Probability Background

Namrata Vaswani, Iowa State University

August 24, 2015

Probability recap 1: EE 322 notes

Quick test of concepts: Given random variables $X_{1}, X_{2}, \ldots X_{n}$. Compute the PDF of the second smallest random variable (2nd order statistic).

1 Some Topics

1. Chain Rule:

$$
P\left(A_{1}, A_{2}, \ldots, A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1}, A_{2}\right) \ldots P\left(A_{n} \mid A_{1}, A_{2}, \ldots A_{n-1}\right)
$$

2. Total probability: if $B_{1}, B_{2}, \ldots B_{n}$ form a partition of the sample space, then

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Partition: The events are mutually disjoint and their union is equal to the sample space.
3. Union bound: suppose $P\left(A_{i}\right) \geq 1-p_{i}$ for small probabilities p_{i}, then

$$
P\left(\cap_{i} A_{i}\right)=1-P\left(\cup_{i} A_{i}^{c}\right) \geq 1-\sum_{i} P\left(A_{i}^{c}\right) \geq 1-\sum_{i} p_{i}
$$

4. Independence:

- events A, B are independent iff

$$
P(A, B)=P(A) P(B)
$$

- events $A_{1}, A_{2}, \ldots A_{n}$ are mutually independent iff for any subset $S \subseteq\{1,2, \ldots, n\}$,

$$
P\left(\cap_{i \in S} A_{i}\right)=\prod_{i \in S} P\left(A_{i}\right)
$$

- analogous definition for random variables: for mutually independent r.v.'s the joint pdf of any subset of r.v.'s is equal to the product of the marginal pdf's.

5. Conditional Independence:

- events A, B are conditionally independent given an event C iff

$$
P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

- extend to a set of events as above
- extend to r.v.'s as above

6. Given X is independent of $\{Y, Z\}$. Then,

- X is independent of $Y ; X$ is independent of Z
- X is conditionally independent of Y given Z
- $\mathbb{E}[X Y \mid Z]=\mathbb{E}[X \mid Z] \mathbb{E}[Y \mid Z]$
- $\mathbb{E}[X Y \mid Z]=\mathbb{E}[X] \mathbb{E}[Y \mid Z]$

7. Law of Iterated Expectations:

$$
\mathbb{E}_{X, Y}[g(X, Y)]=\mathbb{E}_{Y}\left[\mathbb{E}_{X \mid Y}[g(X, Y) \mid Y]\right]
$$

8. Conditional Variance Identity:

$$
\operatorname{Var}_{X, Y}[g(X, Y)]=\mathbb{E}_{Y}\left[\operatorname{Var}_{X \mid Y}[g(X, Y) \mid Y]\right]+\operatorname{Var}_{Y}\left[\mathbb{E}_{X \mid Y}[g(X, Y) \mid Y]\right]
$$

9. Cauchy-Schwartz Inequality:
(a) For vectors $v_{1}, v_{2},\left(v_{1}^{\prime} v_{2}\right)^{2} \leq\left\|v_{1}\right\|_{2}^{2}\left\|v_{2}\right\|_{2}^{2}$
(b) For vectors:

$$
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime} y_{i}\right)^{2} \leq\left(\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}\right\|_{2}^{2}\right)\left(\frac{1}{n} \sum_{i=1}^{n}\left\|y_{i}\right\|_{2}^{2}\right)
$$

(c) For matrices:

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} \mathcal{X}_{i} \mathcal{Y}_{i}^{\prime}\right\|^{2} \leq\left\|\frac{1}{n} \sum_{i=1}^{n} \mathcal{X}_{i} \mathcal{X}_{i}^{\prime}\right\|_{2}\left\|\frac{1}{n} \sum_{i=1}^{n} \mathcal{Y}^{\prime}\right\|_{2}
$$

(d) For scalar r.v.'s $X, Y:(\mathbb{E}[X Y])^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]$
(e) For random vectors X, Y,

$$
\left(\mathbb{E}\left[X^{\prime} Y\right]\right)^{2} \leq \mathbb{E}\left[\|X\|_{2}^{2}\right] \mathbb{E}\left[\|Y\|_{2}^{2}\right]
$$

(f) Proof follows by using the fact that $\mathbb{E}\left[(X-\alpha Y)^{2}\right] \geq 0$. Get a quadratic equation in α and use the condition to ensure that this is non-negative
(g) For random matrices \mathcal{X}, \mathcal{Y},

$$
\left\|\mathbb{E}\left[\mathcal{X} \mathcal{Y}^{\prime}\right]\right\|_{2}^{2} \leq \lambda_{\max }\left(\mathbb{E}\left[\mathcal{X} \mathcal{X}^{\prime}\right]\right) \lambda_{\max }\left(\mathbb{E}\left[\mathcal{Y} \mathcal{Y}^{\prime}\right]\right)=\left\|\mathbb{E}\left[\mathcal{X} \mathcal{X}^{\prime}\right]\right\|_{2}\left\|\mathbb{E}\left[\mathcal{Y} \mathcal{Y}^{\prime}\right]\right\|_{2}
$$

Recall that for a positive semi-definite matrix $M,\|M\|_{2}=\lambda_{\max }(M)$.
(h) Proof: use the following definition of $\|M\|_{2}:\|M\|_{2}=\max _{x, y:\|x\|_{2}=1,\|y\|_{2}=1}\left|x^{\prime} M y\right|$, and then apply C-S for random vectors.
10. Convergence in probability. A sequence of random variables, $X_{1}, X_{2}, \ldots X_{n}$ converges to a constant a in probability means that for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|X_{n}-a\right|>\epsilon\right)=0
$$

11. Convergence in distribution. A sequence of random variables, $X_{1}, X_{2}, \ldots X_{n}$ converges to random variable Z in distribution means that

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{Z}(x), \text { for almost all points } x
$$

12. Convergence in probability implies convergence in distribution
13. Consistent Estimator. An estimator for θ based on n random variables, $\hat{\theta}_{n}(\underline{\mathrm{X}})$, is consistent if it converges to θ in probability for large n.
14. independent and identically distributed (iid) random variables: $X_{1}, X_{2}, \ldots X_{n}$ are iid iff they are mutually independent and have the same marginal distribution

- For all subsets $S \subseteq\{1,2, \ldots n\}$ of size s, the following two things hold

$$
\begin{gathered}
F_{X_{i}, i \in S}\left(x_{1}, x_{2}, \ldots x_{s}\right)=\prod_{i \in S} F_{X_{i}}\left(x_{i}\right) \quad \text { (independent) and } \\
F_{X_{i}}\left(x_{i}\right)=F_{X_{1}}\left(x_{1}\right) \quad \text { (iid) }
\end{gathered}
$$

- Clearly the above two imply that the joint distribution for any subset of variables is also equal

$$
F_{X_{i}, i \in S}\left(x_{1}, x_{2}, \ldots x_{s}\right)=\prod_{i=1}^{s} F_{X_{1}}\left(x_{i}\right)=F_{X_{1}, X_{2}, \ldots X_{s}}\left(x_{1}, x_{2}, \ldots x_{s}\right)
$$

15. Moment Generating Function (MGF) $M_{X}(u)$

$$
M_{X}(u):=\mathbb{E}\left[e^{u^{T} X}\right]
$$

- It is the two-sided Laplace transform of the pdf of X for continuous r.v.'s X
- For a scalar r.v. $X, M_{X}(t):=\mathbb{E}\left[e^{t X}\right]$, differentiating this i times with respect to t and setting $t=0$ gives the i-th moment about the origin

16. Characteristic Function

$$
C_{X}(u):=M_{X}(i u)=\mathbb{E}\left[e^{i u^{T} X}\right]
$$

- $C_{X}(-u)$ is the Fourier transform of the pdf or pmf of X
- Can get back the pmf or pdf by inverse Fourier transform

17. Union bound: suppose $P\left(A_{i}\right) \geq 1-p_{i}$ for small probabilities p_{i}, then

$$
P\left(\cap_{i} A_{i}\right)=1-P\left(\cup_{i} A_{i}^{c}\right) \geq 1-\sum_{i} P\left(A_{i}^{c}\right) \geq 1-\sum_{i} p_{i}
$$

18. Hoeffding's lemma: bounds the MGF of a zero mean and bounded r.v..

- Suppose $\mathbb{E}[X]=0$ and $P(X \in[a, b])=1$, then

$$
M_{X}(s):=\mathbb{E}\left[e^{s X}\right] \leq e^{\frac{s^{2}(b-a)^{2}}{8}} \text { if } s>0
$$

Proof: use Jensen's inequality followed by mean value theorem, see http://www. cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf
19. Markov inequality and its implications
(a) Markov inequality: for a non-negative r.v. i.e. for X for which $P(X<0)=0$

$$
P(X>a) \leq \frac{\mathbb{E}[X]}{a}
$$

(b) Chebyshev inequality: apply Markov to $\left(Y-\mu_{Y}\right)^{2}$

$$
P\left(\left(Y-\mu_{Y}\right)^{2}>a\right) \leq \frac{\sigma_{Y}^{2}}{a}
$$

if the variance is small, w.h.p. Y does not deviate too much from its mean
(c) Chernoff bounds: apply Markov to $e^{t Y}$ for any $t>0$.

$$
\begin{aligned}
& P(X>a) \leq \min _{t>0} e^{-t a} \mathbb{E}\left[e^{t X}\right] \\
& P(X<b) \leq \min _{t>0} e^{t b} \mathbb{E}\left[e^{-t X}\right]
\end{aligned}
$$

or sometimes one gets a simpler expression by using a specific value of $t>0$
20. Using Chernoff bounding to bound $P\left(S_{n} \in[a, b]\right), S_{n}:=\sum_{i=1}^{n} X_{i}$ when X_{i} 's are iid

$$
\begin{aligned}
& P\left(S_{n} \geq a\right) \leq \min _{t>0} e^{-t a} \prod_{i=1}^{n} \mathbb{E}\left[e^{t X_{i}}\right]=\min _{t>0} e^{-t a}\left(\mathbb{E}\left[e^{t X_{1}}\right]\right)^{n}:=p_{1} \\
& P\left(S_{n} \leq b\right) \leq \min _{t>0} e^{t b} \prod_{i=1}^{n} \mathbb{E}\left[e^{-t X_{i}}\right]=\min _{t>0} e^{t b}\left(\mathbb{E}\left[e^{-t X_{1}}\right]\right)^{n}:=p_{2}
\end{aligned}
$$

Thus, using the union bound with $A_{1}=\left\{S_{n}<a\right\}, A_{2}=\left\{S_{n}>b\right\}$

$$
P\left(b<S_{n}<a\right) \geq 1-p_{1}-p_{2}
$$

With $b=n(\mu-\epsilon)$ and $a=n(\mu+\epsilon)$, we can conclude that w.h.p. $\bar{X}_{n}:=S_{n} / n$ lies b/w $\mu \pm \epsilon$
21. A similar thing can also be done when X_{i} 's just independent and not iid. Sometimes have an upper bound for $\mathbb{E}\left[e^{t X_{i}}\right]$ and that can be used, for example Hoeffding lemma gives one such bound
22. Hoeffding inequality: Chernoff bound for sums of independent bounded random variables, followed by using Hoeffding's lemma

- Given independent and bounded r.v.'s $X_{1}, \ldots X_{n}: P\left(X_{i} \in\left[a_{i}, b_{i}\right]\right)=1$,

$$
P\left(\left|S_{n}-\mathbb{E}\left[S_{n}\right]\right| \geq t\right) \leq 2 \exp \left(\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

or let $\bar{X}_{n}:=S_{n} / n$ and $\mu_{n}:=\sum_{i} \mathbb{E}\left[X_{i}\right] / n$, then

$$
P\left(\left|\bar{X}_{n}-\mu_{n}\right| \geq \epsilon\right) \leq 2 \exp \left(\frac{-2 \epsilon^{2} n^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) \leq 2 \exp \left(\frac{-2 \epsilon^{2} n}{\max _{i}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Proof: use Chernoff bounding followed by Hoeffding's lemma
23. Various other inequalities: Bernstein inequality, Azuma inequality
24. Weak Law of Large Numbers (WLLN) for i.i.d. scalar random variables, $X_{1}, X_{2}, \ldots X_{n}$, with finite mean μ. Define

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

For any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right)=0
$$

Proof: use Chebyshev if σ^{2} is finite. Else use characteristic function
25. Central Limit Theorem for i.i.d. random variables. Given an iid sequence of random variables, $X_{1}, X_{2}, \ldots X_{n}$, with finite mean μ and finite variance σ^{2} as the sample mean. Then $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ converges in distribution a Gaussian rv $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$
26. Many of the above results also exist for certain types of non-iid rv's. Proofs much more difficult.
27. Mean Value Theorem and Taylor Series Expansion
28. Delta method: if $\sqrt{N}\left(X_{N}-\theta\right)$ converges in distribution to Z then $\sqrt{N}\left(g\left(X_{N}\right)-g(\theta)\right)$ converges in distribution to $g^{\prime}(\theta) Z$ as long as $g^{\prime}(\theta)$ is well defined and non-zero. Thus if $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then $g^{\prime}(\theta) Z \sim \mathcal{N}\left(0, g^{\prime}(\theta)^{2} \sigma^{2}\right)$.
29. If $g^{\prime}(\theta)=0$, then one can use what is called the second-order Delta method. This is derived by using a second order Taylor series expansion or second-order mean value theorem to expand out $g\left(X_{N}\right)$ around θ.
30. Second order Delta method: Given that $\sqrt{N}\left(X_{N}-\theta\right)$ converges in distribution to Z. Then, if $g^{\prime}(\theta)=0, N\left(g\left(X_{N}\right)-g(\theta)\right)$ converges in distribution to $\frac{g^{\prime \prime}(\theta)}{2} Z^{2}$. If $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then $Z^{2}=\sigma^{2} \frac{g^{\prime \prime}(\theta)}{2} \chi_{1}^{2}$ where $c h_{1}^{2}$ is a r.v. that has a chi-square distribution with 1 degree of freedom.
31. Slutsky's theorem

2 Jointly Gaussian Random Variables

First note that a scalar Gaussian r.v. X with mean μ and variance σ^{2} has the following pdf

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Its characteristic function can be computed by computing the Fourier transform at $-t$ to get

$$
C_{X}(t)=e^{j \mu t} e^{-\frac{\sigma^{2} t^{2}}{2}}
$$

jointly Gaussian r.v.'s. Any of the following can be used as a definition of j G.

1. The $n \times 1$ random vector X is jointly Gaussian if and only if the scalar

$$
u^{T} X
$$

is Gaussian distributed for all $n \times 1$ vectors u
2. The random vector X is jointly Gaussian if and only if its characteristic function, $C_{X}(u):=\mathbb{E}\left[e^{i u^{T} X}\right]$ can be written as

$$
C_{X}(u)=e^{i u^{T} \mu} e^{-u^{T} \Sigma u / 2}
$$

where $\mu=\mathbb{E}[X]$ and $\Sigma=\operatorname{cov}(X)$.

- Proof: X is j G implies that $V=u^{T} X$ is G with mean $u^{T} \mu$ and variance $u^{T} \Sigma u$. Thus its characteristic function, $C_{V}(t)=e^{i t u^{T}} e^{-t^{2} u^{T} \Sigma u / 2}$. But $C_{V}(t)=\mathbb{E}\left[e^{i t V}\right]=$ $\mathbb{E}\left[e^{i t u^{T} X}\right]$. If we set $t=1$, then this is $\mathbb{E}\left[e^{i u^{T} X}\right]$ which is equal to $C_{X}(u)$. Thus, $C_{X}(u)=C_{V}(1)=e^{i u^{T} \mu} e^{-u^{T} \Sigma u / 2}$.
- Proof (other side): we are given that the charac function of $X, C_{X}(u)=\mathbb{E}\left[e^{i u^{T} X}\right]=$ $e^{i u^{T} \mu} e^{-u^{T} \Sigma u / 2}$. Consider $V=u^{T} X$. Thus, $C_{V}(t)=\mathbb{E}\left[e^{i t V}\right]=C_{X}(t u)=e^{i u^{T} \mu} e^{-t^{2} u^{T} \Sigma u / 2}$. Also, $\mathbb{E}[V]=u^{T} \mu, \operatorname{var}(V)=u^{T} \Sigma u$. Thus V is G.

3. The random vector X is jointly Gaussian if and only if its joint pdf can be written as

$$
\begin{equation*}
f_{X}(x)=\frac{1}{(\sqrt{2 \pi})^{n} \operatorname{det}(\Sigma)} e^{-(X-\mu)^{T} \Sigma^{-1}(X-\mu) / 2} \tag{1}
\end{equation*}
$$

- Proof: follows by computing the characteristic function from the pdf and vice versa

4. The random vector X is $\mathrm{j} G$ if and only if it can be written as an affine function of i.i.d. standard Gaussian r.v's.

- Proof uses 2.
- Proof: suppose $X=A Z+a$ where $Z \sim \mathcal{N}(0, I)$; compute its c.f. and show that it is a c.f. of a j G
- Proof (other side): suppose X is j G; let $Z:=\Sigma^{-1 / 2}(X-\mu)$ and write out its c.f.; can show that it is the c.f. of iid standard G.

5. The random vector X is $\mathrm{j} G$ if and only if it can be written as an affine function of jointly Gaussian r.v's.

- Proof: Suppose X is an affine function of a j G r.v. Y, i.e. $X=B Y+b$. Since Y is j G, by 4 , it can be written as $Y=A Z+a$ where $Z \sim \mathcal{N}(0, I)$ (i.i.d. standard Gaussian). Thus, $X=B A Z+(B a+b)$, i.e. it is an affine function of Z, and thus, by $4, X$ is j G.
- Proof (other side): X is j G. So by 4 , it can be written as $X=B Z+b$. But $Z \sim \mathcal{N}(0, I)$ i.e. Z is a j G r.v.

Properties

1. If X_{1}, X_{2} are j G , then the conditional distribution of X_{1} given X_{2} is also j G
2. If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements of their covariance matrix are zero), then they are also mutually independent.
3. Any subset of X is also j G.

3 Optimization: basic fact

Claim: $\min _{t_{1}, t_{2}} f\left(t_{1}, t_{2}\right)=\min _{t_{1}}\left(\min _{t_{2}} f\left(t_{1}, t_{2}\right)\right)$
Proof: show that LHS \geq RHS and LHS \leq RHS
Let $\left[\hat{\hat{t}_{1}}, \hat{\hat{t}}_{2}\right] \in \arg \min _{t_{1}, t_{2}} f\left(t_{1}, t_{2}\right)$ (if the minimizer is not unique let $\hat{\hat{t}}_{1}, \hat{\hat{t}}_{2}$ be any one minimizer), i.e.

$$
\min _{t_{1}, t_{2}} f\left(t_{1}, t_{2}\right)=f\left(\hat{\hat{t}}_{1}, \hat{\hat{t}_{2}}\right)
$$

Let $\hat{t}_{2}\left(t_{1}\right) \in \arg \min _{t_{2}} f\left(t_{1}, t_{2}\right)$, i.e.

$$
\min _{t_{2}} f\left(t_{1}, t_{2}\right)=f\left(t_{1}, \hat{t}_{2}\left(t_{1}\right)\right)
$$

Let $\hat{t}_{1} \in \arg \min f\left(t_{1}, \hat{t}_{2}\left(t_{1}\right)\right)$, i.e.

$$
\min _{t_{1}} f\left(t_{1}, \hat{t}_{2}\left(t_{1}\right)\right)=f\left(\hat{t}_{1}, \hat{t}_{2}\left(\hat{t}_{1}\right)\right)
$$

Combining last two equations,

$$
f\left(\hat{t}_{1}, \hat{t}_{2}\left(\hat{t}_{1}\right)\right)=\min _{t_{1}} f\left(t_{1}, \hat{t}_{2}\left(t_{1}\right)\right)=\min _{t_{1}}\left(\min _{t_{2}} f\left(t_{1}, t_{2}\right)\right)
$$

Notice that

$$
\begin{align*}
f\left(t_{1}, t_{2}\right) & \geq \min _{t_{2}} f\left(t_{1}, t_{2}\right) \\
& =f\left(t_{1}, \hat{t}_{2}\left(t_{1}\right)\right) \\
& \geq \min _{t_{1}} f\left(t_{1}, \hat{t}_{2}\left(t_{1}\right)\right) \\
& =f\left(\hat{t}_{1}, \hat{t}_{2}\left(\hat{t}_{1}\right)\right) \tag{2}
\end{align*}
$$

The above holds for all t_{1}, t_{2}. In particular use $t_{1} \equiv \hat{\hat{t}}_{1}, t_{2} \equiv \hat{\hat{t}}_{2}$. Thus,

$$
\begin{equation*}
\min _{t_{1}, t_{2}} f\left(t_{1}, t_{2}\right)=f\left(\hat{\hat{t}}_{1}, \hat{\hat{t}_{2}}\right) \geq \min _{t_{1}} f\left(t_{1}, \hat{t}_{2}\left(t_{1}\right)\right)=\min _{t_{1}}\left(\min _{t_{2}} f\left(t_{1}, t_{2}\right)\right) \tag{3}
\end{equation*}
$$

Thus LHS \geq RHS. Notice also that

$$
\begin{equation*}
\min _{t_{1}, t_{2}} f\left(t_{1}, t_{2}\right) \leq f\left(t_{1}, t_{2}\right) \tag{4}
\end{equation*}
$$

and this holds for all t_{1}, t_{2}. In particular, use $t_{1} \equiv \hat{t}_{1}, t_{2} \equiv \hat{t}_{2}\left(\hat{t}_{1}\right)$. Then,

$$
\begin{equation*}
\min _{t_{1}, t_{2}} f\left(t_{1}, t_{2}\right) \leq f\left(\hat{t}_{1}, \hat{t}_{2}\left(\hat{t}_{1}\right)\right)=\min _{t_{1}}\left(\min _{t_{2}} f\left(t_{1}, t_{2}\right)\right) \tag{5}
\end{equation*}
$$

Thus, LHS \leq RHS and this finishes the proof.

