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Compressive Sensing

• Combine compression with sensing to improve sensing.

The term “compression” is used here in the sense of dimension

reduction.

• Examples

– The gradient of a piecewise constant signal is sparse in the time

domain.

– Natural signals or images are “sparse” (or “compressible”)in the

DCT domain, i.e. many DCT coefficients are zero (or small enough

to be approx. by zero): exploited by JPEG.



Idea of CS

• Assume discrete time signals throughout. Signal here is always an
N -length vector.

• Exploit sparsity or compressibility of natural signals (images) in a given

basis: call it the “sparsity basis”.

– If a signal is sparse in the time domain, sparsity basis isIN .

– If a signal is sparse in Fourier or DCT domain, sparsity basisis FN

(N-DFT matrix) orDN (N-DCT matrix).

– In general anyN ×N orthogonal matrix may be the sparsity basis.

• Measure random linear projections of the signal (exploit theincoherence

between the measurement matrix and the sparsity basis).



Sparsity and Compressibility: Definitions

• A N × 1 vectorx is S-sparse, if onlyS < N elements are non-zero.

• x is compressible if only a small number of elements are significantly

non-zero. One model is:

|x(k)| < Rk1/p, 1 < p < 2

where|x(1)| ≥ |x(2)| · · · ≥ |x(k)| · · · ≥ |x(N)|.

• Wavelet coefficients of many natural signals and images satisfy this.



Compressive Sensing

• AssumexN×1 is anS-sparse vector.

• Measurey = Ax whereAK×N is the measurement matrix,K < N .

• A: random DFT matrix (pickK random rows ofFN ) or a random

Gaussian matrix (each entry iid Gaussian) or random Bernoulli matrix.

• K = O(S logN)

• Goal: reconstructx from y andA.

• CS: computêx by solving P1

(P1) min
x̃∈RN

||x||ℓ1 s.t. Ax = y. ||x||ℓ1 :=

N
∑

i=1

|xi|



Exact Reconstruction Result for CS

(P1) min
x̃∈RN

||x||ℓ1 s.t. Ax = y

• Result 1: Ifx is S-sparse andA satisfies the “Uniform Uncertainty

Principle (UUP) at about level3S”, then the solution,̂x to P1 is unique

and is equal tox.

• Result 2: IfK = O(S logN) andA is random Gaussian, it satisfies

UUP with high probability (w.p.≥ 1 −O(e−γN ))

• Similar results exist for random Fourier and Bernoulli also.



Uniform Uncertainty Principle: Quantifying Incoherence

A K ×N matrix,A, satisfies UUP at levelS if it obeys theS-Restricted
Isometry Property.
LetAT , T ⊂ {1, 2, . . . N} be theK × |T | sub-matrix obtained by extracting
the columns ofA corresponding to the indices inT . Then RIP requires that
there exists aδS < 1 s.t.

(1 − δS)||c||2 ≤ ||AT c||2 ≤ (1 + δS)||c||2

for all subsetsT ⊂ {1, 2, . . . N} of size|T | ≤ S and for allc ∈ R
N .

• In other words, every set ofS or less columns ofA is approximately
orthogonal (has eigenvalues b/w1 ± δS).

• Or that,A is approximately orthogonal for anyS-sparse vector,c.

• SmallerδS (more incoherence) requires lesser measurements.



CS Theorem: Exact reconstruction of anS-sparse signal is possible by
solving (P1) ifAK×N satisfies

δS + δ2S + δ3S < 1



CS: General form

• Assume the signal of interestz is sparse in the basisφ, i.e. z = φx andx

is S-sparse. We sensey = ψz = ψφx.

• It is assumed thatψK×N is “incoherent w.r.t.φ”, i.e. A = ψφ satisfies

UUP.

• A random Gaussian matrix,ψ, is incoherent w.r.t. any orthogonal basis,

w.h.p. This is because ifψ is r-G, thenψφ is also r-G (φ any

orthonormal matrix).

• Same property for random Bernoulli.



Time-Frequency Examples

Sparse in frequency: Consider a periodic signal made up of only 6
sinusoids (S = 12 frequencies in the DFT domain). Assume its period is
T0 = 1s and bandwidth is 499Hz.

• Traditional method: Sense this everyTs = 1ms for one time period
T0 = 1s, i.e. obtainN = 1000 samples. Since it is periodic, it can be
exactly reconstructed by sinc interpolation using theseN samples.

• CS: know that the signal is sparse in Fourier domain (1000-DFT has
only S = 12 non-zero coefficients).

• If sense the signal at onlyK = O(S logN) randomly chosen time
instantschosen from the set{0, Ts, 2Ts, . . . (N − 1)Ts}, w.h.p., it is
possibly to exactly reconstruct it by solving (P1).



Sparse spikes in the time, e.g. neuronal spikes. Assume there are at most

N spikes, spacedi∆T apart, i.e.xc(t) =
∑N−1

i=0 xiδ(t− i∆T ). But usually

very sparse, i.e. onlyS << N spikes occur, i.e.x is sparse. If can sense the

Fourier transform of this signal atK = O(S logN) random frequencies

chosen from{2πj/(N∆T ), j = 0, 1, . . . N − 1}, can reconstruct it exactly

using (P1) w.h.p.

• Another example is the gradient of a p.w. constant image. MR imaging

systems sense the DFT of the image along 22 radial lines. If 256-DFT

sensed, then have onlyK =22x256 DFT observations to reconstruct a

N =256x256 image.

• Similar problem in tomography: sense the radon transform ofthe image:

from which can compute 22 radial DFT’s.



Applications

• Biomedical imaging: MR, tomography. Current methods eitherassume

the unknown DFT coefficients to be zero or try to interpolate (sensitive

in DFT domain) or regularize the problem by using priors for piecewise

smooth or p.w. constant images. CS does not “assume any prior”only

assumes knowledge of sparsity in a given basis.

• One pixel camera: sensesK random linear projections of the image

(image multiplied by a random Bernoulli matrix), reconstructs by using

the fact that natural images are sparse in the wavelet domain.

• Decoding “sparse” channel transmission errors.

• Other A-to-D converters.



Comparison with Traditional Sensing Mechanisms

• Higher resolution cameras without increasing CCD sensor density to get

more resolution: one-pixel camera (works by capturingK random

projections of the image one at a time, current prototype takes 5 minutes

to capture enough projections: valid if completely static image).

• Of course need the resolution in the DMD array.

• Do not need temporary storage of high volume data (required in

traditional cameras before performing compression).

• High processing power needed only at the reconstruction end, only need

enough power to computeK random projections (much less

computation than that needed to compress, still tx much lessthan the

uncompressed signal): useful to create a cheap sensors.



• While still transmitting onlyK = O(S logN) coefficients, not the

entireN (in case of uncompressed).



(a) CT or MRI (projection) geometry [8]

+
(FC) (received

observation)

(receiver noise)

(sensor i)

(sensor N)

(sensor 1)

(b) Sensing protocol of Haupt-Nowak [30]

Figure 2: Practically sensing linear incoherent measurements. Fig. 2(a): MR systems in projection geometry

mode, or CT systems, measure the 2D DFT of the image along 22 radial lines [33, 8]. Fig. 2(b): An efficient

protocol to receive K random linear projections of temperature at M nodes over a MAC channel [30].

ily computable from the measurement vector. The unknown sparsity pattern case is more difficult
since it is ill-posed. There is a huge literature on regularizing such problems by incorporating a cost
associated with some norm of the signal. If the norm is L2, the solution is efficiently computable
but not sparse, while if L0 norm is used, the solution will be sparsest possible, but the complexity
is combinatorial [8, 7]. Penalizing the total variations norm also ends up smoothing the edges, for
e.g. the Horn-Schunk optical flow method has this problem [31].

Recent work on “compressed sensing” (CS) guarantees that if the number of measurements, K,
is at least O(S log M) and if they are “incoherent enough” w.r.t. the sparsity basis of the signal,
then, with high probability, it is possible to reconstruct the signal exactly by solving

arg min
β

M
∑

i=1

|βi|, s.t. Aβ = y, A , HΦ (2)

if the measurements are noiseless (σ2 = 0 in (1)) [8, 18, 9] . In the more practical noisy mea-
surements case, a modified version of the above can be solved to achieve reconstruction with small
error [10, 30, 11]. Both (2) and the noisy case can be reformulated as a linear program [8] and
efficiently solved in O(M3) (polynomial) time [52]. Also, many iterative techniques have been pro-
posed for solving the noiseless (or small noise) case which take lesser time, roughly O(K2M), such
as Matching Pursuit, Orthogonal Matching Pursuit (OMP) [58, 19] or Tree OMP [22, 39].

In this proposal, the key question that we ask is: for a time sequence of spatially compressible
or sparse signals, can we do better than just CS at each time, if (a) it is known that the sparsity
pattern changes slowly over time, and (b) a simple prior temporal model, that can be easily learnt
from one short training sequence, is available?

If the sparsity pattern at each time were known, a reduced order Kalman filter, of order St at
time t, would provide a causal Minimum Mean Squared Error (MMSE) estimate of the signal at each
time. For the unknown sparsity pattern case, existing solutions, such as CS-based dynamic MRI
reconstruction [26] or video reconstruction [65], are batch CS solutions that treat the entire time
sequence as one big spatio-temporal “signal” that is assumed to be sparse in the wavelet/Fourier
domain and perform CS to reconstruct it. But this solution has several problems:

1. It is a batch solution (need to wait to receive the entire time sequence of measurements);

2. Complexity of the reconstruction increases as O(T 3M3) where T is the time sequence length;

3. The temporal prior model is not used.

An alternative solution would be to perform CS at each time separately. This is an online solution
and has lower complexity, but since it does not use the fact that the signal sparsity pattern changes
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CS for Compressible Signals

If A satisfiesδ3S + δ4S < 1, then the reconstruction error satisfies

||x− x̂||2ℓ1 ≤ C||x− xS ||ℓ1

i.e. withK = O(S logN) measurements the reconstruction error is of the

same order as that with keeping only theS largest coefficients ofx.

• Compressible signals are usually modeled as

|x(k)| ≤ Rk−1/p, 1 < p < 2

• This can be used to show that

||x− xK ||ℓ1 ≤ C1RK
−(1/p−1/2)



But if I did CS usingK measurements (i.e.S = αK/ logN ), the error is

||x− x̂||2ℓ1 ≤ C2R(αK/ logN)−(1/p−1/2)

In other words, the error has increased about(α logN)(1/p−1/2) times

that with knowing the signal and keeping topK coefficients.



CS for Noisy Signals

• Sparse Signals: Letx is S-sparse andA satisfiesδ2S + δ3S < 1.

Assume that the observation is

y = Ax+ z, z ∼ N (0, σ2IK)

Let λ :=
√

2 logN(1 + β). Let x̂ is the solution to

(P2) min ||x̃||1 s.t. ||AT (y −Ax̃)||∞ ≤ λσ

Then w.p.≥ 1 − (
√
π logNpβ)−1, x̂ satisfies

||x− x̂||22 ≤ C2
1λ

2Sσ2

with C1 := 4/(1 − δ2S − δ3S).

• Compressible signals: Letx is compressible andA satisfies



δ2S + δ3S < 1. Then w.h.p.̂x satisfies

||x− x̂||22 ≤ C2
3λ

2 min
1≤s≤S

(sσ2 +R2s−(2/p−1))



Papers to Read

• Decoding by Linear Programming (CS without noise, sparse signals)

• Dantzig Selector (CS with noise)

• Near Optimal Signal Recovery (CS for compressible signals)

• Applications




