Homework 7, EE 527, Spring 2008

Good if you do by April 3. Due April 7 (for both EDE and on-campus students) The questions are based on what I taught in class. The material was taken from Vincent Poor's book Chapter IV-B and Chapter V. Some answers may be available in the book itself.

I will grade any two of the first 5 problems.

1. Prove the conditional variance inequality, i.e. show that

$$Cov[X] = E[Cov[X|Y]] + Cov[E[X|Y]]$$
(1)

- 2. Prove that the minimum mean absolute error (MMAE) estimate is the conditional median (median of the posterior $p_{X|Y}(x|y)$).
- 3. Suppose that N_1 and N_2 are two jointly Gaussian random variables with zero means, unit variances and correlation coefficient ρ . Suppose further that we observe $Y_k = N_k/\sqrt{\Theta}$, k =1,2 where Θ is a random parameter with a uniform prior, $w(\theta) = 1/\alpha$ for $\theta \in [0, \alpha]$ and $w(\theta) = 0$ otherwise. $\alpha > 0$ is known. Find the MMSE, MMAE, MAP estimates of θ .
- 4. Write out the derivation for the Kalman filter measurement update step. Convince yourself that the prediction step derivation makes sense.
- 5. Consider the model

$$Y_t = \Theta s_t + \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma^2)$$

$$\Theta \sim \mathcal{N}(\mu_0, \sigma_0^2)$$
(2)

where $\{\nu_t\}$ are i.i.d.. Let θ_t denote the MMSE estimate of Θ given Y_1, \ldots, Y_t . Find the recursion for θ_t by recasting this as a Kalman filtering problem.

- 6. Extra credit: submit them anytime. I do not help in these questions.
 - (a) Derive the recursion for a Kalman smoother, i.e. derive a recursion for $\hat{X}_{j|t} \triangleq E[X_j|Y_{0:t}]$ in terms of $\hat{X}_{j|t-1}$ where j < t.
 - (b) In the usual Kalman model, if the measurement noise at t and the system noise at t are correlated, i.e. $E[U_t\nu_t] = C_t$, and everything else is the same, how does the Kalman recursion for $\hat{X}_{t|t}$ change.