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Probability recap 1: EE 322 notes

Quick test of concepts: Given random variables X1, X2, . . . Xn. Compute the PDF of the

second smallest random variable (2nd order statistic).

1 Some Topics

1. Chain Rule:

P (A1, A2, . . . , An) = P (A1)P (A2|A1)P (A3|A1, A2) . . . P (An|A1, A2, . . . An−1)

2. Total probability: if B1, B2, . . . Bn form a partition of the sample space, then

P (A) =
n∑
i=1

P (A|Bi)P (Bi)

Partition: The events are mutually disjoint and their union is equal to the sample

space.

3. Union bound: suppose P (Ai) ≥ 1− pi for small probabilities pi, then

P (∩iAi) = 1− P (∪iAci) ≥ 1−
∑
i

P (Aci) ≥ 1−
∑
i

pi

4. Independence:

• events A,B are independent iff

P (A,B) = P (A)P (B)

• events A1, A2, . . . An are mutually independent iff

for any subset S ⊆ {1, 2, . . . , n},

P (∩i∈SAi) =
∏
i∈S

P (Ai)
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• analogous definition for random variables: for mutually independent r.v.’s the

joint pdf of any subset of r.v.’s is equal to the product of the marginal pdf’s.

5. Conditional Independence:

• events A,B are conditionally independent given an event C iff

P (A,B|C) = P (A|C)P (B|C)

• extend to a set of events as above

• extend to r.v.’s as above

6. Given X is independent of {Y, Z}. Then,

• X is independent of Y ; X is independent of Z

• X is conditionally independent of Y given Z

• E[XY |Z] = E[X|Z]E[Y |Z]

• E[XY |Z] = E[X]E[Y |Z]

7. Law of Iterated Expectations:

EX,Y [g(X, Y )] = EY [EX|Y [g(X, Y )|Y ]]

8. Conditional Variance Identity:

V arX,Y [g(X, Y )] = EY [V arX|Y [g(X, Y )|Y ]] + V arY [EX|Y [g(X, Y )|Y ]]

9. Cauchy-Schwartz Inequality:

(a) For vectors v1, v2, (v′1v2)2 ≤ ‖v1‖2
2‖v2‖2

2

(b) For vectors:

(
1

n

n∑
i=1

x′iyi)
2 ≤ (

1

n

n∑
i=1

‖xi‖2
2)(

1

n

n∑
i=1

‖yi‖2
2)

(c) For matrices:

‖ 1

n

n∑
i=1

XiY ′i‖2 ≤ ‖ 1

n

n∑
i=1

XiX ′i‖2‖
1

n

n∑
i=1

YY ′‖2

(d) For scalar r.v.’s X, Y : (E[XY ])2 ≤ E[X2]E[Y 2]

(e) For random vectors X, Y ,

(E[X ′Y ])2 ≤ E[‖X‖2
2]E[‖Y ‖2

2]
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(f) Proof follows by using the fact that E[(X − αY )2] ≥ 0. Get a quadratic equation

in α and use the condition to ensure that this is non-negative

(g) For random matrices X ,Y ,

‖E[XY ′]‖2
2 ≤ λmax(E[XX ′])λmax(E[YY ′]) = ‖E[XX ′]‖2‖E[YY ′]‖2

Recall that for a positive semi-definite matrix M , ‖M‖2 = λmax(M).

(h) Proof: use the following definition of ‖M‖2: ‖M‖2 = maxx,y:‖x‖2=1,‖y‖2=1 |x′My|,
and then apply C-S for random vectors.

10. Convergence in probability. A sequence of random variables, X1, X2, . . . Xn converges

to a constant a in probability means that for every ε > 0,

lim
n→∞

Pr(|Xn − a| > ε) = 0

11. Convergence in distribution. A sequence of random variables, X1, X2, . . . Xn converges

to random variable Z in distribution means that

lim
n→∞

FXn(x) = FZ(x), for almost all pointsx

12. Convergence in probability implies convergence in distribution

13. Consistent Estimator. An estimator for θ based on n random variables, θ̂n(X), is

consistent if it converges to θ in probability for large n.

14. independent and identically distributed (iid) random variables: X1, X2, . . . Xn are iid

iff they are mutually independent and have the same marginal distribution

• For all subsets S ⊆ {1, 2, . . . n} of size s, the following two things hold

FXi,i∈S(x1, x2, . . . xs) =
∏
i∈S

FXi(xi) (independent) and

FXi(xi) = FX1(x1) (iid)

• Clearly the above two imply that the joint distribution for any subset of variables

is also equal

FXi,i∈S(x1, x2, . . . xs) =
s∏
i=1

FX1(xi) = FX1,X2,...Xs(x1, x2, . . . xs)

15. Moment Generating Function (MGF) MX(u)

MX(u) := E[eu
TX ]
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• It is the two-sided Laplace transform of the pdf of X for continuous r.v.’s X

• For a scalar r.v. X, MX(t) := E[etX ], differentiating this i times with respect to

t and setting t = 0 gives the i-th moment about the origin

16. Characteristic Function

CX(u) := MX(iu) = E[eiu
TX ]

• CX(−u) is the Fourier transform of the pdf or pmf of X

• Can get back the pmf or pdf by inverse Fourier transform

17. Union bound: suppose P (Ai) ≥ 1− pi for small probabilities pi, then

P (∩iAi) = 1− P (∪iAci) ≥ 1−
∑
i

P (Aci) ≥ 1−
∑
i

pi

18. Hoeffding’s lemma: bounds the MGF of a zero mean and bounded r.v..

• Suppose E[X] = 0 and P (X ∈ [a, b]) = 1, then

MX(s) := E[esX ] ≤ e
s2(b−a)2

8 if s > 0

Proof: use Jensen’s inequality followed by mean value theorem, see http://www.

cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf

19. Markov inequality and its implications

(a) Markov inequality: for a non-negative r.v. i.e. for X for which P (X < 0) = 0

P (X > a) ≤ E[X]

a

(b) Chebyshev inequality: apply Markov to (Y − µY )2

P ((Y − µY )2 > a) ≤ σ2
Y

a

if the variance is small, w.h.p. Y does not deviate too much from its mean

(c) Chernoff bounds: apply Markov to etY for any t > 0.

P (X > a) ≤ min
t>0

e−taE[etX ]

P (X < b) ≤ min
t>0

etbE[e−tX ]

or sometimes one gets a simpler expression by using a specific value of t > 0
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20. Using Chernoff bounding to bound P (Sn ∈ [a, b]), Sn :=
∑n

i=1Xi when Xi’s are iid

P (Sn ≥ a) ≤ min
t>0

e−ta
n∏
i=1

E[etXi ] = min
t>0

e−ta(E[etX1 ])n := p1

P (Sn ≤ b) ≤ min
t>0

etb
n∏
i=1

E[e−tXi ] = min
t>0

etb(E[e−tX1 ])n := p2

Thus, using the union bound with A1 = {Sn < a}, A2 = {Sn > b}

P (b < Sn < a) ≥ 1− p1 − p2

With b = n(µ− ε) and a = n(µ+ ε), we can conclude that w.h.p. X̄n := Sn/n lies b/w

µ± ε

21. A similar thing can also be done when Xi’s just independent and not iid. Sometimes

have an upper bound for E[etXi ] and that can be used, for example Hoeffding lemma

gives one such bound

22. Hoeffding inequality: Chernoff bound for sums of independent bounded random vari-

ables, followed by using Hoeffding’s lemma

• Given independent and bounded r.v.’s X1, . . . Xn: P (Xi ∈ [ai, bi]) = 1,

P (|Sn − E[Sn]| ≥ t) ≤ 2 exp(
−2t2∑n

i=1(bi − ai)2
)

or let X̄n := Sn/n and µn :=
∑

i E[Xi]/n, then

P (|X̄n − µn| ≥ ε) ≤ 2 exp(
−2ε2n2∑n

i=1(bi − ai)2
) ≤ 2 exp(

−2ε2n

maxi(bi − ai)2
)

Proof: use Chernoff bounding followed by Hoeffding’s lemma

23. Various other inequalities: Bernstein inequality, Azuma inequality

24. Weak Law of Large Numbers (WLLN) for i.i.d. scalar random variables, X1, X2, . . . Xn,

with finite mean µ. Define

X̄n :=
1

n

n∑
i=1

Xi

For any ε > 0,

lim
n→∞

P (|X̄n − µ| > ε) = 0

Proof: use Chebyshev if σ2 is finite. Else use characteristic function

25. Central Limit Theorem for i.i.d. random variables. Given an iid sequence of random

variables, X1, X2, . . . Xn, with finite mean µ and finite variance σ2 as the sample mean.

Then
√
n(X̄n − µ) converges in distribution a Gaussian rv Z ∼ N (0, σ2)
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26. Many of the above results also exist for certain types of non-iid rv’s. Proofs much more

difficult.

27. Mean Value Theorem and Taylor Series Expansion

28. Delta method: if
√
N(XN − θ) converges in distribution to Z then

√
N(g(XN)− g(θ))

converges in distribution to g′(θ)Z as long as g′(θ) is well defined and non-zero. Thus

if Z ∼ N (0, σ2), then g′(θ)Z ∼ N (0, g′(θ)2σ2).

29. If g′(θ) = 0, then one can use what is called the second-order Delta method. This is

derived by using a second order Taylor series expansion or second-order mean value

theorem to expand out g(XN) around θ.

30. Second order Delta method: Given that
√
N(XN − θ) converges in distribution to

Z. Then, if g′(θ) = 0, N(g(XN) − g(θ)) converges in distribution to g′′(θ)
2
Z2. If

Z ∼ N (0, σ2), then Z2 = σ2 g
′′(θ)
2
χ2

1 where ch2
1 is a r.v. that has a chi-square distribution

with 1 degree of freedom.

31. Slutsky’s theorem

2 Jointly Gaussian Random Variables

First note that a scalar Gaussian r.v. X with mean µ and variance σ2 has the following pdf

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2

Its characteristic function can be computed by computing the Fourier transform at −t to get

CX(t) = ejµte−
σ2t2

2

jointly Gaussian r.v.’s. Any of the following can be used as a definition of j G.

1. The n× 1 random vector X is jointly Gaussian if and only if the scalar

uTX

is Gaussian distributed for all n× 1 vectors u

2. The random vector X is jointly Gaussian if and only if its characteristic function,

CX(u) := E[eiu
TX ] can be written as

CX(u) = eiu
Tµe−u

TΣu/2

where µ = E[X] and Σ = cov(X).
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• Proof: X is j G implies that V = uTX is G with mean uTµ and variance uTΣu.

Thus its characteristic function, CV (t) = eitu
Tµe−t

2uTΣu/2. But CV (t) = E[eitV ] =

E[eitu
TX ]. If we set t = 1, then this is E[eiu

TX ] which is equal to CX(u). Thus,

CX(u) = CV (1) = eiu
Tµe−u

TΣu/2.

• Proof (other side): we are given that the charac function ofX, CX(u) = E[eiu
TX ] =

eiu
Tµe−u

TΣu/2. Consider V = uTX. Thus, CV (t) = E[eitV ] = CX(tu) = eiu
Tµe−t

2uTΣu/2.

Also, E[V ] = uTµ, var(V ) = uTΣu. Thus V is G.

3. The random vector X is jointly Gaussian if and only if its joint pdf can be written as

fX(x) =
1

(
√

2π)ndet(Σ)
e−(X−µ)TΣ−1(X−µ)/2 (1)

• Proof: follows by computing the characteristic function from the pdf and vice

versa

4. The random vector X is j G if and only if it can be written as an affine function of

i.i.d. standard Gaussian r.v’s.

• Proof uses 2.

• Proof: suppose X = AZ + a where Z ∼ N (0, I); compute its c.f. and show that

it is a c.f. of a j G

• Proof (other side): suppose X is j G; let Z := Σ−1/2(X−µ) and write out its c.f.;

can show that it is the c.f. of iid standard G.

5. The random vector X is j G if and only if it can be written as an affine function of

jointly Gaussian r.v’s.

• Proof: Suppose X is an affine function of a j G r.v. Y , i.e. X = BY + b. Since Y

is j G, by 4, it can be written as Y = AZ + a where Z ∼ N (0, I) (i.i.d. standard

Gaussian). Thus, X = BAZ + (Ba + b), i.e. it is an affine function of Z, and

thus, by 4, X is j G.

• Proof (other side): X is j G. So by 4, it can be written as X = BZ + b. But

Z ∼ N (0, I) i.e. Z is a j G r.v.

Properties

1. If X1, X2 are j G, then the conditional distribution of X1 given X2 is also j G

2. If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements

of their covariance matrix are zero), then they are also mutually independent.

3. Any subset of X is also j G.
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3 Optimization: basic fact

Claim: mint1,t2 f(t1, t2) = mint1(mint2 f(t1, t2))

Proof: show that LHS ≥ RHS and LHS ≤ RHS

Let [ˆ̂t1,
ˆ̂t2] ∈ arg mint1,t2 f(t1, t2) (if the minimizer is not unique let ˆ̂t1,

ˆ̂t2 be any one

minimizer), i.e.

min
t1,t2

f(t1, t2) = f(ˆ̂t1,
ˆ̂t2)

Let t̂2(t1) ∈ arg mint2 f(t1, t2), i.e.

min
t2

f(t1, t2) = f(t1, t̂2(t1))

Let t̂1 ∈ arg min f(t1, t̂2(t1)), i.e.

min
t1

f(t1, t̂2(t1)) = f(t̂1, t̂2(t̂1))

Combining last two equations,

f(t̂1, t̂2(t̂1)) = min
t1

f(t1, t̂2(t1)) = min
t1

(min
t2

f(t1, t2))

Notice that

f(t1, t2) ≥ min
t2

f(t1, t2)

= f(t1, t̂2(t1))

≥ min
t1

f(t1, t̂2(t1))

= f(t̂1, t̂2(t̂1)) (2)

The above holds for all t1, t2. In particular use t1 ≡ ˆ̂t1, t2 ≡ ˆ̂t2. Thus,

min
t1,t2

f(t1, t2) = f(ˆ̂t1,
ˆ̂t2) ≥ min

t1
f(t1, t̂2(t1)) = min

t1
(min
t2

f(t1, t2)) (3)

Thus LHS ≥ RHS. Notice also that

min
t1,t2

f(t1, t2) ≤ f(t1, t2) (4)

and this holds for all t1, t2. In particular, use t1 ≡ t̂1, t2 ≡ t̂2(t̂1). Then,

min
t1,t2

f(t1, t2) ≤ f(t̂1, t̂2(t̂1)) = min
t1

(min
t2

f(t1, t2)) (5)

Thus, LHS ≤ RHS and this finishes the proof.
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