}i=1,...N,j=1,...N , {bi(y)}i=1...N,y=1,...M .

Let θk denote the parameter estimate at the kth iteration. Recall that the EM algorithm

computes

θk+1 = argmax
θ
Q(θ, θk) s.t. constraints on θ

where Q(θ, θk) , E[log p(y1:T , X0:T ; θ)|y1:T ; θk] (15)

i.e. at each iteration EM maximizes the posterior expectation of the logarithm of the com-

plete data likelihood (the posterior expectation is computed using the parameter estimates

from the previous iteration). As discussed earlier (when talking about EM algorithm), un-

der certain assumptions, this leads to maximization of the observed data likelihood, i.e. its

solution converges to argmaxθ p(y0:T ; θ).

7

Now for our HMM,

log p(y0:T , X0:T ; θ) = log πX0 +
T∑
t=1

log aXt−1,Xt +
T∑
t=0

log bXt(yt) (16)

Thus the first term is only a function of random variable X0, the t
th entry of the second term

is only a function of Xt−1, Xt and the tth entry of the third term is only a function of Xt.

E[log p(y0:T , X0:T ; θ)|y0:T ; θk]

= E[log πX0 |y0:T ; θk] +
T∑
t=1

E[log aXt−1,Xt |y0:T ; θk] +
T∑
t=0

E[log bXt(yt)|y0:T ; θk]

=
∑
i

p(x0 = i|y0:T) log πi +
T∑
t=1

∑
i,j

p(xt−1 = i, xt = j|y0:T) log ai,j +
T∑
t=0

∑
i

p(xt = i|y0:T) log bi(yt)

=
∑
i

γk0 (i) log πi +
T∑
t=1

∑
i,j

ξkt−1(i, j) log ai,j +
T∑
t=0

∑
i

γkt (i) log bi(yt)

=
∑
i

γk0 (i) log πi +
∑
i,j

T∑
t=1

ξkt−1(i, j) log ai,j +
∑
i

T∑
t=0

γkt (i) log bi(yt) (17)

where γkt , ξ
k
t are computed using θk in the recursions given in (10) and (11).

We need to maximize the above subject to the constraints∑
i

πi = 1∑
j

ai,j = 1, ∀i = 1, . . . N

M∑
y=1

bi(y) = 1, ∀i = 1, . . . N (18)

Using Lagrange multipliers, differentiating and solving, the final solutions are

πk+1
i = γk0 (i)

ak+1
i,j =

1∑N
j′=1

∑T
t=1 ξ

k
t−1(i, j

′)
(

T∑
t=1

ξkt−1(i, j)) =
1∑T

t=1 γt(i)
(

T∑
t=1

ξkt−1(i, j))

bi(m)k+1 =
1∑T

t=0 γ
k
t (i)

T∑
t=0

I(yt = m)γkt (i) (19)

where I(A) is 1 if A occurs and 0 otherwise. Here γkt , ξ
k
t are computed using the parameter

estimates at iteration k in the recursions given earlier.

Thus, the stepwise EM algorithm is as follows. At iteration k + 1,

8

1. Compute γkt (i) for all i for all t using (10) and parameter estimates from iteration k,

θk.

2. Compute ξkt (i, j) for all i, j for all t using (11) and parameter estimates from iteration

k, θk.

3. Compute parameter estimates at iteration k + 1, θk+1, using (19.

Now, if Yt’s are not discrete, but are continuous r.v.’s with parameters of their PDF being

governed by the current state, e.g. Yt’s can be scalar Gaussians with mean µi and variance

σ2
i if the state Xt = i. In this case, their estimates can be computed as follows.

We need to maximize the following w.r.t. µi, σ
2
i .∑

i

T∑
t=0

γkt (i) log bi(yt) =
∑
i

T∑
t=0

γkt (i)[− log(
√
2π)σ2

i −
(yt − µi)

2

2σ2
i

] (20)

Thus,

µk+1
i =

1∑T
t=0 γ

k
t (i)

T∑
t=0

γkt (i)yt

σ2
i
k+1

=
1∑T

t=0 γ
k
t (i)

T∑
t=0

γkt (i)(yt − µk+1
i)2 (21)

2.5 General idea of Viterbi algorithm / dynamic programming

In dynamic programming / Viterbi algorithm, the goal is to find

argmaxq0:T fT (q0:T) (22)

where ft(q0:t) at any t satisfies

ft(q0:t) = ft−1(q0:t−1) + ht(qt−1, qt) + gt(qt) (23)

Notice that ft(.) is a function only of the first t + 1 variables. Typically path optimization

problems are of this type.

Efficient solutions strategy: Let

δt(i) , max
q0:t−1

ft(q0:t−1, i) (24)

Then, using (23),

δt(i) = max
q0:t−1

[ft−1(q0:t−1) + ht(qt−1, i) + gt(i)]

= max
qt−1

max
q0:t−2

[ft−1(q0:t−1) + ht(qt−1, i) + gt(i)]

= gt(i) + max
qt−1

[ht(qt−1, i) + max
q0:t−2

ft−1(q0:t−1)]

= gt(i) + max
qt−1

[ht(qt−1, i) + δt−1(qt−1)] (25)

9

Also store the optimal path to get to qt for each value of qt. So if qt ∈ {1, 2, . . . N} then store

the optimal path to get to qt = i for each i in the set. For the above problem, this can be

done efficiently by only storing the optimal value of qt−1 that gets you to qt = i and doing

this for each i at each t. Thus, at each t, for each qt = i, we store

ψt(i) , argmax
qt−1

[ht(qt−1, i) + δt−1(qt−1)] (26)

To summarize the above idea, we do the following.

1. Initialize at t = 0 to δ0(i) = f0(i) for all i = 1, 2 . . . N

2. Starting at t = 1, at each t, compute the following for all i = 1, 2 . . . N

δt(i) = gt(i) + max
qt−1

[ht(qt−1, i) + δt−1(qt−1)] (27)

3. Simultaneously, at each t, for each i = 1, 2 . . . N also store the maximizer of the above,

i.e. store

ψt(i) = argmax
qt−1

[ht(qt−1, i) + δt−1(qt−1)] (28)

4. At t = T , find the optimal cost and the optimal value of qT as

max
i
δT (i),

q∗T = argmax
i
δT (i) (29)

5. Backtrack using ψt to find the optimal state sequence, i.e. starting with t = T − 1, go

backwards,

q∗t = ψt+1(q
∗
t+1) (30)

2.6 Posterior MAP (non-causal) computation: Viterbi algorithm

We would like to find the non-causal posterior MAP estimate is

x∗0:T , argmax
x0:T

p(x0:T |y0:T) = argmax
x0:T

p(x0:T , y0:T) = argmax
x0:T

log p(x0:T , y0:T) (31)

Using notation from above,

ft(x0:t) := log p(x0:t, y0:t) (32)

Using the HMM definition, it is easy to see that

ft(x0:t) = ft−1(x0:t−1) + log p(xt|xt−1) + log p(yt|xt) (33)

Thus,

ht(xt−1, xt) := log p(xt|xt−1)

gt(xt) := log p(yt|xt) (34)

Thus, the final Viterbi algorithm is

10

1. Initialize at t = 0 to δ0(i) = f0(i) = πibi(y0) for all i = 1, 2 . . . N

2. Starting at t = 1, at each t, compute the following for all i = 1, 2 . . . N

δt(i) = log bi(yt) + max
xt−1=1,2,...N

[log axt−1,i + δt−1(xt−1)] (35)

3. Simultaneously, at each t, for each i = 1, 2 . . . N also store the maximizer of the above,

i.e. store

ψt(i) = arg max
xt−1=1,2,...N

[log axt−1,i + δt−1(xt−1)] (36)

4. At t = T , find the optimal cost and the optimal value of qT as

max
i
δT (i),

x∗T = argmax
i
δT (i) (37)

5. Backtrack using ψt to find the optimal state sequence, i.e. starting with t = T − 1, go

backwards,

z∗t = ψt+1(x
∗
t+1) (38)

2.7 Direct derivation of Viterbi algorithm for HMMs

Let

δt(xt) , max
x0:t−1

p(x0:t, y0:t)

ψt(xt) , arg max
1≤xt−1≤N

δt−1(xt−1)axt−1,xt (39)

Recursion for δt

δt(i) , max
x0:t−1

p(x0:t, y0:t)

= max
x0:t−1

p(x0:t−1, y0:t−1)p(xt = i|x0:t−1, y0:t−1)p(yt|xt, x0:t−1, y0:t−1)

= max
x0:t−1

p(x0:t−1, y0:t−1)p(xt = i|xt−1)p(yt|xt = i) (using HMM definition 3)

= max
x0:t−1

p(x0:t−1, y0:t−1)axt−1,ibi(yt)

= bi(yt)max
xt−1

(max
x0:t−2

p(x0:t−1, y0:t−1))axt−1,i

= bi(yt)max
j
δt−1(j)aj,i (40)

Also,

ψt(i) = argmax
j
δt−1(j)aj,i (41)

Thus,

x∗T = arg max
1≤i≤N

δT (i)

x∗t = ψt+1(x
∗
t+1), ∀ t = T − 1, T − 2, . . . 0 (42)

11

