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Compressive Sensin'

e Combine compression with sensing to improve sensing.
The term “compression” is used here in the sense of dimension
reduction.

e Examples

— The gradient of a piecewise constant signal is sparse inrttee t
domain.

— Natural signals or images are “sparse” (or “compressibtethe
DCT domain, i.e. many DCT coefficients are zero (or small ehoug
to be approx. by zero): exploited by JPEG.




ldea of CS'

e Assume discrete time signals throughout. Signal here is alys an
N-length vector.

e EXploit sparsity or compressibility of natural signals &ges) in a given
basis: call it the “sparsity basis”.

— If a signal is sparse in the time domain, sparsity basig;is

— If a signal is sparse in Fourier or DCT domain, sparsity bsisy
(N-DFT matrix) orDy (N-DCT matrix).

— In general anyV x N orthogonal matrix may be the sparsity basis.

e Measure random linear projections of the signal (exploititiceherence
between the measurement matrix and the sparsity basis).




Sparsity and Compressibility: Definitions'

e A N x 1vectorz is S-sparse, if onlyS < N elements are non-zero.

e x IS compressible if only a small number of elements are sicamfily
non-zero. One model is:

(| < REYP, 1<p<2

Where|513(1)‘ > ‘ZC(2>| cee 2> \x(k)\ cee 2> ‘ZIZ(N)‘

e Wavelet coefficients of many natural signals and imagesfgdhis.




Compressive Sensin'

Assumer v« IS anS-sparse vector.

Measurey = Ax whereAg . v IS the measurement matrik; < N.

A: random DFT matrix (pickk random rows ofF'y;) or a random
Gaussian matrix (each entry iid Gaussian) or random Belimoatrix.

K =0(SlogN)
Goal: reconstruct from y and A.
CS: computer by solving P1
N

(P1) min ||z|le, s.t. Az =y. ||x]|le, = Z |z |

S RN
e i—1




Exact Reconstruction Result for Cﬂ

(P1) min |z||e, st. Ax =y

e
e Result 1: Ifx is S-sparse andl satisfies the “Uniform Uncertainty
Principle (UUP) at about levalS”, then the solutiong to P1 is unique
and is equal ta.

e Result2: IfK = O(Slog N) and A is random Gaussian, it satisfies
UUP with high probability (w.p> 1 — O(e™Y))

e Similar results exist for random Fourier and Bernoulli also




Uniform Uncertainty Principle: Quantifying Incoherence I

A K x N matrix, A, satisfies UUP at leved if it obeys theS-Restricted
Isometry Property.

Let Ap, T C {1,2,... N} be theK x |T'| sub-matrix obtained by extracting
the columns ofA corresponding to the indices in. Then RIP requires that
there exists ag < 1 s.t.

(1= 0ds)llel]* < [|[Are]|* < (1+ ds)lle]]”

for all subsetd” c {1,2,... N} of size|T| < S and for allc € RY.

e In other words, every set ¢f or less columns ofl is approximately
orthogonal (has eigenvalues biwt dg).

e Orthat, A is approximately orthogonal for amfy~sparse vector..

e Smallerds (more incoherence) requires lesser measurements.




CS Theorem: Exact reconstruction of anS-sparse signal is possible by
solving (P1) if Ag « n Satisfies

0g + 095 + 03g < 1




CS: General form'

Assume the signal of interestis sparse in the basis i.e. z = ¢x andx
IS S-sparse. We senge= vz = Youx.

It iIs assumed that i« n IS “Incoherent w.r.to”, i.e. A = ¢ ¢ satisfies
UUP.

A random Gaussian matrix;, is incoherent w.r.t. any orthogonal basis|
w.h.p. This is becauseif is r-G, thenmy)¢ is also r-G ¢ any
orthonormal matrix).

Same property for random Bernoulli.




Time-Frequency Exampleﬂ

Sparse in frequency: Consider a periodic signal made up of only 6
sinusoids § = 12 frequencies in the DFT domain). Assume its period is
To = 1s and bandwidth is 499Hz.

e Traditional method: Sense this evéty = 1ms for one time period
Ty = 1s, I.e. obtainV = 1000 samples. Since it is periodic, it can be
exactly reconstructed by sinc interpolation using théssamples.

e CS: know that the signal is sparse in Fourier domain (1000-Dbé&s
only S = 12 non-zero coefficients).

e If sense the signal at onlif = O(S'log V) randomly chosen time
instants chosen from the s€0, 7, 275, ... (N — 1)1}, w.h.p., itis
possibly to exactly reconstruct it by solving (P1).




Sparse spikes in the time e.g. neuronal spikes. Assume there are at mos
N spikes, spacet\T apart, i.ex.(t) =

very sparse, i.e. only << N spikes occur, i.ex is sparse. If can sense the
Fourier transform of this signal & = O(.Slog V) random frequencies

chosen from{ 27 /(NAT),j =0,1,... N — 1}, can reconstruct it exactly
using (P1) w.h.p.

e Another example is the gradient of a p.w. constant image. MRjiinga
systems sense the DFT of the image along 22 radial lines 6GHZ5T
sensed, then have only =22x256 DFT observations to reconstruct a
N =256x256 image.

e Similar problem in tomography: sense the radon transforthe@fmage:
from which can compute 22 radial DFT’s.




Applications I

Biomedical imaging: MR, tomography. Current methods eismume
the unknown DFT coefficients to be zero or try to interpolaengitive
In DFT domain) or regularize the problem by using priors fecpwise
smooth or p.w. constant images. CS does not “assume any pnty”

assumes knowledge of sparsity in a given basis.

One pixel camera: sensé&Srandom linear projections of the image
(image multiplied by a random Bernoulli matrix), reconstsiby using
the fact that natural images are sparse in the wavelet domain

Decoding “sparse” channel transmission errors.

Other A-to-D converters.




Comparison with Traditional Sensing I\/Iechanismi

Higher resolution cameras without increasing CCD sensositieto get
more resolution: one-pixel camera (works by captudhgandom
projections of the image one at a time, current prototypegd&kminutes
to capture enough projections: valid if completely statiage).

Of course need the resolution in the DMD array.

Do not need temporary storage of high volume data (required |
traditional cameras before performing compression).

High processing power needed only at the reconstructionaarig need
enough power to comput& random projections (much less
computation than that needed to compress, still tx muchthessthe
uncompressed signal): useful to create a cheap sensors.




e While still transmitting onlyK = O(S'log ) coefficients, not the

entire N (in case of uncompressed).
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Figure 2: Practically sensing linear incoherent measurements. Fig. 2(a): MR systems in projection geometry
mode, or CT systems, measure the 2D DFT of the image along 22 radial lines [33, 8]. Fig. 2(b): An efficient
protocol to receive K random linear projections of temperature at M nodes over a MAC channel [30].



CS for Compressible Signali

If A satisfiesisg + dsg < 1, then the reconstruction error satisfies
|z — (|7, < COllz — s,

l.e. with K = O(S log V) measurements the reconstruction error is of the
same order as that with keeping only thi¢argest coefficients aof.

e Compressible signals are usually modeled as

‘ZIZ‘(k)| §Rk_1/p, l<p<?2

e This can be used to show that

o — zxle, < CLRE /P72




But if | did CS usingK measurements (i.&& = aK/log N), the error is

|z — 2|7, < CoR(aK/log N)~(1/p=1/2)

In other words, the error has increased aljotibg N)(1/P~1/2) times
that with knowing the signal and keeping té&pcoefficients.




CS for Noisy Signalﬂ

e Sparse Signals: Letis S-sparse andl satisfiesiss + d35 < 1.
Assume that the observation is

y=Ax + 2, z~N(0,0°I)

Let X := y/2log N(1 + 3). Letz is the solution to

(P2) min||Z||; st [|AT(y — AF)||w < Ao
Thenw.p.> 1 — (y/7log NpP)~1, 2 satisfies
|z — 2|3 < CTA*So”
with Cp :=4/(1 — da5 — d35).

e Compressible signals: Letis compressible and satisfies




das + 035 < 1. Then w.h.pz satisfies

|z — :?:||§ < C’g)\Z min (502 + R23_(2/p_1))
1<s<S




Papers to Reaﬂ

Decoding by Linear Programming (CS without noise, spargeads)

Dantzig Selector (CS with noise)

Near Optimal Signal Recovery (CS for compressible signals)

Applications






