‘ Motivation and Applications: Why Should | Study Probability ?I

e As stated by Laplace, “Probability is common sense reduzed t
calculation”.

e You need to first learn the theory required to correctly de¢he
calculations. The examples that | solve and those in the badkhe
homeworks will provide a wonderful practical motivationtasvhy you
need to learn the theory.

¢ If you patiently grasp the basics, especially the first 4 tdagof BT, it
will be the most useful thing you've ever learnt - whether yoausue a
career in EE or CE or Economics or Finance or Management aad als
while you try to invest in stocks or gamble in Las Vegas!

e Applications: communications (telephones, cell phon&s, 1), signal
processing (image and video denoising, face recognitranking



moving objects from video,...), systems and control (operaiimg
airplane, fault detection in a system,...), predicting religbof a system
(e.g. electrical system), resource allocation, internetqmols,
non-engineering applications (e.g. medicine: predictiogy prevalent a
disease is or well a drug works, weather forecasting, ecaa®)m



‘ Introduction: Topics Covered. Chapter 1, 1.1 - 1.6'

What is Probability

Set Theory Basics

Probability Models

Conditional Probability

Total Probability and Bayes Rule
Independence

Counting



‘What IS Probability? I

e Measured relative frequency of occurrence of an event.
Example: toss a coin 100 times, measure frequency of heamsoute
probability of raining on a particular day and month (usiagiyears’
data)

e Or subjective belief about how “likely” an event is (when dat have
data to estimate frequency).
Example: any one-time event in history or “how likely is iatra new
experimental drug will work?”
This may either be a subjective belief or derived from thesids; for
e.g. if | flip a symmetric coin (equal weight on both sides), ll get a
head with probabilityl /2.

e For probabilistic reasonindgwo types of problems need to be solved



1. Specify the probability “model” or learn it (covered intatsstics
class).

2. Use the “model” to compute probability of different ev&(tovered
here).

e We will assume the model is given and will focus on problermzhis
course.



‘ Set Theory Basici

Set: any collection of objects (elements of a set).

Discrete sets
— Finite number of elements, e.g. numbers of a die
— Or infinite but countable number of elements, e.g. set of eneg

Continuous sets
— Cannot count the number of elements, e.g. all real numbenskat
O and 1.

“Universe” (denoted?): consists of all possible elements that could be
of interest. In case of random experiments, it is the setlqfaasible
outcomes. Example: for coin tossés—= {H,T'}.

Empty set (denoted): a set with no elements



Subset:A C B: if every element of A also belongs to B.

Strict subset A C B: if every element of A also belongs to B and B has
more elements than A.

Belongs:<, Does not belong#

Complement: A’ or A¢, Union: A U B, Intersection/AN B
—- A2 {recQlz ¢ A}

— AUB = {z|x € A, or x € B}, x € Q is assumed.

— ANB = {z|lv € A, and x € B}

— Visualize using Venn diagrams (see book)

Disjoint sets: A and B are disjoint if AN B = ¢ (empty), i.e. they
have no common elements.



e DeMorgan’s Laws
(AUB) = A'nB’ (1)
(AnB) = A'UB (2)

— Proofs: Need to show that every element of LHS (left hand)sgle
also an element of RHS (right hand side), i.e. LHRHS and show
vice versa, l.e. RH& LHS.

— We show the proof of the first property
x If z € (AU B)’, it means that x does not belong to A or B. In
other words x does not belong to A and x does not B either. This
means X belongs to the complement of A and to the complement
of B,i.e.z € A’ N B'.
+ Just showing this much does not complete the proof, needits sh

the other side also.
x If x € A’ B’, it means that x does not belong to A and it does not



belong to B, i.e. it belongs to neither A nor B, iec (AU B)’
« This completes the argument

— Please read the section on Algebra of Sets, pg 5



| Probabilistic models'

e There is an underlying process calliexperimentthat produces exactly
ONE outcome
e A probabilistic model: consists of a sample space and a pibtydaw

— Sample space (denoté€l): set of all possible outcomes of an
experiment

— Event: any subset of the sample space

— Probability Law: assigns a probability to every set A of pbles
outcomes (event)

— Choice of sample space (or universe): every element sheuld b
distinct and mutually exclusive (disjoint); and the spauoewdd be
“collectively exhaustive” (every possible outcome of apesment
should be included).
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Probability Axioms:
1. Nonnegativity. P(A) > 0 for every eventA.

2. Additivity. If A and B are twodisjoint events, then
P(AuB)=P(A)+ P(B)
(also extends to any countable number of disjoint events).

3. Normalization. Probability of the entire sample spad&(f2) = 1.

Probability of the empty sef?(¢) = 0 (follows from Axioms 2 & 3).

Sequential models, e.g. three coin tosses or two sequenitgabf a die.
Tree-based description: see Fig. 1.3

Discrete probability law: sample space consists of a finit@iper of
possible outcomes, law specified by probability of singéednt events.

— Example: for a fair cointos$) = {H,T}, P(H) = P(T) = 1/2

— Discrete uniform law for any evem:
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P(A) = number of elements in A

n

e Continuous probability law: e.d2 = [0, 1]: probability of any single
element event is zero, need to talk of probability of a sudal, |a, b]
of |0, 1].

See Example 1.4, 1.5 (This is slightly more difficult. We wilveo
continuous probability and examples later).

e Properties of probability laws
1. If A C B,thenP(A) < P(B)

2. PLAUB)=P(A)+ P(B)— P(AN B)

3. PLAUB) < P(A) + P(B)

4. PIAUBUC)=PA)+P(A'NB)+ P(ANnB'NC)

5. Note: book used® for A’ (complement of set A).

6. Proofs: Will be covered in next class. Visualize: Venrmgdsems.
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‘Conditional Probability I

Given that we know that an event B has occurred, what is thiegimoty
that event A occurred? Denoted B\ A|B). Example: Roll of a 6-sided
die. Given that the outcome is even, what is the probabifiy 7
Answer: 1/3

When number of outcomes is finite and all are equally likely,
number of elements ol N B

P(A|B) = number of elements ab (3)
In general,
P(ANB
P(ajp) = 2 @)

P(A|B) is a probability law (satisfies axioms) on the univefse
Exercise: show this.
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e Examples/applications
— Example 1.7, 1.8, 1.11

— Construct sequential modelB(A N B) = P(B)P(A|B). Example:
Radar detection (Example 1.9). What is the probability ofaineraft
not present and radar registers it (false alarm)?

— See Fig. 1.9: Tree based sequential description
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Total Probability and Bayes RuIeI

e Total Probability Theorem: Let,, ... A,, be disjoint events which form
a partition of the sample spadel{ ; A; = §2). Then for any event B,
P(B) = P(AinB)+...P(A,NB)
= P(A,)P(B|A1)+...P(A,)P(B|A,) (5)

Visualization and proof: see Fig. 1.13

e Example 1.13,1.15

e Bayesrule: Letd,, ... A,, be disjoint events which form a partition of
the sample space. Then for any event B,B(tB) > 0, we have

 P(A)P(BJA;) P(A;)P(B|A;)
P(Ai|B) = P(B) - P(A)P(BJ|A)) +...P(A,)P(B|A,) (6)
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e Inference using Bayes rule

— There are multiple “causesi;, As, .. A,, that result in a certain
“effect” B. Given that we observe the effeBt what is the

probability that the cause was;? Answer: use Bayes rule. See Fig.
1.14

— Radar detection: what is the probability of the aircrafinggpresent
given that the radar registers it? Example 1.16

— False positive puzzle, Example 1.18: very interesting!
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‘ Independencﬂ

P(A|B) = P(A) and soP(AN B) = P(B)P(A): the fact that B has
occurred gives no information about the probability of acence of A.
Example: A= head in first coin toss, B = head in second coin toss

“Independence”. DIFFERENT from “mutually exclusive” (dis joint)

— Events A and B are disjoint iP(A N B) = 0: cannot be independent
if P(A) > 0andP(B) > 0.
Example: A = head in a coin toss, B =tail in a coin toss

— Independence: a concept for events in a sequence. Indeyende
events withP(A) > 0, P(B) > 0 cannot be disjoint

Conditional independence **

Independence of a collection of events
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— P(NijesA;) = ;s P(A;) for every subses of {1,2,..n}

e Reliability analysis of complex systems: independencaragsion often
simplifies calculations
— Analyze Fig. 1.15: what i’ (system fail$ of the systemd — B?

x Let p; = probability of success of component

* m components in serieg(systemfailg =1 — pi1ps ... pm
(succeeds if all components succeed).

x m components in parallel:
P(systemfail$ = (1 —p1)...(1 — p,,) (fails if all the
components fail).

e Independent Bernoulli trials and Binomial probabilities

— A Bernoulli trial: a coin toss (or any experiment with two gdde
outcomes, e.g. it rains or does not rain, bit values)

— Independent Bernoulli trials: sequence of independemt msEses
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— Binomial: Givenn independent coin tosses,what is the probability of
k heads (denoted(k))?

x probability of any one sequence withheads igak(l — p)n_k
+ number of such sequences (from counting argumeétéj):)

x p(k) = ( ; )p’“(l—p)”—’f,where( . ) = W_Lk'),k,

— Application: what is the probability that more tharwustomers need
an internet connection at a given time? We know that at a dives
the probability that any one customer needs connectipn is

Answer: Z p(k)
k=c+1
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Counting I

e Needed in many situations. Two examples are:

1. Sample space has a finite number of equally likely outcomes
(discrete uniform), compute probability of any event A.

2. Or compute the probability of an event A which consists Dihie
number of equally likely outcomes each with probabijitye.g.
probability of k heads im coin tosses.

e Counting principle (See Fig. 1.17): Consider a process stngiofr
stages. If at stage 1, there argpossibilities, at stage 2, possibilities
and so on, then the total number of possibilities®s . . . n,..

— Example 1.26 (number of possible telephone numbers)

— Counting principle applies even when second stage depentfeo
first stage and so on, Ex. 1.28 (no. of words with 4 distincelsit
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e Applications:k-permutations.
— n distinct objects, how many different ways can we picébjects
and arrange them in a sequence?

« Use counting principle: choose first objectirpossible ways,
second one im — 1 ways and so on. Total no. of ways:

n(n—l)...(n—k#—l):(n%!k)!

x If k& = n, then total no. of ways =!
+ Example 1.28, 1.29
e Applications:k-combinations.
— Choice ofk elements out of an-element set without regard to order.

— Most common example: There atgeople, how many different
ways can we form a committee bfpeople? Here order of choosing

the £k members is not important. Denote answer(byz )

— Note that selecting A-permutation is the same as first selecting a
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k-combination and then ordering the elementsi{indifferent ways,

: n! n
— Thus( " ) S

k El(n—k)!"
— How will you relate this to the binomial coefficient (humbédeays
to getk heads out of, tosses)?
Toss number | = person |, a head in a toss = the person (tossanumb

IS In committee

e Applications:k-partitions. **
— A combination is a partition of a set into two parts
— Partition: given am-element set, consider its partition inteubsets
of sizeni, ns,...,n, whereny + nyg + ...n, = n.
x Use counting principle ank-combinations result.
* Form the first subset. Choosg elements out ofi: ( o ) ways.
* Form second subset. Choasgelements out ofi — ny available

n
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n—nl

elements:( s ) and so on.
+ Total number of ways to form the partition:

n n —nq (n —mn1 —no...np_1) —
nq nog noy

n!

ni'na!...n,!
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Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics and an intuitive feel.

1 What is a random variable (r.v.)?

A real valued function of the outcome of an experiment
Example: Coin tosses. r.v. X =1 if heads and X = 0 if tails (Bernoulli r.v.).
A function of a r.v. defines another r.v.

Discrete r.v.: X takes values from the set of integers

Discrete Random Variables & Probability Mass Function (PMF)

Probability Mass Function (PMF): Probability that the r.v. X takes a value x is PMF
of X computed at X = z. Denoted by px(x). Thus

px(x) = P({X = z}) = P(all possible outcomes that result in the event {X = z}) (1)

Everything that we learnt in Chap 1 for events applies. Let € is the sample space (space of
all possible values of X in an experiment). Applying the axioms,

- px(z) >0
- P{X € S5}) = pr(m) (follows from Additivity since different events {X = x} are
z€S
disjoint)
— Z px(z) =1 (follows from Additivity and Normalization).
e

— Example: X = number of heads in 2 fair coin tosses (p = 1/2). P(X > 0) pr

0.75.

Can also define a binary r.v. for any event A as: X = 1 if A occurs and X = 0 otherwise.
Then X is a Bernoulli r.v. with p = P(A).

Bernoulli (X =1 (heads) or X = 0 (tails)) r.v. with probability of heads p
Bernoulli(p) : px(z) =p*(1 —p)'™, =0, orz =1 (2)

Binomial (X = x heads out of n independent tosses, probability of heads p)
Binomial(n,p) : px(x) = ( " )px(l —p)"* x=0,1,...n (3)
Geometric r.v., X, with probability of heads p (X= number of coin tosses needed for a head

to come up for the first time or number of independent trials needed to achieve the first
“success”).



— Example: I keep taking a test until I pass it. Probability of passing the test in the 2*
try is px ().
— Easy to see that

Geometric(p) : px(z)=(1—p)*'p, £=0,1,2,...00 (4)

e Poisson r.v. X with expected number of arrivals A (e.g. if X = number of arrivals in time 7
with arrival rate A, then A = A7)

—A A
Poisson(A) : px(z) = %, x=0,1,...00 (5)
e Uniform(a,b):
1/(b—a+1), if t=a,a+1,...0
= 6
px () { 0, otherwise (6)

pmf of Y = g(X)

—py()=P{Y =y}) = >  px()
zlg(z)=y
Example Y = |X|. Then py(y) = px(y) + px(—y), if y > 0 and py(0) = px(0).
Exercise: X ~ Uniform(—4,4) and Y = | X|, find py (y).

Expectation, mean, variance

— Motivating example: Read pg 81

— Expected value of X (or mean of X): Z xpx(
e
— Interpret mean as center of gravity of a bar with weights px(x) placed at location x
(Fig. 2.7)
— Expected value of Y = g(X): E[Y] = E[g(X)] = Z g(x)px(z). Exercise: show this.
z€eQ
— n moment of X: E[X"]. n'" central moment: E[(X — E[X])"].

— Variance of X: var[X] £ E[(X — E[X])?] (2nd central moment)
— Y =aX +b (linear fn): E[Y] = aE[X] + b, var]Y] = a?var[X]
Poisson: E[X]| = A, var[X]| = A (show this)

Bernoulli: E[X] = p, var[X] = p(1 — p) (show this)

— Uniform(a,b): E[X] = (a +b)/2, var[X] = L==L (show this)

e Application: Computing average time. Example 2.4

e Application: Decision making using expected values. Example 2.8 (Quiz game, compute
expected reward with two different strategies to decide which is a better strategy).

e Binomial(n,p) becomes Poisson(np) if time interval between two coin tosses becomes very
small (so that n becomes very large and p becomes very small, but A = np is finite). **



3 Multiple Discrete Random Variables: Topics

Joint PMF, Marginal PMF of 2 and or more than 2 r.v.’s

PMF of a function of 2 r.v.’s

Expected value of functions of 2 r.v’s

Expectation is a linear operator. Expectation of sums of n r.v.’s
Conditioning on an event and on another r.v.

Bayes rule

Independence

4 Joint & Marginal PMF, PMF of function of r.v.s, Expectation

For everything in this handout, you can think in terms of events {X = z} and {Y = y} and
apply what you have learnt in Chapter 1.

The joint PMF of two random variables X and Y is defined as
pxy(z,y) £ P(X =2,Y =y)
where P(X = 2,Y =y) is the same as P({X =z} N{Y =y}).

— Let A be the set of all values of x,y that satisfy a certain property, then
P((X,Y) € A) =3 eaPxy (T, y)

— e.g. X = outcome of first die toss, Y is outcome of second die toss, A = sum of outcomes
of the two tosses is even.

Marginal PMF is another term for the PMF of a single r.v. obtained by “marginalizing”
the joint PMF over the other r.v., i.e. the marginal PMF of X, px(z) can be computed as
follows:

Apply Total Probability Theorem to px y(z,y), i.e. sum over {Y = y} for different values y
(these are a set of disjoint events whose union is the sample space):

px(z) = Z px,y(z,y)
Y

Similarly the marginal PMF of Y, py (y) can be computed by “marginalizing” over X

py (W) =Y pxy(z.y)

PMF of a function of r.v.’s: If Z = ¢g(X,Y),

pz(z)= > pxy(x.y)

(z,y):9(x,y)=2

— Read the above as pz(z) = P(Z = z) = P(all values of (X,Y") for which ¢(X,Y) = z2)



e Expected value of functions of multiple r.v.’s
It Z = g(X,Y),

E[Z] =Y g(a,y)pxy(z,y)
(z.y)

e See Example 2.9
e More than 2 r.v.s.

— Joint PMF of n r.v.’s: px, x,..x,(Z1,%2,...2y)

— We can marginalize over one or more than one r.v.,
e'g' le,XQ,...Xn71 (xla 172, L LEn,l) - an le,XQ,A..Xn (zla $27 LRI xn)
e.8. Pxy, X (T1,22) =3 . o0 o DXy, Xa, X, (1,82, - - Tp)

c.g. le (':Ul) = Z:{;g,x37...xn pX11X21'“Xn (331, T2, .. ':Un)
See book, Page 96, for special case of 3 r.v.’s

e Expectation is a linear operator. Fzxercise: show this
E[ale +as X0+ ... aan] = alE[Xl] + CLQE[XQ] + ... anE[Xn]

— Application: Binomial(n, p) is the sum of n Bernoulli r.v.’s. with success probability p,
so its expected value is np (See Example 2.10)

— See Example 2.11

5 Conditioning and Bayes rule

e PMF of r.v. X conditioned on an event A with P(A) >0

PU{X =z} N A)

— pxja(7) is a legitimate PMF, i.e. Y px|a(x) = 1. Ezercise: Show this
— Example 2.12, 2.13

e PMF of r.v. X conditioned on r.v. Y. Replace A by {Y =y}

pxpy (zly) £ PUX = 2}{Y =y}) = P({XPZ({ch} 22;): v _ le;if/((z;y)

The above holds for all y for which p,(y) > 0. The above is equivalent to

pxy(7,y) = pxjy (2[y)py ()
pxy(z,y) = pyx (yl©)px ()

— pxpy(zly) (with py(y) > 0) is a legitimate PMF, i.e. > pxy(zly) = 1.
— Similarly, py|x(y|z) is also a legitimate PMF, i.e. >0 py|x(ylz) = 1. Show this.
— Example 2.14 (I did a modification in class), 2.15



e Bayes rule. How to compute pxy(z|y) using px(x) and py x (y|r),

PX,Y(HE, Y)
py(y)
pY|X(y’$)pX($)
sz Py|x (ylz")px (z')

pxy(zly) =

e Conditional Expectation given event A
BX|A] = prxm

Al = g(@)pxialz)

e Conditional Expectation given r.v. Y =y. Replace 4 by {Y =y}

EIX|Y =y] = pr)qy zly)

Note this is a function of Y = y.

e Total Expectation Theorem

ZPY EX]Y =y

Proof on page 105.

e Total Expectation Theorem for disjoint events Ay, As, ... A, which form a partition

ZP E[X|A;]

of sample space.

Note A;’s are disjoint and U} A; = Q

— Application: Expectation of a geometric r.v., Example 2.16, 2.17

6 Independence

e Independence of a r.v. & an event A. r.v. X is independent of A with P(A) > 0, iff

pxjal®) = px(z), forall x

— This also implies: P({X =2} N A) =px(z)P(A).
— See Example 2.19



e Independence of 2 r.v.’s. R.v.’s X and Y are independent iff
px|y(xly) = px (), for all x and for all y for which py (y) >0

This is equivalent to the following two things(show this)

pxy(z,y) = px(2)py (y)

pyix (ylz) = py (y), for all y and for all = for which py(z) >0

e Conditional Independence of r.v.s X and Y given event A with P(A) > 0 **
Px|y,A(7|y) = px|a(x) for all z and for all y for which py4(y) > 0 or that

pX,Y|A(90, y) = pX|A(x)pY|A(y)
e Expectation of product of independent r.v.s.
— If X and Y are independent, E[XY] = E[X]|E[Y].
EXY] = Y aypxy(z,y)

Y

= Z zypx (x)py (y)

y
= > upv(y)>_ apx()
= ;[X]E[Y] x
— If X and Y are independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)]. (Show).
o If X1, X5, ... X, are independent,
PX1, X, Xp (X1, T2, . Tn) = Px, (1)Px, (@2) - .- DX, (Tn)

e Variance of sum of 2 independent r.v.’s.
Let X, Y are independent, then Var[X + Y] = Var[X] + Var[Y].
See book page 112 for the proof

e Variance of sum of n independent r.v.’s.
If X1, Xo,... X, are independent,

Var(X; + Xo + ... X, = Var[Xq] + Var[Xa] + ... Var[X,]

— Application: Variance of a Binomial, See Example 2.20
Binomial r.v. is a sum of n independent Bernoulli r.v.’s. So its variance is np(1 — p)

— Application: Mean and Variance of Sample Mean, Example 2.21
Let X1, Xs,... X, be independent and identically distributed, i.e. px,(z) = px,(x) for

all 7. Thus all have the same mean (denote by a) and same variance (denote by v).
Sample mean is defined as S,, = W

Since E[] is a linear operator, E[S,] = > | 1E[X;] = 22 = q.

Since the X;’s are independent, Var[S,] = Y1, #Var[Xi] = _2

n? n

— Application: Estimating Probabilities by Simulation, See Example 2.22



Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics.

For exams/quizzes, you are not expected to know items with ** (these are provided

as extra information).

1 Continuous R.V. & Probability Density Function (PDF)

Example: velocity of a car

A r.v. X is called continuous if there is a function fx(x) with fx(x) > 0, called probability
density function (PDF), s.t. P(X € B) = [ fx(x)dx for all subsets B of the real line.

Specifically, for B = [a, b],

Pla< X <b) = /b Fx(@)da (1)
and can be interpreted as the area under the graph of the PDF fx (z).
For any single value a, P{X =a}) = [ fx(z)dz = 0.
Thus Pla< X <b)=Pla< X <b)=Pla<X <b)=Pla<X <b)
Sample space Q0 = (—00, )
Normalization: P(2) = P(—oco < X <oo0) =1. Thus [° _ fx(z)dz =1

Interpreting the PDF: For an interval [z, x 4+ §] with very small §,

z+0

Pz, 5+ 0]) = / fx(@dt ~ fx ()5 2)

t=x

Thus fx(x)= probability mass per unit length near z. See Fig. 3.2.
Continuous uniform PDF, Example 3.1

Piecewise constant PDF, Example 3.2

Connection with a PMF (explained after CDF is explained) **

Expected value: E[X] = [* _ xfx(x)dz. Similarly define F[g(X)] and var[X]
Mean and variance of uniform, Example 3.4

Exponential r.v.

e M ifa
ﬁx<ac>—{A a0 (3)

0, otherwise

Show it is a legitimate PDF.
— E[X] =1/, var[X] = 1/A? (show).

Example: X= amount of time until an equipment breaks down or a bulb burns out.

Example 3.5 (Note: you need to use the correct time unit in the problem, here days).



Cumulative Distribution Function (CDF)
e Cumulative Distribution Function (CDF), Fx(z) £ P(X < x) (probability of event {X < x}).

Defined for discrete and continuous r.v.’s

Discrete: Fx(z) = Z px (k) (4)
k<z
Continuous: Fx(z) = /_x fx(t)dt (5)

Note the PDF fx(z) is NOT a probability of any event, it can be > 1.

But Fx(z) is the probability of the event {X < z} for both continuous and discrete r.v.’s.

Properties

— Fx(z) is monotonically nondecreasing in z.
— Fx(x) > 0asx — —o0 and Fx(z) — 1 asz — oo

— Fx(x) is continuous for continuous r.v.’s and it is piecewise constant for discrete r.v.’s

Relation to PMF, PDF

Discrete: px (k) = Fx(k) — Fx(k—1) (6)
Continuous: fx(z) = dd%(w) (7)

Using CDF to compute PMF.

— Example 3.6: Compute PMF of maximum of 3 r.v.’s: What is the PMF of the maximum
score of 3 test scores, when each test score is independent of others and each score takes
any value between 1 and 10 with probability 1/107
Answer: Compute Fx (k) = P(X <k)=P({X; <k}, and {X2 <k}, and {X3 < k}) =
P{X1 < k})P({X2 < k})P{X3 < k}) (follows from independence of the 3 events) and
then compute the PMF using (6).

— For continuous r.v.’s, in almost all cases, the correct way to compute the CDF of a
function of a continuous r.v. (or of a set of continuous r.v.’s) is to compute the CDF
first and then take its derivative to get the PDF. We will learn this later.

e Connection of a PDF with a PMF **

— You learnt the Dirac delta function in EE 224. We use it to define a PDF for discrete

I.V.
— The PDF of a discrete r.v. X, fx(z) = Z px(j)o(x — 7).
j=—o00
— If I integrate this, I get Fx(z) = fx(t)dt = ZpX (7) which is the same as the CDF

t<x j<x

definition given in (4)



Geometric and exponential CDF **

— Let Xgeop be the number of trials required for the first success (geometric) with prob-
ability of success = p. Then we can show that the probability of {Xgeo, < k} is equal
to the probability of an exponential r.v. {Xczpo 1 < kd} with parameter A, if 6 satisfies
l—-p=eMord=—In(l-p)/A

Proof: Equate Fx,,, (k) =1—(1—p)* to Fx k§) =1 — e k0

— Implication: When ¢ (time interval between two Bernoulli trials (coin tosses)) is small,
then Fx,,, (k) ~ Fx k&) with p = A0 (follows because e ~ 1 — A for § small).

czpo,/\(

ezpo,)\(

Binomial(n,p) becomes Poisson(np) for small time interval, ¢, between coin tosses (Details
in Chap 5) **
Proof idea:

— Consider a sequence of n independent coin tosses with probability of heads p in any toss
(number of heads ~ Binomial(n,p)).

— Assume the time interval between two tosses is 9.

Then expected value of X in one toss (in time 0) is p.

When ¢ small, expected value of X per unit time is A = p/J.
— The total time duration is 7 = nd.

— When 0 — 0, but A and 7 are finite, n — oo and p — 0.

When ¢ small, can show that the PMF of a Binomial(n,p) r.v. is approximately equal
to the PMF of Poisson(At) r.v. with A7 = np

The Poisson process is a continuous time analog of a Bernoulli process (Details in Chap 5) **

3 Normal (Gaussian) Random Variable

The most commonly used r.v. in Communications and Signal Processing

X is normal or Gaussian if it has a PDF of the form

file) = oo
2ro

where one can show that u = E[X] and ¢? = var[X].
Standard normal: Normal r.v. with = 0, 02 = 1.

Cdf of a standard normal Y, denoted ®(y)

Yy
Bly) 2 P(Y <y) = —— [ el
V2T J_so

It is recorded as a table (See pg 155).

Let X is a normal r.v. with mean p, variance o2. Then can show that Y = % is a standard

normal r.v.



e Computing CDF of any normal r.v. X using the table for ®: Fy(z) = ®(*£). See Exam-
ple 3.7.

e Signal detection example (computing probability of error): Example 3.8. See Fig. 3.11. A
binary message is tx as a signal .S which is either -1 or +1. The channel corrupts the tx with
additive Gaussian noise, N, with mean zero and variance o2. The received signal, Y = S+ N.
The receiver concludes that a -1 (or +1) was tx’ed if Y < 0 (Y > 0). What is the probability
of error? Answer: It is given by P(N > 1) = 1 — ®(1/0). How we get the answer will be
discussed in class.

e Normal r.v. models the additive effect of many independent factors well **

— This is formally stated as the central limit theorem (see Chap 7) : sum of a large
number of independent and identically distributed (not necessarily normal) r.v.’s has an
approximately normal CDF.

4 Multiple Continuous Random Variables: Topics

e Conditioning on an event
e Joint and Marginal PDF
e Expectation, Independence, Joint CDF, Bayes rule

e Derived distributions

Function of a Single random variable: Y = ¢g(X) for any function g

)
Function of a Single random variable: ¥ = g(X) for linear function g
Function of a Single random variable: Y = ¢g(X) for strictly monotonic g
)

— Function of Two random variables: Z = ¢g(X,Y") for any function g

5 Conditioning on an event.

Ix(®) it A occurs
fxja(®) 1:{ PA)

A
0 otherwise

Consider the special case when A := {X € R}, e.g. the region R can be the interval [a,b]. In this
case, we should be writing fx|{xer}. But to keep things simple, we misuse notation to also write

X ifreR
) = P(xer) !
fX|R( ) { 0 otherwise
[x () :
_ fteR)}x(t)dt ifzxeR
0 otherwise



6 Joint and Marginal PDF

Twor.v.s X and Y are jointly continuous iff there is a function fx y (z,y) with fx y(z,y) >
0, called the joint PDF, s.t. P((X,Y) € B) = [ fx,y(x,y)dxdy for all subsets B of the 2D
plane.

Specifically, for B = [a,b] x [¢,d] = {(z,y) :a <z < b,c <y < d},
d b
Pla<X <bc<Y <d)= / / fxy(z,y)dxdy
y=c Jx=a
Interpreting the joint PDF: For small positive numbers 41, do,

c+d2  ratdi
Pla<X<a+,c<Y <c+6) = / / fxy(z,y)dzdy = fxy(a,c)d1d2
y=c r=a

Thus fxy(a,c) is the probability mass per unit area near (a,c).

Marginal PDF: The PDF obtained by integrating the joint PDF over the entire range of
one r.v. (in general, integrating over a set of r.v.’s)

b 00
Pla<X<b) = Pla<X<b-0<Y <x)= / / Ixy(z,y)dydx

Tr=a =—00

— () = / Fxy (@, y)dy
Yy

=—00

Example 3.12, 3.13

Conditional PDF

Conditional PDF of X given that Y = y is defined as

Fxpy (zly) & b(]fy—((z)y)

For any y, fx|y(z|y) is a legitimate PDF: integrates to 1.
Example 3.15

Interpretation: For small positive numbers d1, 05, consider the probability that X belongs
to a small interval [z, + 01] given that Y belongs to a small interval [y, y + 2]

Pl <X <x+40,y <Y <y+0d)
Py <Y <y+0d2)

Pr<X<z+ly<Y <y+d) =

- fx v (z,y)0102
fY(?/)52
= x|y (zly)d

Since fx|y(z|y)d1 does not depend on d;, we can think of the limiting case when
09 — 0 and so we get

Px<X<z+d|Y =y)= 6lim0P(x <X <z+0ly<Y <y+02) = fxy(z|ly)dr 61 small
2—)



In general, for any region A, we have that

P(XCAY =y) =l PX € Aly <Y <y+8) = [ faylalda
- xe

8 Expectation, Independence, Joint & Conditional CDF, Bayes

Expectation: See page 172 for E[g(X)|Y = y], E[g(X,Y)|Y = y| and total expectation
theorem for E[g(X)] and for Eg(X,Y)].

Independence: X and Y are independent iff fyy = fx (or iff fxy = fxfy, or iff
fyix = fv)

If X and Y independent, any two events {X € A} and {Y € B} are independent.

If X and Y independent, E[g(X)h(Y)] = Elg(X)|E[h(Y)] and Var[X+Y] = Var[X|+Var[Y]
Exercise: show this.

Joint CDF:
Y T
Fxy(z,y)=P(X <z2,Y <y) = / / Ix,y(s,t)dsdt
t=—00 J s=—00

Obtain joint PDF from joint CDF:

82FX7Y
fX,Y(x7y)_ axay (xay)

Conditional CDF:

Fxpy(aly) = P(X <2y =y)=lm P(X <zly <Y <y+4) = / Ixy (ty)dt

t=—00

Bayes rule when unobserved phenomenon is continuous. Pg 175 and Example 3.18.
Recall that fxy(x|y) is, by definition, such that, for ¢ small,

P(X € [z, +0]lY =y) = fx)v(z|y)d
Also, for §, o small,
P(X €[z, 2 +9],Y € [y,y + da]) = fxy(z,y)d02

Using Bayes rule for events,

P(X € [:ﬁ,l’—l—(ﬂ,y € [y7y+62]) _ fX,Y('rhy)é(SQ _ fX,Y('r7y)5

P(X € [z,z+0]]Y € [y,y+02]) =

P(Y € [y,y + &2]) W ()
Notice that the right hand side does not depend on d,. Taking the limit §; — 0, we get
o fX,Y(xa y)(s

P(X € [t +8][Y =y) = lim P(X € [1,2+ 0)]Y € [y, +6]) =
52—0 fy ()
Thus,

 fxy(z,y)



e Bayes rule when unobserved phenomenon is discrete. Pg 176 and Example 3.19.
For e.g., say discrete r.v. N is the unobserved phenomenon. Then for ¢ small,

P(N =i|X € [z,xz+4]) = P(N=i|lX €[z,x+])

P(N =i)P(X € [z,x + 0]|N =)
P(X € [z,z+0])
fxn(z]i)d
3 fxin(x]4)d
p (i fX\N($| i)
ZjPN ) fx v (1)

Notice that the right hand side is independent of §. Thus we can take lims_,o on both sides

pN (i
Z-pzv

/‘\v/‘\v

and the right side will not change. Thus we get

PN (8) fx|n=i(z)
Z pn(j )fX\N:j(fU)

prix(ile) = PN =i X = ) = lim P(N = i|X € [,2+0]) =

e Bayes rule with conditioning on events.  The derivation is analogous to the above
conditioning on discrete r.v.’s case.
Suppose that events Aq, As,... A, form a partition, i.e. they are disjoint and their union is
the entire sample space. The simplest example is n =2, A} = A, Ay = A°.
Then

P(A;) fx|a, ()
> P(Aj) fx)a; ()

P(A|X =) =
e More than 2 random variables (Pg 178, 179) **

9 Derived distributions: PDF of g(X) and of g(X,Y)

e Obtaining PDF of Y = g(X). ALWAYS use the following 2 step procedure:

— Compute CDF first. Fy (y) = P(g(X) < y) = [,1,2)<, fx(@)dz
— Obtain PDF by differentiating Fy, i.e. fy(y) = %¥(y)

Example 3.20, 3.21, 3.22

Special Case 1: Linear Case: Y = aX +b. Can show that
—b

fy(y) = —fX(

|al

)

Proof: see Pg 183.

Example 3.23, 3.24

Special Case 2: Strictly Monotonic Case.

— Consider Y = g(X) with g being a strictly monotonic function of X.

— Thus g is a one to one function.



— Thus there exists a function h s.t. y = g(z) iff x = h(y) (i.e. h is the inverse function of
g, often denotes as h = g~ 1).

— Then can show that

dh

fy () = Fx(h(y)) d—y(y)!

— Proof for strictly monotonically increasing g:
Fy(y) = P(¢(X) <Y) = P(X < h(Y)) = Fx(h(y)).
Differentiate both sides w.r.t y (apply chain rule on the right side) to get:

 dFy

T fx(h(y)—(y)

(y) a0

For strictly monotonically decreasing g, using a similar procedure, we get fy(y) =
—Ix(h(y) 3 ()
— See Figure 3.22, 3.23 for intuition

e Example 3.21 (page 186)

e Functions of two random variables. @ Two possible ways to solve this depending on
which is easier. Try the first method first: if easy to find the region to integrate over then
just do that. Else use the second method.

1. Do the following

(a) Compute CDF of Z = ¢g(X,Y), i.e compute Fz(z). In general, this computed as:
FZ(’Z) = P(g(X7 Y) S Z) = f$7y:g(z7y)§z fX7Y($,y>dydx
(b) Differentiate w.r.t. z to get the PDF, i.e. compute fz(z) = ang(z).

2. Use a three step procedure
(a) Compute conditional CDF, Fy x(z|r) := P(Z < 2|X = x)
. . .. OF z|x
(b) Differentiate w.r.t. z to get conditional PDF, fz x(z|z) = %
(c) Compute fz(z) = [ fzx(z,2)dx = [ fzx(z|x)fx(x)dx
e Example 3.26, 3.27, 3.28: first method works.

e Special case: PDF of Z = X +Y when X, Y are independent: convolution of PDF's of X and
Y. Here need to use the second method.



