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All images taken from Gonzalez and Woods 
online slides

http://www.imageprocessingplace.com/DIP/dip
_faculty/classroom_presentations_downloads
.htm
Material mostly based on A.K. Jain’s book
Some topics taken from Gonzalez Woods
Intuition & images on slides, math details will 
be covered in class or is in the book
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Image Enhancement or Restoration

Most of what we learnt in Image 
Enhancement chapter can also be classified 
as Image Restoration techniques. Specifically

Linear filtering (low pass for noise reduction, high 
pass for edge sharpening, band-pass for both)
Median filtering (for salt and pepper noise),
Log-domain filtering and other nonlinear 
techniques



Inverse & Pseudo-inverse Filters

Inverse Filter
Assumes no noise, only blurring. 
Blurring filter known
In case of noise

If blurring filter has zeros at some frequencies (which it 
will since it is a low-pass filter), those frequencies will be 
amplified in the noise

Pseudo-inverse filter: 
removes the problem at zero (or near zero) frequencies, 
but still amplifies noise at other frequencies where the 
blurring filter response is not zero but small



Image blurred by atmospheric turbulence 
& with additive noise



Inverse v/s Pseudo-inverse filtering



Wiener Smoother

Assumes image is blurred and has additive noise 
(independent of image)
Need to know

Blurring filter
Noise covariance
True image autocorrelation
Mean of noise & of true image (or assume zero mean)

Gives “linear MMSE” estimate: linear filter with least 
expected value of MSE w.r.t. the true image
Truly MMSE when the observed and true image are 
jointly Gaussian



Motion blurred image



Pseudo-inverse v/s Wiener

Column 2: 
Pseudo-inverse

Column 3:
Wiener

Maximum noise
in row 1, least in
row 3



Wiener smoother

Observed: v. True: u, convolution: *
Can use orthogonality argument to show that the 
MMSE restored image uhat = g * v, where g (Wiener 
smoother) satisfies

g(k,l)*rvv(k,l) = ruv(k,l) for all (k,l), or equivalently
G(f1,f2) = Suv(f1,f2) Svv
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Assume v = u * h + n, n: noise
Need to know  ruu, h, rnn. h: blurring filter
Compute ruv = h(-k,-l) * ruu(k,l)
Compute rvv = h(k,l) * ruv + rnn



Properties of Wiener Smoother
Non-causal: okay for image processing
For time series applications: need to find the best 
causal filter that minimizes expected MSE: more 
complicated: Wiener filter

Wiener computes correlations etc assuming all signals 
are zero mean
If not, then subtract out the means first and then 
compute auto-correlations (in other words, always 
using auto-covariances) 

Output noise is NOT white. 
2D Wiener: not separable even if h, ruu are



FIR Wiener

Exact Wiener filter or smoother are infinite 
impulse response (IIR)
IIR: expensive to implement
Many IIR coefficients are small, one solution 
is to truncate it. Or
Design an FIR Wiener

Find the best (least expected MSE) filter with 
(2M+1) x (2M+1) taps
This will give lower MSE than just truncating the 
IIR filter



FIR Wiener Algorithm

Assume noise is white and assume noise 
power known, i.e. σn

2 known
Estimate rvv from the observed image
Solve for ruv(k,l) from

rvv (k,l) = ruv (k,l) * h(k,l) + σn
2 δ(k,l)

Assume ruv zero for more than a few taps
Need ruv(k,l) only for –M <= k,l <= M

g satisfies
rvv (k,l) *g(k,l) = ruv (k,l), -M <= k,l <= M 



FIR Wiener – No blurring

h = identity
Only need to know SNR σu

2 / σn
2. Say SNR = a

σn
2 = rvv(0,0) / (1+a)

ruu(0,0) = a rvv(0,0) / (1+a)
ruu(k,l) = rvv(k,l) if k ≠ 0 or l ≠ 0
ruv(k,l) = ruu(k,l)

Compute different Wiener filters for diff image blocks
Choose different length Wieners, e.g. choose M s.t. 
output SNR σu

2 / σe
2 is roughly constant



Need a longer tap Wiener if more noise or more 
blurring. 
If zero noise, Wiener approaches inverse filter
Summary

Wiener smoother
Wiener filter or causal Wiener (mostly needed for 1D)
FIR Wiener (causal or non-causal)
Computing ruu

Can also use AR model to get ruu , i.e. use a clean image to 
estimate an AR model for the image: that can be used to 
compute ruu



Smoothing splines

Main idea: find the “smoothest” function that 
“fits the data (observed image)”, i.e. error 
between the observed image and smooth 
function is below a threshold
“Smoothness” quantified in various ways, one 
way is to minimize roughness, i.e. find the 
function that “fits the data” and has the lowest 
sum of double derivatives
This is called a smoothing spline



Constrained Least Squares

Find a maximally “smooth” restored image, 
i.e. find uhat so that

J = || q(m,n) * uhat(m,n)|| is minimized and 
||v(m,n) – h(m,n)*uhat(m,n)||2 <= ε2      #

Solution:
Uhat = H* V / (|H|2+ γ|Q|2)
γ computed s.t. # satisfied with equality

This is the Wiener smoother when Snn = γ
and Suu = 1/|Q|2



Usually choose q to be the discrete Laplacian

Smoothing splines is same as constrained LS 
when h = identity, i.e. no blurring



Constrained LS solution



Geometric distortion

Also called “rubber-sheet” transformations
Image pixel locations distorted, e.g. translate 

the image or rotate it or affine deform the 
image (due to camera motion)
Consider distorted image v generated by

v(x’,y’) = u(x,y), x’ = r(x,y), y’ = s(x,y)
r(x,y) = c1 x + c2 y + c3 xy + c4
s(x,y) = c5 x + c6 y + c7 xy + c8



Restoring geometric distortions

Step 1: estimate the distortion, i.e. find a set  
of 4 (or more) corresponding points in the two 
images and compute the coefficients c1 to c8
Step 2: 

uhat(x,y) = g( r(x,y), s(x,y) )
r(x,y), s(x,y) may not be integers
Need grey scale interpolation

Zeroth order hold: g( round( r(x,y) ), round( s(x,y) ) )
Bilinear: use floor and ceil of r(x,y), s(x,y) to compute 
interpolating function parameters



Corresponding points



Geometric distortion/restoration



Next class



Important difference from other 
restoration methods

To estimate the geometric distortion, i.e. c1 through 
c8, need at least 4 corresponding point locations in 
the true image and the distorted image

Correcting for geometric distortion is actually an Image 
Registration technique: assumes both images given

Other restoration techniques only use the observed 
image and “some” other information (e.g. 
autocorrelation of the true image or at least 
knowledge of the blurring filter)



More on Geometric distortions

Finding corresponding points is the difficult 
problem
Commonly used techniques

Feature matching
Color, KLT tracker, local histogram, local PCA, texture

Corner detection methods
Curvature vertices (maxima/min/discontinuities)
Find the geometric distortion between two whole 
contours
Jointly register & segment



Registering 2 contours

Contours may have different lengths (if there 
has been a size change). Solution:

Sub-sample, uniformly along arclength, both 
contours to a fixed number of points M. Use these 
points as “corresponding points”

Computing arclength: in class
To do the above robustly: B-spline control points 

Easier but approx solution: assume the points you 
get are already uniformly sampled, just resample 
to a fixed number of points M

Details in class



Notch filter

Filter out a certain frequency or a certain 
small band of frequencies
All called “band-reject” filter
Easiest to implement in the frequency domain



Image corrupted by sinusoidal noise



Notch filtering/Band-reject filtering





Another example



Speckle noise

Occurs in all coherent imaging systems
Examples

Ultrasound
SAR (Synthetic Aperture Radar)

Effect of interference of energy from 
randomly distributed scatters, too small to be 
resolved by the imaging system 
Occurs when object roughness is of the order 
of the incident radiation’s wavelength



Speckle noise model

Model as infinite sum of i.i.d. phasors with random 
amplitude and phase, multiplied with the image

Details in class
If low resolution image, an approximate model is

v(x,y) = u(x,y) s(x,y) + n(x,y)
n = additive detector noise (already discussed)
s = speckle noise
s(x,y) = sum of squared magnitude of iid phasors
s(x,y): iid exponential with parameter 1/ (2σa

2)
Details in class
Similar to “multi-path fading” in communication channels



Ultrasound speckle images
http://www.ljbdev.com/speckle.html

http://www.ljbdev.com/speckle.html


Speckle noise reduction

Simplest: if multiple ultrasound images available: 
average them

If the multiple images are not “registered” (geometric 
distortion b/w them), first register as studied in last class, 
then average
Effect of averaging: the speckle will be more constant 
across pixels, but will NOT go away

Techniques for multiplicative noise
Homomorphic filtering
Take logarithm: log v(x,y). log s(x,y) is then additive noise. 
Assume it to be Gaussian and apply a Wiener filter to log 
v(x,y)
Assumption holds strictly only if s(x,y) were log-normal 
which it is not. But Wiener still works!



Another application of Homomorphic
filtering

Any image consists of an illumination component 
and a reflectance component

I(x,y) = i(x,y) r(x,y)
Illumination: i, Reflectance: r

We are interested in reflectance only: which is due 
to object texture
Illumination will be non-uniform if light falling at an 
angle. Want to get rid of it.
Take log of image, take DFT, suppress low 
frequencies (assumes illumination is low freq), take 
I-DFT, and exp 



Bayesian methods for Restoration

General idea: 
Given p(v|u) (data term or likelihood) &  p(u) (prior)
Estimate maximizer of p(u|v) : called the MAP solution

Wiener is MAP when u and v are jointly Gaussian
Weiner gives E[u|v] = conditional mean = MMSE estimate
MAP is maxu p(u|v) 
Since p(u|v) is Gaussian, MAP = conditional mean 

Constrained LS or actually Regularized LS
Min ||q*u||2 + ||v – H u||Rn

2

Solution is Bayesian with a smoothness prior q
Nonlinear MAP: v = f(Hu) + n, prior on u given



Blind De-convolution: one solution

Computing H(f1,f2) 
Compute Svv(f1,f2) from observed image 
Assume Suu(f1,f2) known (FT of ruu) from training data
Assume Snn(f1,f2) = σn

2 is known

log |H|2 = log (Svv – Snn) – log Suu

This does not give the phase of H: in many cases H 
is linear phase (e.g. due to motion blur) or zero 
phase. If need phase: compute Suv to get it
Use H in the Wiener filter



Models for the true image

Wiener filter requires ruu
It may be estimated from rvv, but there you are assuming the 
noise covariance is known and h (blurring function) is known

When h unknown, definitely need to know ruu to estimate h

One solution to obtain ruu: assume you have at least one true 
image available as “training data”

Model the image as an MRF (Markov Random Field) 
Usually suffices to use the 4 nearest neighbors for prediction
Details in class or on pages 206 -208 of AK Jain.



More on Blind De-convolution
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