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More notes added by Namrata Vaswani

Notes based primarily on Horn and Johnson, Matrix Analysis, 1e and 2e, as well as Dr.
Namrata Vaswani’s in-class lectures.

Chapter 0 – Miscellaneous Preliminaries

Unless otherwise noted, all vectors are elements of Rn, although results extend to complex
vector spaces.

Let S = {vi}k1 ⊆ Cn. We define the span of S by

span {S} =

{
x ∈ Cn | ∃{αi}k1 ⊆ C with x =

k∑
1

αivi

}
.

The set S is linearly independent if
∑k

1 αivi = 0 if and only if αi = 0 for all i.

S is a spanning set for the vector space V if span {S} = V . A linearly independent
spanning set for a vector space V is called a basis. The dimension of a vector space V ,
dim(V ), is the size of the smallest spanning set for V .

The rank of a matrix A ∈ Rm×n, rank(A), is the size of the largest linearly independent
set of columns of A. Rank satisfies rank(A) ≤ min{m,n}. For matrices A ∈ Rm×k and
B ∈ Rk×n, we have

rank(A) + rank(B)− k ≤ rank(AB) ≤ min{rank(A), rank(B)}.

For two matrices of the same size, we have rank(A+B) ≤ rank(A) + rank(B).

The trace of a matrix is the sum of its main diagonal entries, that is, trace(A) =
∑
aii.

For two matrices A and B, trace(AB) = trace(BA).

The support of a vector, supp(x), is the set of indices i such that xi 6= 0. The size of
the support of x (that is, the number of nonzero entries of x), |supp(x)|, is often denoted
‖x‖0, although ‖ · ‖0 is not a vector norm (see the section on Chapter 5).

The range of a matrix A ∈ Rm×n, range(A), is the set

range(A) = {b ∈ Rm | ∃x ∈ Rn with Ax = b} .
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Equivalently, the range of A is the set of all linear combinations of the columns of A. The
nullspace of a matrix, null(A) (also called the kernel of A), is the set of all vectors x such
that Ax = 0.

Suppose we have the matrix-vector equation Ax = b with A ∈ Rm×n, x ∈ Rn, b ∈ Rm.
The equation is consistent if there exists a solution x to this equation; equivalently, we
have rank([A, b]) = rank(A), or b ∈ range(A). The equation has a unique solution if
rank([A, b]) = rank(A) = n. The equation has infinitely many solutions if rank([A, b]) =
rank(A) < n. The equation has no solution if rank([A, b]) > rank(A).

We say a matrix A ∈ Rm×n is nonsingular if Ax = 0 if and only if x = 0. When m ≥ n
and A has full rank (rank(A) = n), A is nonsingular. If m < n, then A must be singular,
since rank(A) ≤ min{m,n} = m < n. If m = n and A is nonsingular, then there exists a
matrix A−1 with AA−1 = In = A−1A and we call A invertible. The matrix-vector equation
Ax = b has the unique solution x = A−1b in this case.

The Euclidean inner product is a function defined (using the engineering convention –
see Chapter 5) by 〈x, y〉 = x∗y =

∑n
1 x̄iyi, where the vectors in use are the same size and could

be complex-valued. The Euclidean norm is a function defined by ‖x‖ = ‖x‖2 = (
∑n

1 |xi|2)
1
2

and satisfies 〈x, x〉 = ‖x‖22. Note that 〈Ax, y〉 = 〈x,A∗y〉 for all A ∈ Cm×n, x ∈ Cn, y ∈ Cm.
For more information on inner products and norms, refer to the section on Chapter 5.

Two vectors x and y are orthogonal if 〈x, y〉 = 0. Two vectors are orthonormal if they
are orthogonal and ‖x‖2 = ‖y‖2 = 1. This concept can be extended to a set of vectors {vi}.

Given a set S = {vi}k1 ⊆ Rn, we define the orthogonal complement of S (“S perp”)
by

S⊥ = {x ∈ Rn | 〈x, vi〉 = 0 for all i } .

Note that
(
S⊥
)⊥

= span {S}.

For a matrix A ∈ Rm×n, we have the relation range(A)⊥ = null(A∗). Proof: (⊆) Let
y ∈ range(A)⊥. Then for all b = Ax ∈ range(A), 0 = 〈b, y〉 = 〈Ax, y〉 = 〈x,A∗y〉. In
particular, if x ≡ A∗y, then we have ‖A∗y‖22 = 0, so that A∗y ≡ 0. Thus y ∈ null(A∗). (⊇)
Let y ∈ null(A∗). Then for all x ∈ Rn, we have 0 = 〈x,A∗y〉 = 〈Ax, y〉. As this holds for all
choices of x, we conclude that y ∈ range(A)⊥. Set equality follows. �

Projection theorem: Let A ∈ Rm×n. Then for all y ∈ Rm, there exist unique vectors yA
and y⊥ in Rm such that y = yA + y⊥, where yA ∈ range(A) and y⊥ ∈ range(A)⊥ ≡ null(A∗).

A normal matrix is a matrix N such that NN∗ = N∗N . A Hermitian matrix is one
such that A∗ = A and a skew Hermitian matrix is one such that A∗ = −A. A real-valued
Hermitian matrix is called a symmetric matrix. A unitary matrix is a square matrix
with UU∗ = I = U∗U . A real-valued unitary matrix is called an orthogonal matrix. An
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idempotent matrix satisfies A2 = A.

A projection matrix P is one which satisfies P 2 = P (P is idempotent). If P = P ∗,
then P is called an orthogonal projection. Projection matrices project vectors onto
specific subspaces. For any projection P which projects onto a subspace S, the projector
onto the subspace S⊥ is given by (I −P ). Given a matrix U with orthonormal columns, the
(orthogonal) projector onto the column space of U is given by P = UU∗.

The (Classical) Gram-Schmidt algorithm is a theoretical tool which takes a set of
vectors {vi}k1 and creates a set of orthonormal vectors {qi}k1 which span the same space as the
original set. In practice, the Gram Schmidt algorithm is numerically unstable due to round-
off and cancellation error and should not be implemented (numerically stable algorithms
which accomplish the same goal, such as the Modified Gram-Schmidt algorithm, are freely
available); however, as a theoretical device, it can be used to justify the existence of the QR
factorization (see the section on Chapter 2). The original set of vectors need not be linearly
independent to implement the algorithm (a minor modification can handle this situation),
but for the span {qi} = span {vi} property to hold, linear independence is required.

Classical Gram Schmidt Algorithm: Let {vi}k1 be a linearly independent set of

vectors. Initialize z1 = v1
‖v1‖2 . For ` = 2..k, compute y` =

(
v` −

∑`−1
i=1 〈zi, v`〉 zi

)
and then let

z` = y`
‖y`‖2

.

A permutation matrix is a matrix obtained by permuting rows and/or columns of an
identity matrix. Permutation matrices satisfy P 2 = I, so that a permutation matrix is its
own inverse. Permutation matrices are symmetric and orthogonal. Left-multiplication by a
permutation matrix interchanges rows of the matrix being multiplied; right-multiplication
interchanges columns.

A circulant matrix has the general form
a1 a2 . . . an−1 an

an a1 a2
. . . an−1

an−1 an a1 . . . an−2
...

...
. . . . . .

...
a2 a3 . . . an a1

 .

Each row of a circulant matrix is a cyclic permutation of the first row.
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A Toeplitz matrix has the general form

a0 a1 a2 . . . an−1 an

a−1 a0 a1
. . . an−2 an−1

a−2 a−1 a0
. . . . . . an−2

...
. . . . . . . . . . . .

...

a−n+1 a−n+2
. . . . . . a0 a1

a−n a−n+1 a−n+2 . . . a−1 a0


where {ai}n−n is any collection of scalars. With this notation, the general (ij)-entry of a
Toeplitz matrix is given by [A]ij = aj−i. Notice that the entries of each diagonal of a
Toeplitz matrix are constant.

An upper (lower) triangular matrix is a matrix whose entries below (above) the
main diagonal are all zero. The remaining entries can be anything. A diagonal matrix is one
whose only nonzero entries (if any) lie on the main diagonal. The eigenvalues of a triangular
or diagonal matrix (see notes on Chapter 1) are the diagonal entries.

Let T be an upper-triangular matrix. T is invertible if and only if its diagonal entries are
nonzero (since these are its eigenvalues). The matrix T−1 is also upper-triangular. Given
any two upper-triangular matrices T1 and T2, their sum T1 + T2 and their product T1T2
are also upper-triangular. A Hermitian upper-triangular matrix is necessarily diagonal (and
real-valued). More generally, any normal upper-triangular matrix is diagonal. These results
also hold for lower-triangular matrices.

4



Chapter 1 – Eigenvalues and Similarity

Suppose A ∈ Cn×n and there exist λ ∈ C and x ∈ Cn (with x 6= 0) such that Ax = λx.
Then we call λ an eigenvalue of A with corresponding eigenvector x. The spectrum of
A, σ(A), is the set of all eigenvalues of A. The spectral radius of A, ρ(A), is defined as
ρ(A) = maxλ∈σ(A){|λ|}.

If Ax = λx, then Akx = λkx for k ∈ N ∪ {0}. Proof: We proceed by induction. For
the base case k = 0, the result is obvious (note A0 = I). Suppose the result is true for
k = m ≥ 0. Consider Am+1x = Am (Ax) = Am (λx) = λ (Amx) = λ · λmx = λm+1x. By the
Principle of Mathematical Induction, the desired result follows. �

A consequence of the previous result: if p(z) =
∑k

0 αiz
i be a polynomial. Then p(A)x =

p(λ)x for an eigenvector x of A with eigenvalue λ. Proof: p(A)x =
(∑k

0 αiA
i
)
x =∑k

0 αi (A
ix) =

∑k
0 αi (λ

ix) =
(∑k

0 αiλ
i
)
x = p(λ)x. �

If A is a Hermitian matrix, then σ(A) ⊂ R. Proof: Let Ax = λx. Then 〈Ax, x〉 =
〈λx, x〉 = λ 〈x, x〉. However, 〈Ax, x〉 = 〈x,A∗x〉 = 〈x,Ax〉 = 〈x, λx〉 = λ 〈x, x〉. Since x is an
eigenvector, x 6= 0, so 〈x, x〉 = ‖x‖22 6= 0. Thus λ = λ, so λ ∈ R. �

A square matrix A is invertible if and only if 0 is not an eigenvalue of A.

Matrix trace satisfies trace(A) =
∑

i λi(A) (see the next section).

Two matrices A and B are similar if there exists a nonsingular matrix S such that
A = S−1BS. This relation is often denoted A ∼ B.

Similar matrices have the same eigenvalues, that is, A ∼ B implies σ(A) = σ(B). Proof:
Let λ ∈ σ(A). Then there exists x 6= 0 such that Ax = λx. Applying similarity, we have
Ax = S−1BSx = λx, which implies that B(Sx) = λ(Sx). Since S is invertible and x 6= 0,
Sx 6= 0, so λ ∈ σ(B). A similar argument (no pun intended) proves the reverse containment
and thus equality. �

Let A ∈ Cn×n. Then A is diagonalizable if A is similar to a diagonal matrix Λ whose
(diagonal) entries are the eigenvalues of A, that is, there exists S such that A = S−1ΛS. A
matrix A is unitarily diagonalizable if S is a unitary matrix: A = U∗ΛU for U unitary.

A matrix A ∈ Cn×n is diagonalizable if and only if A has n linearly independent eigen-
vectors. Proof: Suppose A = S−1ΛS. Then AS−1 = S−1Λ. The matrix AS−1 has columns
(AS−1)j = A(S−1)j and the matrix S−1Λ has columns (S−1Λ)j = λj(S

−1)j. Therefore,
the columns of S−1 are the eigenvectors of A. Since S−1 is invertible, it has n linearly
independent columns, which proves the result (as all steps used are if and only ifs). �
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Chapter 2 – Triangularization and Factorizations

Two matrices A and B in Cn×n are unitarily equivalent if there exist unitary matrices U
and V such that A = UBV . The matrices are unitarily similar if A = U∗BU for some
unitary U .

Schur’s Unitary Triangularization Theorem: Every matrix A ∈ Cn×n is unitarily
similar to an upper-triangular matrix T whose diagonal entries are the eigenvalues of A; that
is, there exist U unitary and T upper-triangular with tii = λi(A) such that A = U∗TU . If A
is real and has only real eigenvalues, then U can be chosen real (orthogonal).

A consequence of Schur’s theorem is that if A is normal, then T is also normal. Proof: Let
A = U∗TU . Then A∗A = U∗T ∗UU∗TU = U∗T ∗TU and AA∗ = U∗TUU∗T ∗U = U∗TT ∗U .
Therefore, U∗T ∗TU = A∗A = AA∗ = U∗TT ∗U , so T ∗T = TT ∗, as desired. �

Another consequence of Schur’s theorem is that trace(A) =
∑

σ(A) λi. Proof: There

exist U unitary and T upper-triangular such that A = U∗TU with tii = λi. So trace(A) =
trace(U∗TU) = trace(TUU∗) = trace(T ) =

∑
tii =

∑
σ(A) λi. �

The following are equivalent: (1) A is normal; (2) A is unitarily diagonalizable; (3) A
has n orthonormal eigenvectors; (4)

∑
|aij|2 =

∑
|λi|2.

Proof: (1 ⇒ 2) If A is normal, then A = U∗TU implies T is also normal. A normal
triangular matrix is diagonal, so A is unitarily diagonalizable.

(2 ⇐ 1) Let A = U∗ΛU . Since diagonal matrices commute, Λ∗Λ = ΛΛ∗, so A∗A =
U∗Λ∗ΛU = U∗ΛΛ∗U = AA∗, and thus A is normal.

(2 ⇔ 3) A = U∗ΛU if and only if AU∗ = U∗Λ. As we saw in the section on eigenvalues,
this is true if and only if the columns of U∗ are the eigenvectors of A. These eigenvectors
are orthonormal since U∗ is unitary.

(2 ⇒ 4) Let A = U∗ΛU . Consider∑
|aij|2 = trace(A∗A) = trace(U∗Λ∗ΛU) = trace(Λ∗ΛUU∗) = trace(Λ∗Λ) =

∑
|λi|2.

(4 ⇒ 2) Suppose that
∑
|aij|2 = trace(A∗A) =

∑
|λi|2. By Schur’s thereom, A = U∗TU

for some upper-triangular T . We have trace(A∗A) = trace(T ∗T ) =
∑

i,j |tij|2 =
∑
|tii|2 +∑

i 6=j |tij|2. Since tii ≡ λi, we see that
∑

i 6=j |tij|2 = 0, which implies that tij ≡ 0 for all i 6= j.
Thus T is diagonal and A is therefore unitarily diagonalizable. �
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A matrix A is Hermitian if and only if A = UΛU∗ with Λ diagonal and real. Further,
a normal matrix whose eigenvalues are real is necessarily Hermitian. Proof: A = A∗ ⇔
U∗TU = U∗T ∗U ⇔ T = T ∗ ⇔ T = Λ is diagonal and real-valued, which proves the first
result. Since normal matrices are unitarily diagonalizable, the second result follows. �

QR factorization: Let A ∈ Cm×n with m ≥ n. There exist matrices Q ∈ Cm×m

unitary and R ∈ Cm×n upper-triangular such that A = QR. If A is nonsingular, then the
diagonal entries of R can be chosen positive and the resulting QR factorization is unique. R
is invertible in this case. If m > n, then we can form the reduced QR factorization A = Q̂R̂,
where Q̂ ∈ Cm×n has orthonormal columns and R̂ ∈ Cn×n is upper-triangular. Lastly, if A
is nonsingular, then the columns of Q span the same space as the columns of A.

Cholesky factorization: Suppose B = A∗A for some matrix A. Then B has a Cholesky
factorization B = LL∗, where L is lower-triangular. Proof: Since A has a full QR factoriza-
tion, B = A∗A = R∗Q∗QR = R∗R = LL∗, where L = R∗. �
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Chapter 4 – Variational Characteristics of Hermitian

Matrices

In this section, all matrices are (n × n) Hermitian matrices unless otherwise noted. Since
the eigenvalues of Hermitian matrices are real-valued, we can order the eigenvalues, λmin =
λ1 ≤ λ2 ≤ . . . ≤ λn = λmax.

For x 6= 0, the value x∗Ax
x∗x

= 〈x,Ax〉
〈x,x〉 is called a Rayleigh quotient.

Rayleigh-Ritz Theorem: we have the following relations:

λmax = max
x6=0

x∗Ax

x∗x
= max
‖x‖2=1

x∗Ax

λmin = min
x 6=0

x∗Ax

x∗x
= min
‖x‖2=1

x∗Ax

Courant-Fisher Theorem: Let λ1 ≤ λ2 ≤ . . . ≤ λn. Let {wi} be arbitrary sets of
linearly independent vectors in Cn. Then the following characterizations of λk hold:

λk(A) = min
{w1,...,wn−k}

max
x 6=0; x⊥{w1,...,wn−k}

x∗Ax

x∗x

λk(A) = max
{w1,...,wk−1}

min
x 6=0; x⊥{w1,...,wk−1}

x∗Ax

x∗x

To simplify notation, we can equivalently express this in terms of an arbitrary subspace S:

λk(A) = min
dim(S)=n−k

max
x 6=0; x∈S⊥

x∗Ax

x∗x

λk(A) = max
dim(S)=k−1

min
x 6=0; x∈S⊥

x∗Ax

x∗x

One final equivalent version of the theorem (Horn and Johnson 2e) is given by:

λk(A) = min
dim(S)=k

max
x 6=0; x∈S

x∗Ax

x∗x

λk(A) = max
dim(S)=n−k+1

min
x 6=0; x∈S

x∗Ax

x∗x
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Weyl’s Inequality (simpler special case): let A, B be Hermitian matrices. Then

λk(A) + λmin(B) ≤ λk(A+B) ≤ λk(A) + λmax(B).

Using the fact that for a Hermitian matrix, ‖B‖2 = max(|λmin(B)|, |λmax(B)|), we have
that −‖B‖2 ≤ λmin(B) ≤ λmax(B) ≤ ‖B‖2. Using this, Weyl implies that

λk(A)− ‖B‖2 ≤ λk(A+B) ≤ λk(A) + ‖B‖2.

In general, we have

λj+k−n(A+B) ≤ λj(A) + λk(B)

λj+k−1(A+B) ≥ λj(A) + λk(B).

Ostrowski’s Theorem: Let A be Hermitian and S be nonsingular. Then there exists
θk ∈ [λmin(SS∗), λmax(SS

∗)] such that λk(SAS
∗) = θkλk(A).

Corollary: λmin(SS∗)λk(A) ≤ λk(SAS
∗) ≤ λmax(SS

∗)λk(A).

Interlacing of eigenvalues: Let A be Hermitian and z be a vector. Then

λk(A+ zz∗) ≤ λk+1(A) ≤ λk+2(A+ zz∗)

Bordered matrices: Let B ∈ Cn×n, a ∈ R, y ∈ Cn and define

A =

[
B y
y∗ a

]
.

Then

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ λ2(B) ≤ . . . ≤ λn(B) ≤ λn+1(A).

If no eigenvector of B is orthogonal to y, then every inequality is a strict inequality.

Theorem: if µ1 ≤ λ1 ≤ µ2 ≤ . . . ≤ µn ≤ λn ≤ µn+1 then there exist y ∈ Rn and a ∈ R
such that

M =

[
Λ y
y∗ a

]
has the eigenvalues {µi}n+1

1 , where Λ = diag({λi}n1 ).
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Chapter 5 – Norms and Inner Products

A function ‖ · ‖ : Cn → R is a vector norm if it satisfies the following 3 properties:

1. ‖x‖ ≥ 0 for all x ∈ Cn and ‖x‖ = 0 if and only if x ≡ 0;

2. ‖αx‖ = |α|‖x‖ for all α ∈ C, x ∈ Cn;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Cn (Triangle Inequality).

Another useful form of the Triangle Inequality is ‖x − y‖ ≥
∣∣‖x‖ − ‖y‖∣∣. Proof: Let

z = x− y. Then
‖x‖ = ‖z + y‖ ≤ ‖z‖+ ‖y‖ = ‖x− y‖+ ‖y‖,

so that ‖x‖ − ‖y‖ ≤ ‖x − y‖. Swapping the roles of x and y, we see that ‖y‖ − ‖x‖ ≤
‖y − x‖ = ‖x− y‖; equivalently, ‖x‖ − ‖y‖ ≥ −‖x− y‖. Thus,

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖,

which proves the result by definition of absolute value. �

Common vector norms:

• ‖x‖1 =
∑

i |xi|

• ‖x‖2 =
√
x∗x =

√∑
i |xi|2

• ‖x‖∞ = maxi{|xi|}

• ‖x‖p = (
∑
|xi|p)

1
p (the `p-norm, p ∈ N; these norms are convex)

♦ The three norms above are the `1, `2 and `∞ norms.

•
√
〈x, x〉 for any inner product 〈·, ·〉

• ‖x‖A = ‖Ax‖ for A nonsingular, ‖ · ‖ any vector norm

To denote the magnitude of the support of a vector x, |supp(x)|, we often write ‖x‖0.
The notation is widely used but is misleading because this function is NOT actually a norm;
property (2) is not satisfied.
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Equivalence of norms: Let ‖ · ‖α and ‖ · ‖β be any two norms on Cn. Then there exist
constants m and M such that m‖x‖α ≤ ‖x‖β ≤M‖x‖α for all x ∈ Cn. The best attainable
bounds for ‖x‖α ≤ Cα,β‖x‖β are given in the table below for α, β ∈ {1, 2,∞}:

β
Cα,β 1 2 ∞

1 1
√
n n

α 2 1 1
√
n

∞ 1 1 1

A pseudonorm on Cn is a function f(·) that satisfies all of the norm conditions except
that f(x) may equal 0 for a nonzero x (i.e. (1) is not totally satisfied).

A pre-norm is a continuous function f(·) which satisfies f(x) ≥ 0 for all x, f(x) = 0
if and only if x ≡ 0 and f(αx) = |α|f(x) (that is, f satisfies (1) and (2) above, but not
necessarily (3)). Note that all norms are also pre-norms, but pre-norms are not norms.

Given any pre-norm f(x), we can define the dual norm of f as

fD(y) = max
f(x)=1

|y∗x|.

Note that f could be a vector norm, as all norms are pre-norms. In particular, ‖·‖D1 = ‖·‖∞,
and vice-versa. Further, ‖ · ‖D2 = ‖ · ‖2.

The dual norm of a pre-norm is always a norm, regardless of whether f(x) is a (full)
norm or not. If f(x) is a norm, then (fD)D = f .

An inner product is a function 〈·, ·〉 : Cn × Cn → C such that the following properties
hold:

1. 〈x, x〉 ∈ R with 〈x, x〉 ≥ 0 for all x ∈ Cn and 〈x, x〉 = 0 if and only if x ≡ 0;

2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ Cn;

3. 〈αx, y〉 = α 〈x, y〉 for all α ∈ C, x, y ∈ Cn;

4. 〈x, y〉 = 〈y, x〉 for all x, y ∈ Cn.

Note that condition (4) and (3) together imply that 〈x, αy〉 = α 〈x, y〉.

It should be noted that the engineering convention of writing x∗y = 〈x, y〉 (as opposed to
the mathematically accepted notation 〈x, y〉 = y∗x) results in property (3) being re-defined
as 〈x, αy〉 = α 〈x, y〉.
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Cauchy-Schwartz Inequality: | 〈x, y〉 |2 ≤ 〈x, x〉 〈y, y〉. Proof: Let v = ax− by, where
a = 〈y, y〉 and b = 〈x, y〉. WLOG assume y 6= 0. Consider

0 ≤ 〈v, v〉
= 〈ax, ax〉+ 〈ax,−by〉+ 〈−by, ax〉+ 〈−by,−by〉
= |a|2 〈x, x〉 − ab 〈x, y〉 − ab〈x, y〉+ |b|2 〈y, y〉
= 〈y, y〉2 〈x, x〉 − 〈y, y〉 〈x, y〉 〈x, y〉 − 〈y, y〉 〈x, y〉 〈x, y〉+ | 〈x, y〉 |2 〈y, y〉
= 〈y, y〉2 〈x, x〉 − 〈y, y〉 | 〈x, y〉 |2

Adding 〈y, y〉 | 〈x, y〉 |2 to both sides and dividing by 〈y, y〉 proves the result. �

The most common inner product is the `2-inner product, defined (in engineering terms)
by 〈x, y〉 = x∗y =

∑
xiyi. This inner product induces the `2-norm: ‖x‖2 =

√
x∗x =

√
〈x, x〉.

If A is a Hermitian positive definite matrix, then 〈x, y〉A = 〈x,Ay〉 = x∗Ay is also an
inner product.

Any vector norm induced by an inner product must satisfy the Parallelogram Law:

‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2

)
A matrix norm is a function ‖ · ‖ : Cn×n → R which satisfies:

1. ‖A‖ ≥ 0 for all A ∈ Cn×n and ‖A‖ = 0 if and only if A ≡ 0;

2. ‖αA‖ = |α|‖A‖ for all α ∈ C, A ∈ Cn×n;

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A, B ∈ Cn×n (Triangle Inequality);

4. ‖AB‖ ≤ ‖A‖‖B‖ for all A, B ∈ Cn×n.

Common matrix norms:

• ‖A‖1 = maxj
∑

i |aij| = maximum absolute column sum

• ‖A‖2 = σ1(A) =
√
λmax(A∗A)

• ‖A‖∞ = maxi
∑

j |aij| = maximum absolute row sum

• Matrix norms induced by vector norms: ‖A‖β = max‖x‖β=1 ‖Ax‖β = maxx 6=0
‖Ax‖β
‖x‖β

♦ The three norms above are alternate characterizations of the matrix norms induced
by the vector norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞, respectively
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• ‖A‖∗ =
∑

i σi(A) =
∑

i

√
λi(A∗A)

• ‖A‖F =
√∑

|aij|2 =
√

trace(A∗A) =
√∑

i λi(A
∗A), sometimes denoted ‖A‖2,vec

For any invertible matrix A, we have ‖A−1‖ ≥ ‖A‖−1. Proof:

I = AA−1 ⇒ 1 ≤ ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖ ⇒ ‖A‖−1 =
1

‖A‖
≤ ‖A−1‖ �

For any matrix A, we have ‖A‖2 ≤ ‖A‖F . Proof:

‖A‖22 = max
i
σ2
i (A) ≤

∑
i

σ2
i (A) =

∑
i

λi(A
∗A) = trace(A∗A) = ‖A‖2F . �

A matrix B is an isometry for the norm ‖ · ‖ if ‖Bx‖ = ‖x‖ for all x.

If U is a unitary matrix, then ‖Ux‖2 = ‖x‖2 for all vectors x; that is, any unitary matrix
is an isometry for the 2-norm. Proof: ‖Ux‖22 = 〈Ux, Ux〉 = 〈x, U∗Ux〉 = 〈x, x〉 = ‖x‖22. �

If A = U∗BU , then ‖A‖F = ‖B‖F . Proof: ‖A‖2F = trace(A∗A) = trace(U∗B∗BU) =
trace(B∗BUU∗) = trace(B∗B) = ‖B‖2F . �

Recall that ρ(A) = maxi |λi(A)|. For any matrix A, matrix norm ‖·‖, and eigenvalue λ =
λ(A), we have λ ≤ ρ(A) ≤ ‖A‖. Proof: Let λ ∈ σ(A) with corresponding eigenvector x and
let X = [x, x, . . . , x] (n copies of x). Consider AX = [Ax,Ax, . . . , Ax] = [λx, λx, . . . , λx] =
λX. Therefore, |λ|‖X‖ = ‖λX‖ = ‖AX‖ ≤ ‖A‖‖X‖. Since x is an eigenvector, x 6= 0, so
‖X‖ 6= 0. Dividing by ‖X‖, we obtain |λ| ≤ ‖A‖. Since λ is arbitrary, we conclude that
|λ| ≤ ρ(A) ≤ ‖A‖, as desired. �

Let A ∈ Cn×n and let ε > 0 be given. Then there exists a matrix norm ‖ · ‖ such that
ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε. As a consequence, if ρ(A) < 1, then there exists some matrix norm
such that ‖A‖ < 1.

Let A ∈ Cn×n. If ‖A‖ < 1 for some matrix norm, then limk→∞A
k = 0. Further,

limk→∞A
k = 0 if and only if ρ(A) < 1.

13



Chapter 7 – SVD, Pseudoinverse

Let A ∈ Cm×n. Then a singular value decomposition (SVD) of A is given by A = UΣV ∗,
where U ∈ Cm×m is unitary, Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n is diagonal with σ1 ≥ σ2 ≥
. . . ≥ σp ≥ 0 [p = min(m,n)], and V ∈ Cn×n is unitary.

The values σi = σi(A) are called the singular values of A and are uniquely determined
as the positive square roots of the eigenvalues of A∗A.

If rank(A) = r, then σ1 ≥ . . . ≥ σr > 0 and σr+1 = σr+2 = . . . = σp = 0. In this

case, a reduced SVD of A is given by A = ÛΣ̂V̂ ∗, where Û ∈ Cm×r has orthonormal
columns, Σ̂ = diag(σ1, . . . , σr) ∈ Rr×r is diagonal, and V̂ ∈ Cn×r has orthonormal columns.
In particular, given an SVD A = UΣV ∗, Û and V̂ in the reduced SVD are the first r columns
of U and V .

One useful identity is that if A = UΣV ∗ with rank(A) = r, then A =
∑r

1 σiuiv
∗
i , where

ui and vi are columns of U and V (or, Û and V̂ ), respectively.

The first r columns of U in the SVD span the same space as the columns of A. Proof: Let
x ∈ Cn. Then Ax =

∑n
1 aixi is in the column space of A. However, Ax = (

∑r
1 σiuiv

∗
i )x =∑r

1 σiuiv
∗
i x =

∑r
1 βiui, where βi = σiv

∗
i x. This last expression lies in the span of the first r

columns of U . Thus, every element in either column space can be equivalently expressed as
an element in the other. �

A matrix A ∈ Cn×n has 0 as an eigenvalue if and only if 0 is also a singular value of A.
Proof: (⇒) Suppose that 0 is an eigenvalue of A, that is, Ax = 0 for some nonzero x. Then
A∗Ax = 0, so 0 is also an eigenvalue of A∗A. Therefore, 0 =

√
0 is a singular value of A. (⇐)

Suppose 0 is a singular value of A. Then there exists some nonzero x such that A∗Ax = 0.
This implies that x∗A∗Ax = 0 = (Ax)∗(Ax) = ‖Ax‖22. By the properties of norms, we must
have Ax = 0, which completes the proof. �

Let A ∈ Cm×n have SVD A = UΣV ∗. The Moore-Penrose pseudoinverse of A is the
matrix A† = V Σ†U∗ (“A dagger”), where Σ† is obtained by replacing the nonzero singular
values of A (in Σ) with their inverses and then transposing the resulting matrix.

In terms of a reduced SVD, A† = V̂ Σ̂−1Û∗.

The pseudoinverse is uniquely determined by the following three properties:

1. AA† and A†A are Hermitian;

2. AA†A = A;

3. A†AA† = A†.
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Additionally, (A†)† = A. If A is square and nonsingular, then A† = A−1. If A has full
column rank, then A† = (A∗A)−1A∗.

One use of the pseudoinverse is to compute least-squares solutions of Ax = b. A least-
squares solution x satisfies ‖x‖2 is minimal among all z such that ‖Az− b‖2 is also minimal.
In this setup, the unique minimizer is computed as x = A†b.

More topics: Spark of a matrix

Let A ∈ Rm×n. Then we define the spark of A by

spark(A) =

{
minx 6=0 ‖x‖0 s.t. Ax = 0 rank(A) < n

∞ rank(A) = n

Equivalently, spark(A) is the size of the smallest set of linearly dependent columns of A.

Equivalently, every set of spark(A)− 1 columns of A is linearly independent.

(Recall: rank(A) is the size of the largest linearly independent set of columns of A)

Two facts about spark: (a) spark(A) = 1 if and only if A has a column of zeros; (b) if
spark(A) 6=∞ then spark(A) ≤ rank(A) + 1. Proof: (a) This follows immediately from the
fact that the zero vector is always linearly dependent. (b) Let rank(A) = r < n. Then every
set of r + 1 columns of A is linearly dependent, so spark(A) ≤ r + 1. �

Given a square matrix of size n and rank r < n, any value between 1 and r+1 is possible
for spark(A). For example, all 3 matrices below have rank 3, but spark(Ai) = i.

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 A2 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0

 A3 =


1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 0

 A4 =


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0
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More Topics

A matrix A is positive semi-definite (p.s.d.) iff A is Hermitian and x∗Ax ≥ 0 for all x. A is
positive definite (p.d.) iff x∗Ax > 0 for all x. Similarly definite negative semi-definite and
negative definite. Some results

1. A is p.s.d. iff A is Hermitian and λi(A) ≥ 0. Proof: use variational characterization of
λmin.

2. If A is p.s.d., then ‖A‖2 = λmax(A).

More simple results on the spectral norm and the max/min eigenvalue. Recall that
‖B‖2 := λmax(B

∗B).

1. For any matrix B, ‖B‖2 = λmax(BB
∗).

Proof: Use the fact that the set of nonzero eigenvalues of BB∗ is equal to the set of
nonzero eigenvalues of B∗B

2. For any matrix B, ‖B‖2 = maxx 6=0
‖Bx‖2
‖x‖2 .

Proof: Use definition of ‖B‖2 and Rayleigh-Ritz (variational characterization) for
λmax(B

∗B)

3. For a Hermitian matrix A, ‖A‖2 = max(|λmax(A)|, |λmin(A)|). If A is p.s.d. then
‖A‖2 = λmax(A).

Proof: Use λmax(A
∗A) = λmax(A

2) and λmax(A
2) = max(λmax(A)2, λmin(A)2).

4. Let A be a block diagonal Hermitian matrix with blocks A1 and A2 both of which are
Hermitian. Then λmax(A) = max(λmax(A1), λmax(A2)).

Proof: Let EVD ofA1 = U1Λ1U
∗
1 and ofA2 = U2Λ2U

∗
2 , then EVD ofA is

[
U1 0
0 U2

] [
Λ1

0 Λ2

] [
U1 0
0 U2

]∗
.

This is EVD of A because it is easy to see that

[
U1 0
0 U2

]
is unitary.

5. LetB be a block diagonal matrix with blocksB1 andB2. Then ‖B‖2 = max(‖B1‖2, ‖B2‖2).
Proof: Use the fact that B∗B is block diagonal Hermitian with blocks B∗1B1 and B∗2B2

6. Let C be a 3x3 block matrix with the (1,2)-th block being C1 and (2,3)-th block being
C2 and all other blocks being zero. Then ‖C‖2 = max(‖C1‖2, ‖C2‖2). Similar result
extends to general block matrices which have nonzero entries on just one diagonal.

Proof: Use the fact that C∗C is block diagonal.
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7. The above two results can be used to bound the spectral norm of block tri-diagonal
matrices or their generalizations. [reference: Brian Lois and Namrata Vaswani, Online
Matrix Completion and Online Robust PCA]

8. For a matrix B, we can define the dilation of B as dil(B) :=

[
0 B
B∗ 0

]
. Clearly dil(B)

is Hermitian. Also, ‖B‖2 = ‖dil(B)‖2 = λmax(dil(B)). [reference: Joel Tropp, User
friendly tail bounds for random matrices]

Proof: First equality is easy to see using dil(B)∗dil(B) =

[
BB∗ 0
0 B∗B

]
. Thus ‖dil(B)‖22 =

‖dil(B)dil(B)∗‖2 = λmax(BB
∗) = ‖B‖22.

Let B = USV ′. Second equality - follows by showing that

[
ui
vi

]
is an eigenvector of

dil(B) with eigenvalue σi and

[
−ui
vi

]
is an eigenvector with eigenvalue −σi. Thus

the set of eigenvalues of dil(B) is {±σi} and so its maximum eigenvalue is equal to its
minimum eigenvalue which is equal to maximum singular value of B.

9. For A Hermitian, ‖A‖2 = maxx
|x∗Ax|
x∗x

Proof - follows from Rayleigh-Ritz (variational characterization)

10. Dilation and the fact that the eigenvalues of dil(B) are ±σi(B) is a very powerful
concept to extend various results for eigenvalues to results for singular values.

(a) This is used to get Weyl’s inequality for singular values of non-Hermitian
matrices. (reference: Terry Tao’s blog or http://comisef.wikidot.com/concept:
eigenvalue-and-singular-value-inequalities). Given Y = X +H,

σi+j−1(Y ) ≤ σi(X) + σj(H)

for all 1 ≤ i, j ≤ r and i+ j ≤ r+ 1 where r is the rank of Y . Using j = 1, i = r,
we get the special case

σmin(Y ) = σr(Y ) ≤ σr(X) + σ1(H) = σmin(X) + σmax(H)

Using j = 1, i = 1, we get the special case

σ1(Y ) ≤ σ1(X) + σ1(H)

(b) It is also used to get bounds on min and max singular values of sums of non-
Hermitian matrices (reference: Tropp’s paper on User friendly tail bounds).
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Topics to add

- ε-nets from Vershynin’s tutorial

- restricted isometry

- order notation

- Stirling approximation

- bound min and max singular value of a tall matrix with random entries.

Proofs to add

add in proof of Rayleigh-Ritz, basic idea for Courant Fisher.
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