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I. PROBLEM

A. State Space Model: HMM

Given a nonlinear state space model, satisfying theHidden Markov Model (HMM) assumptions:

1) State sequence,Xt, t = 0, 1, 2, .. is a Markov process, i.e.p(xt|xt−1, past) = p(xt|xt−1).

2) Observations, Yt, t = 1, 2, .. “conditionally independent given state att”, i.e.

p(yt|xt, past, future) = p(yt|xt) wherepast , {Y1:t−1, X1:t−1}, future , {Yt+1:T , Xt+1:T }.

3) p(x0), p(xt|xt−1), p(yt|xt) are known: often expressed using a system and observation model

format.

B. Goal

1) Denotex0:t = {x0, x1, ..xt} andy1:t = {y1, y2, ..yt}

2) Find a good approximation top(x0:t|y1:t) or at least top(xt|y1:t) referred to as theposterior. Goal

is to estimate

I(ft) =

∫
ft(xt)p(xt|y1:t)dxt (1)

for any function of the stateft

C. Some Other Techniques

1) If the state space model werelinear and Gaussian, thenp(xt|y1:t) is also Gaussian and its mean

and variance are calculated using the Kalman filter.

2) Nonlinear and Gaussian : Extended Kalman Filter (EKF), Gaussian sum filter. Problem:

use first or second order Taylor series approximation to original nonlinear system, error in Jacobian

estimates propagates over time, may be unstable in certain cases (error keeps increasing): loss of

track. If one bad observation: loss of track, cannot come back

Cannot track heavily non-Gaussian or multimodal posteriors
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3) Multimodal systems: Multiple Hypothesis tracker (MHT), Probabilistic Data Association Filters,

Iterated Multiple Mode (IMM) etc

Need to know or be able to estimate number of posterior modes

4) Unscented Kalman filter

5) Sigma point filters

6) Numerical integration techniques such as Quadrature filters - see Chapter 5 of [1]

Practical only for small dimensional state space,

7) Grid-based filtering (discretizing the state space and then treating the system as a finite state HMM)

- see [2]

Practical only for small dimensional state space, smallt

8) Markov Chain Monte Carlo

Practical only for small dimensional state space, smallt

II. I MPORTANCESAMPLING

A Particle Filter is a Sequential Monte Carlo method. It is a modification of the Sequential Importance

Sampling method. Need to first understand (read first few pages of[3] or Chapter 1 of [1])

1) Monte Carlo sampling from a pdfa(x)

2) Importance sampling whena is known in closed form, but cannot sample from it. So sample from

a q (satisfying certain assumptions given in [3] and also in [1]).

3) Importance sampling whena(x) = ã(x)∫
ã(z)dz

, only ã is known in closed form,a is not (because the

denominator cannot be evaluated analytically).

The third case is treated as follows:

I(f) =

∫
f(x)a(x)dx =

∫
f(x)ã(x)dx∫

1ã(z)dz

=

∫
f(x) ã(x)

q(x)q(x)dx∫
1 ã(z)

q(z)q(z)dz

≈
N∑

i=1

f(xi)

ã(xi)
q(xi)∑N

j=1
ã(xi)
q(xi)

, with xi ∼ q(x) (2)

or in other words (some misuse of notation),

a(x) ≈
N∑

i=1

w̃i

∑N
j=1 w̃j

δ(x − xi), w̃i ,
ã(xi)

q(xi)
, with xi ∼ q(x) (3)
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whereδ denotes the Dirac delta function (that you learn in Signals and Systems). Note a more commonly

used (and perhaps mathematically correct) notation is to write a(dx) ≈
∑N

i=1
w̃i∑

N

j=1
w̃j

δxi(dx). The above

is a biased estimate as explained in [3], [1]. But it is asymptotically (for N → ∞) unbiased.

III. SEQUENTIAL IMPORTANCESAMPLING (SIS)

Sequential Importance Sampling (SIS) to approximatep(x0:t|y0:t): uses the above idea withx , x0:t

and ã(x0:t) , p(x0:t, y1:t) andq(x0:t) , π(x0:t|y1:t). To get a recursive algorithm that can be applied at

any t using only observations untilt, we need to chooseq = π that satisfies

q(.) = π(x0:t|y1:t) = π(x0:t−1|y1:t−1)π(xt|x0:t−1, y0:t) (4)

Using the HMM assumptions given above,ã can be re-written as

ã(.) = p(x0:t, y1:t) = p(y1:t−1, x0:t−1)p(yt|xt)p(xt|xt−1) (5)

Thus

w̃i
t =

ã(.)

q(.)
=

p(xi
0:t, y1:t)

π(xi
0:t|y1:t)

= w̃i
t−1

p(yt|x
i
t)p(xi

t|x
i
t−1)

π(xi
t|x

i
0:t−1, y0:t)

, with xi
t ∼ π(xi

t|x
i
0:t−1, y0:t) (6)

This gives the SIS algorithm. See the algorithm on Page 6 of [3].

A. Different choices for π:

1) The Bayesian Boostrap filter [4] usedπ(xt|x0:t−1, y0:t) = p(xt|xt−1) andπ(x0) = p(x0). This is

also the most commonly used implementation. Then the recursion for weights is

w̃i
t = w̃i

t−1p(yt|x
i
t) (7)

2) The optimal importance density (minimizes variance of weights given previous states and all

observations tillt) is to useπ(xt|x0:t−1, y0:t) = p(xt|xt−1, yt) and π(x0) = p(x0). Actually note

that p(xt|xt−1, yt) = p(xt|x0:t−1, y0:t) because of HMM assumptions. Often cannot compute this,

but if we know it is unimodal, then can try to use Gaussian approximations to it (details in [3]).

In this case

w̃i
t = w̃i

t−1

p(yt|x
i
t)p(xi

t|x
i
t−1)

p(xi
t|x

i
t−1, yt)

(8)

If using exactp(xt|xt−1, yt), thenw̃i
t = w̃i

t−1p(yt|x
i
t−1).

3) Many other choices exist in literature.
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IV. PARTICLE FILTER

SIS as described above becomes impractical after a few time steps, since the variance of̃wi
t become

very large (order of magnitude difference between largest and smallest weights), consequently in the

normalized weights only one weight is significantly non-zero, others are practically zero. This is called

“particle inefficiency” - the particles with practically zero weights are being “wasted” - not approximating

the posterior in high probability regions, while there are very few (often just one) particles in the high

probability region.

Particle filter (or Bayesian Boostrap filter) is Sequential Importance Sampling along with a Resampling

step which is described in detail in Section 3 of [3], and it addresses the above issue. See the algorithm

on page 13 of [3].

Under mild assumptions, the particle filtering estimate of the posterior distribution ofxt giveny1:t can

be shown to converge weakly to the true posterior as the number of particles,N → ∞ (see [1], chapters

2 and 3, if interested).

V. VARIANTS OF THE BASICPARTICLE FILTER (PF)

1) Rao Blackwellized PF: runs a Kalman Filter for a linear/Gaussian subsystem. See [2].

2) Regularized PF

3) Unscented PF, Sigma point PF

4) PF with approximating the optimal Importance Sampling distribution in different ways. See [3],

[2].

5) Auxiliary PF
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