Least Squares Estimation

Namrata Vaswani, namrata@iastate.edu
Recall: Geometric Intuition for Least Squares

- Minimize \(J(x) = ||y - Hx||^2 \)
- Solution satisfies: \(H^T H \hat{x} = H^T y \), i.e. \(\hat{x} = (H^T H)^{-1} H^T y \)
- So \(H^T(y - H \hat{x}) = 0 \)
- The least error \((y - H \hat{x}) \) is \(\perp \) to column space of \(H \)
- Think 3D: minimum error is always \(\perp \) to plane of projection
Weighted Least Squares

- $y = Hx + e$

- Minimize

$$J(x) = (y - Hx)^T W (y - Hx) \triangleq \|y - Hx\|^2_W$$ \hspace{1cm} (1)

Solution:

$$\hat{x} = (H^TWH)^{-1} H^T Wy$$ \hspace{1cm} (2)

- Given that $E[e] = 0$ and $E[ee^T] = V$,

Min. Variance Unbiased Linear Estimator of x: choose $W = V^{-1}$ in (2)

Min. Variance of a vector: variance in any direction is minimized
• Given \(\hat{x} = Ly \), find \(L \), s.t. \(E[Ly] = E[LHx] = E[x] \), so \(LH = I \)

• Let \(L_0 = (H^TV^{-1}H)^{-1}H^TV^{-1} \)

• Error variance \(E[(x - \hat{x})(x - \hat{x})^T] \)

\[
E[(x - \hat{x})(x - \hat{x})^T] = E[(x - LHx - Le)(x - LHx - Le)^T] \\
= E[Lee^TL^T] = LVL^T
\]

Say \(L = L - L_0 + L_0 \). Here \(LH = I, L_0H = I \), so \((L - L_0)H = 0 \)

\[
LVL^T = L_0VL_0^T + (L - L_0)V(L - L_0)^T + 2L_0V(L - L_0)^T \\
= L_0VL_0^T + (L - L_0)V(L - L_0)^T + (H^TV^{-1}H)^{-1}H^T(L - L_0)^T \\
= L_0VL_0^T + (L - L_0)V(L - L_0)^T \geq L_0VL_0^T
\]

Thus \(L_0 \) is the optimal estimator (Note: \(\geq \) for matrices)
Regularized Least Squares

- Minimize

\[J(x) = (x - x_0)^T \Pi_0^{-1} (x - x_0) + (y - Hx)^TW(y - Hx) \quad (3) \]

\[
x' \triangleq x - x_0, \quad y' \triangleq y - Hx_0
\]

\[J(x) = x'^T \Pi_0^{-1} x' + y'^TWy' = z M^{-1} z \]

\[
z \triangleq \begin{pmatrix} 0 \\ y' \end{pmatrix} - \begin{bmatrix} I \\ H \end{bmatrix} x'
\]

\[M \triangleq \begin{bmatrix} \Pi_0^{-1} & 0 \\ 0 & W \end{bmatrix} \]
• Solution: Use weighted least squares formula with \(\tilde{y} = \begin{pmatrix} 0 \\ y' \end{pmatrix} \),

\[
\tilde{y} = \begin{bmatrix} I \\ H \end{bmatrix}, \tilde{W} = M
\]

Get:

\[
\hat{x} = x_0 + (\Pi_0^{-1} + H^T W H)^{-1} H^T W (y - H x_0)
\]

• Advantage: improves condition number of \(H^T H \), incorporate prior knowledge about distance from \(x_0 \)
Recursive Least Squares

- Use in one of following situations:
 - When number of equations much larger than number of variables: Storage problem
 - Getting data sequentially, do not want to re-solve the full problem again
 - The dimension of x is large, want to avoid inverting matrices

- **Goal:** At step $i - 1$, have \hat{x}_{i-1}: minimizer of
 \[
 (x - x_0)^T \Pi_0^{-1} (x - x_0) + \|H_{i-1} x - Y_{i-1}\|^2_{W_{i-1}}, Y_{i-1} = [y_1, \ldots y_{i-1}]^T
 \]

 Find \hat{x}_i: minimizer of
 \[
 (x - x_0)^T \Pi_0^{-1} (x - x_0) + \|H_i x - Y_i\|^2_{W_i},
 \]
\[
H_i = \begin{bmatrix} H_{i-1} \\ h_i \end{bmatrix} \quad (h_i \text{ is a row vector}), \quad Y_i = [y_1, \ldots y_i]^T \quad (\text{column vector})
\]

For simplicity of notation, assume \(x_0 = 0 \) and \(W_i = I \).

\[
H_i^T H_i = H_{i-1}^T H_{i-1} + h_i^T h_i
\]

\[
\hat{x}_i = (\Pi_0^{-1} + H_i^T H_i)^{-1} H_i^T Y_i
\]

Define

\[
P_i = (\Pi_0^{-1} + H_i^T H_i)^{-1}, \quad P_0 = \Pi_0
\]

So

\[
P_i = [P_{i-1}^{-1} + h_i^T h_i]^{-1}
\]

Use Matrix Inversion identity:
\[(A + BCD)^{-1} = A^{-1} + A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}\]

\[P_i = P_{i-1} - Ki h_i P_{i-1}\]

where

\[K_i = P_{i-1} h_i^T (1 + h_i P_{i-1} h_i^T)^{-1}\] \hspace{1cm} (4)

Thus

\[
\begin{align*}
\hat{x}_0 &= 0 \\
\hat{x}_i &= P_i H_i^T Y_i \\
&= [P_{i-1} - K_i h_i P_{i-1}] [H_{i-1}^T Y_{i-1} + h_i^T y_i] \\
&= \hat{x}_{i-1} + K_i (y_i - h_i \hat{x}_{i-1})
\end{align*}
\]

The last equality uses the facts that (i) \(\hat{x}_{i-1} = P_{i-1} H_{i-1}^T Y_{i-1}\), (ii) \([P_{i-1} - K_i h_i P_{i-1}] h_i^T y_i = K_i y_i\) (expand \(K_i\), obtain this after a few manipulations).
Here we considered the weight $W_i = I$. If $W_i \neq I$, the equation for K_i modifies to (replace y_i by $w_i^{1/2}y_i$ & h_i by $w_i^{1/2}h_i$, where $w_i = (W_i)_{i,i}$)

$$K_i = P_{i-1}h_i^T(w_i^{-1} + h_iP_{i-1}h_i^T)^{-1}$$

(5)

Also, here we considered y_i to be a scalar and h_i to be a row vector. In general: y_i can be a k-dim vector, h_i will be a matrix with k rows, and the above formulae still apply, replace 1 by I everywhere

RLS with Forgetting factor

Weight older data with smaller weight $J(x) = \sum_{j=1}^{i}(y_j - h_jx)^2\beta(i, j)$

Exponential forgetting: $\beta(i, j) = \lambda^{i-j}$, $\lambda < 1$

Moving average: $\beta(i, j) = 0$ if $|i - j| > \Delta$ and $\beta(i, j) = 1$ otherwise
Summarizing Recursive LS

• In general can assume that y_i is k dimensional and so h_i has k rows. Weight matrix $(W_i)_{i,i} = w_i$. Solution is:

$$
\begin{align*}
\hat{x}_0 &= x_0, \quad P_0 = \Pi_0 \\
K_i &= P_{i-1}h_i^T(w_i^{-1} + h_iP_{i-1}h_i^T)^{-1} \\
P_i &= (I - K_ih_i)P_{i-1} \\
\hat{x}_i &= \hat{x}_{i-1} + K_i(y_i - h_ix_i)
\end{align*}
$$

(6)

• This is a recursive way to get the Regularized LS solution

$$
\hat{x}_i = (\Pi_0^{-1} + H_i^T W_i H_i)^{-1} Y_i
$$

(7)

with $H_i = [h_1^T, h_2^T, ... h_i^T]^T$, $Y_i = [y_1^T, y_2^T, ... y_i^T]^T$
Connection with Kalman Filtering

The above is also the Kalman filter estimate of the state for the following system model:

\[
\begin{align*}
 x_i &= x_{i-1} \\
 y_i &= h_i x_i + v_i, \quad v_i \sim \mathcal{N}(0, R_i), \quad w_i = R_i^{-1}
\end{align*}
\] (8)
Kalman Filter Motivation

RLS was for static data: estimate the signal x better and better as more and more data comes in, e.g. estimating the mean intensity of an object from a video sequence.

RLS with forgetting factor assumes slowly time varying x.

Kalman filter: if the signal is time varying, and we know (statistically) the dynamical model followed by the signal: e.g. tracking a moving object

\[x_0 \sim \mathcal{N}(0, \Pi_0) \]
\[x_i = F_i x_{i-1} + v_{x,i}, \quad v_{x,i} \sim \mathcal{N}(0, Q_i) \]

The observation model is as before:

\[y_i = h_i x_i + v_i, \quad v_i \sim \mathcal{N}(0, R_i) \]
Goal: get the best (minimum mean square error) estimate of \(x_i \) from \(Y_i \)

Cost: \(J(\hat{x}_i) = E[(x_i - \hat{x}_i)^2|Y_i] \)

Minimizer: conditional mean \(\hat{x}_i = E[x_i|Y_i] \)

This is also the MAP estimate, i.e. \(\hat{x}_i \) also maximizes \(p(x_i|Y_i) \)
Example Applications

- Recursive LS:
 - Adaptive noise cancelation
 - Channel equalization using a training sequence
 - Object intensity estimation: $x =$ intensity, $y_i =$ vector of intensities of object region in frame i, $h_i = 1_m$ (column vector of m ones)
 - Keep updating estimate of location of an object that is static, using a sequence of location observations coming in sequentially

- Recursive LS with forgetting factor: object not static but drifts very slowly (e.g. floating object) or object intensity changes very slowly

- Kalman filter: Track a moving object (estimate its location, velocity at each time), when acceleration is assumed i.i.d. Gaussian
Material adapted from

- Chapters 2, 3 of Linear Estimation, by Kailath, Sayed, Hassibi