EE 424 \#2: Time-domain Representation of Discretetime Signals

January 18, 2011

Contents

Discrete-time (DT) Sinusoids $\quad 1$
Examples 2
Frequency ambiguity 3
Periodicity of a sum of DT sinusoids 6
DT Exponential Functions 6
DT Singularity Functions 7
Energy and Power of DT Signals 7
Examples of Energy and Power Calculations 8

Reading: § 1.1-§ 1.4 in the textbook ${ }^{1}$.
${ }^{1}$ A. V. Oppenheim and A. S. Willsky. Signals \mathcal{E} Systems. Prentice Hall, Upper Saddle River, NJ, second edition, 1997

Discrete-time (DT) Sinusoids

Recall the definition of periodic DT signals:
Definition (Periodic DT signals). If a signal $x[n]$ satisfies

$$
x[n+N]=x[n] \text { for all } n
$$

then it is periodic with period N. The smallest positive N that satisfies the above equation is called the fundamental period.

Start with a continuous-time (CT) sinusoid:

$$
x(t)=A \cos (\omega t+\theta) \quad t \in(-\infty,+\infty)
$$

where ω is the analog frequency in radians per second. This CT sinusoid is periodic with fundamental period

$$
T_{\text {per }}=2 \pi / \omega
$$

for any ω.
Sample with sampling interval $T=2 \pi / \omega_{0}$ to obtain a DT sinusoid:

$$
x[n]=\left.x(t)\right|_{t=n T}=A \cos (\omega n T+\theta) .
$$

The sampling frequency is ω_{0}. Define discrete-time frequency $\Omega=$ $\omega T=2 \pi \frac{\omega}{\omega_{0}}=2 \pi \frac{T}{T_{\text {per }}}$ in radians (rad); then,

$$
\begin{equation*}
x[n]=A \cos (\Omega n+\theta) . \tag{1}
\end{equation*}
$$

This $x[n]$ is not always periodic. Define

$$
\Omega^{\prime}=\omega T .
$$

Then, $x[n]$ in (1) is periodic with period N if and only if ${ }^{2}$

[^0]$$
\Omega^{\prime}(n+N)=\Omega^{\prime} n+2 \pi m \quad \forall n \in \mathbb{N}
$$
for some $m, N \in \mathbb{N}$. Solving this equation leads to
$$
\Omega^{\prime} N=2 \pi m
$$
and
$$
\Omega^{\prime}=\omega T=\frac{2 \pi m}{N} \quad m, N \in \mathbb{N}
$$
i.e. $\Omega^{\prime}=\omega T$ must be a rational multiple of 2π. The fundamental period of the DT sinusoid in (1) is the smallest positive N satisfying the above condition. To find the fundamental period, express
$$
\Omega^{\prime}=\frac{2 \pi m}{N} \quad m, N \in \mathbb{N}
$$
using the smallest positive N. Clearly, the discrete-time frequency Ω corresponds to a collection of rational multiples of 2π.

Examples

We now present examples of sampling CT sinusoids.

Example 1.

$$
x_{1}(t)=\cos \left(\frac{\pi}{2} t\right) .
$$

The frequency of this sinusoid is $\omega=0.5 \pi \mathrm{rad} / \mathrm{s}$ and its fundamental period is $T_{\text {per }}=2 \pi / \omega=4 \mathrm{~s}$.

Sample $x_{1}(t)$ with sampling interval $T=1 \mathrm{~s}$:

$$
x_{1}[n]=\left.x_{1}(t)\right|_{t=n T}=\cos \left(\frac{\pi}{2} n\right) .
$$

The frequency of this DT sinusoid is $\Omega=0.5 \pi$ rad, which is a rational multiple of 2π; hence, $x_{1}[n]$ is periodic.

To find the fundamental period, express the discrete-time frequency as

$$
0.5 \pi=\frac{2 \pi m}{N}=\frac{2 \pi}{4} \quad m, N \text { integers }
$$

using the smallest positive N. The fundamental period is

$$
N=4
$$

see Fig. 1.

Example 2.

$$
x_{2}(t)=\cos (2 t)
$$

The frequency of this sinusoid is $\omega=2 \mathrm{rad} / \mathrm{s}$ and its fundamental period is $T_{\mathrm{per}}=2 \pi / \omega=\pi \mathrm{s}$.

Sample $x_{2}(t)$ with sampling interval $T=1 \mathrm{~s}$:

$$
x_{2}[n]=\left.x_{2}(t)\right|_{t=n T}=\cos (2 n)
$$

The frequency of this DT sinusoid is $\Omega=2$ rad, which is not a rational multiple of 2π; hence, $x_{2}[n]$ is not periodic, see Fig. 2.

Figure 1: $x_{1}(t)$ and $x_{1}[n]$ in Example 1.

Figure 2: $x_{2}(t)$ and $x_{2}[n]$ in Example 2.

Frequency ambiguity

Comments:

- A given DT sinusoid corresponds to samples of CT sinusoids of many different frequencies.
Example:

$$
\left.\begin{array}{ccc}
x_{1}(t)=\cos (\pi t), & \omega=\pi, & T_{\text {per }}=2 \pi / \pi=2 \\
x_{2}(t)=\cos (3 \pi t), & \omega=3 \pi, & T_{\text {per }}=2 \pi /(3 \pi)=2 / 3
\end{array}\right] \quad \begin{gathered}
\text { different } \\
\text { CT signals }
\end{gathered}
$$

Sample with sampling interval $T=1 \mathrm{~s}$:

$$
\left.\begin{array}{ccc}
x_{1}[n]=\cos (\pi n), & \Omega^{\prime}=\pi=\frac{1}{2} 2 \pi, & N=2 \\
x_{2}[n]=\cos (3 \pi n), & \Omega^{\prime}=3 \pi=\frac{3}{2} 2 \pi, & N=2
\end{array}\right] \quad \begin{gathered}
\text { identical } \\
\text { DT signals }
\end{gathered}
$$

Note that

$$
\Omega=\pi \mathrm{rad}=3 \pi \mathrm{rad} .
$$

Figure 3: $x_{3}(t)$ and $x_{3}[n]$.

- This frequency ambiguity is the origin of aliasing.
- Consider a family of CT sinusoids at frequencies $\omega+k \omega_{0} k \in \mathbb{N}$:

$$
x_{k}(t)=A \cos \left(\left(\omega+k \omega_{0}\right) t+\theta\right)
$$

where

$$
\omega_{0}=2 \pi / T
$$

is the sampling frequency that we will use to sample these sinusoids.

- $x_{k}(t)$ are distinct signals for different values of k.
- Sample $x_{k}(t)$ using sampling interval T to obtain a family of DT sinusoids:

$$
\begin{array}{rlr}
x_{k}[n] & =A \cos \left(\left(\omega+k \omega_{0}\right) n T+\theta\right)=A \cos \left(\Omega^{\prime} n+2 \pi k n+\theta\right) \quad \Omega^{\prime}=\omega T \\
& =A \cos \left(\Omega^{\prime} n+\theta\right) .
\end{array}
$$

- Conclusion: All CT sinusoids at frequencies $\omega+k \omega_{0} k \in \mathbb{N}$ yield the same DT signal (i.e. same samples) when sampled at the sampling frequency

$$
\omega_{0}=\frac{2 \pi}{T} \mathrm{rad} / \mathrm{s} .
$$

- All DT sinusoids at frequencies $\Omega^{\prime}+k 2 \pi k \in \mathbb{N}$ have the same samples. Indeed,

$$
\Omega^{\prime} \mathrm{rad}=\Omega^{\prime}+2 \pi \mathrm{rad}=\Omega^{\prime}-2 \pi \mathrm{rad}=\Omega^{\prime}+2 \cdot 2 \pi \mathrm{rad} \cdots
$$

are all a single DT frequency in radians.

- Based on the above conclusion, two analog frequencies ω_{1} and ω_{2} are ambiguous after sampling if

$$
\left|\omega_{1}-\omega_{2}\right|=k \omega_{0}, \quad k \text { integer } .
$$

Consider a lowpass signal $x(t)$ with spectrum given in Fig. 4 . Taking $\omega_{1}=-\omega_{\mathrm{m}}$ and $\omega_{2}=\omega_{\mathrm{m}}$, we obtain that there is no ambiguity if this $x(t)$ is sampled at

$$
\omega_{0}>2 \omega_{\mathrm{m}}
$$

Figure 4: Spectrum of a lowpass CT signal $x(t)$.

- To eliminate this ambiguity, we often restrict ourselves to

CT frequencies: $-\omega_{0} / 2<\omega<\omega_{0} / 2$
DT frequencies: $\quad-\pi<\Omega<\pi$.

Periodicity of a sum of DT sinusoids

The DT signal

$$
x[n]=A_{1} \cos \left(\Omega_{1} n+\theta_{1}\right)+A_{2} \cos \left(\Omega_{2} n+\theta_{2}\right)
$$

is periodic provided that both frequencies Ω_{1} and Ω_{2} are rational multiples of 2π :

$$
\begin{aligned}
& \Omega_{1}=\frac{m_{1}}{N_{1}} 2 \pi \\
& \Omega_{2}=\frac{m_{2}}{N_{2}} 2 \pi
\end{aligned} \text { smallest } N_{1} \text { and } N_{2} \Rightarrow \begin{aligned}
& N_{1} \\
& N_{2}
\end{aligned} \text { are fundamental periods. }
$$

Then, the fundamental period N of $x[n]$ is the least common multiple (lcm) of N_{1} and N_{2} :

$$
N=\operatorname{lcm}\left(N_{1}, N_{2}\right) .
$$

Example:

$$
\begin{array}{ll}
\Omega_{1}=\frac{4}{5} 2 \pi & N_{1}=5 \\
\Omega_{2}=\frac{7}{2} 2 \pi & N_{2}=2
\end{array} \quad N=\operatorname{lcm}(2,5)=10 .
$$

DT Exponential Functions

DT Complex Sinusoid:

$$
x[n]=e^{j(\Omega n+\theta)}=\cos (\Omega n+\theta)+j \sin (\Omega n+\theta) .
$$

DT Real-valued Exponential Function:

$$
x[n]=C \alpha^{n} \quad \forall n \in \mathbb{N} \quad \alpha \in \mathbb{R} .
$$

$\alpha>1$: growing exponential
$0<\alpha<1$: decaying exponential

Figure 5: DT exponential functions for $\alpha>0$.
decaying, alternating sign

DT Singularity Functions

DT Unit Step:

$$
u[n]= \begin{cases}0, & n<0 \tag{2}\\ 1, & n \geq 0\end{cases}
$$

where $n \in \mathbb{N}$, see Fig. 7 .
DT Unit Ramp:

$$
r[n]=n u[n]= \begin{cases}0, & n<0 \tag{3}\\ n, & n \geq 0\end{cases}
$$

where $n \in \mathbb{N}$, see Fig. 8 .
DT Unit Impulse:

$$
\delta[n]= \begin{cases}0, & n \neq 0 \\ 1, & n=0\end{cases}
$$

where $n \in \mathbb{N}$, see Fig. 9 .
Unit impulse is first difference of unit step:

$$
\delta[n]=u[n]-u[n-1] .
$$

Unit step is running sum of unit impulse: 3^{3}

$$
u[n]=\sum_{k=-\infty}^{n} \delta[k] .
$$

Energy and Power of DT Signals

Energy of a DT signal over all time: is written as ${ }^{4}$

$$
\begin{equation*}
E_{\infty}=\sum_{n=-\infty}^{+\infty}|x[n]|^{2} \tag{4}
\end{equation*}
$$

Figure 6: DT exponential functions for $-1<\alpha<0$.

Figure 7: DT unit step. Corresponds to sampled $u(t)$, CT unit step.

Figure 8: DT unit ramp. Corresponds to sampled $r(t)$, CT unit ramp.

Figure 9: DT unit impulse. Does not correspond to sampled $\delta(t)$, CT unit impulse.
${ }^{3} \sum_{k=-\infty}^{n} \delta[k]=\left\{\begin{array}{ll}0, & n<0 \\ 1, & n \geqslant 0\end{array}\right.$.
${ }^{4}(4)$ is computed as follows:

$$
E_{\infty}=\lim _{N \nearrow+\infty} \sum_{n=-N}^{N}|x[n]|^{2}
$$

Average power of a DT signal over all time:

$$
P_{\infty}=\lim _{N \nearrow+\infty}\left(\frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}\right) .
$$

DT Energy Signal: $0<E_{\infty}<+\infty, \quad P_{\infty}=0$
DT Power Signal: $0<P_{\infty}<+\infty, E_{\infty}=+\infty$
There exist signals that are neither energy nor power signals.
Periodic DT Signals. Suppose

$$
x[n+N]=x[n] \quad \forall n \in \mathbb{N} .
$$

Then, for nonzero $x[n], E_{\infty}=+\infty$ and we can compute the power over one period N as

$$
P_{N}=\frac{1}{N} \underbrace{\sum_{n=\langle N\rangle}^{n=\langle N}}_{\begin{array}{c}
\text { any } N \text { consecutive } \\
\text { samples (one period) }
\end{array}}|x[n]|^{2} .
$$

Examples of Energy and Power Calculations

Example 1. Find the energy and power of $x[n]=0.5^{|n|}$ for all n, see Fig. 10.

Figure 10: $x[n]=0.5^{|n|}$ as a function of n.

Energy

$$
\begin{aligned}
E_{\infty} & =\sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{2|n|} \\
& =\sum_{n=-\infty}^{-1}\left(\frac{1}{2}\right)^{-2 n}+\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{2 n} \\
& =\sum_{n=-\infty}^{-1}\left(\frac{1}{4}\right)^{-n}+\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n} \\
& =E_{1}+E_{2}
\end{aligned}
$$

- E_{2} : standard geometric series $E_{2}=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}$
- E_{1} : graphically we can see $E_{1}=E_{2}-(1)^{2}=\frac{1}{3}$
- To compute E_{1} by brute force: put in terms of standard geometric series:

Let $k=-1-n$

$$
\begin{gathered}
E_{1}=\sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k+1}=\frac{1}{4} \sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{1}{41-\frac{1}{4}}=\frac{1}{3} \\
E_{\infty}=\frac{4}{3}+\frac{1}{3}=\frac{5}{3}
\end{gathered}
$$

Power

$$
P_{\infty}=0
$$

Example 2. Find the energy and power of $x[n]=\cos \left(\Omega_{0} n+\theta\right)$.
Assume $\Omega_{0}=\frac{m}{N} \cdot 2 \pi$, the period is N, and $0 \leq \Omega_{0} \leq \pi$

Energy

$$
E_{\infty}=\infty
$$

Power

$$
P_{N}=\frac{1}{N} \sum_{n=0}^{N-1} A^{2} \cos ^{2}\left(\Omega_{0} n+\theta\right)
$$

$\underline{\Omega_{0}=0}$
$N=1 \quad x[n]=A \cos \theta \quad \forall n$
$P_{N}=\frac{1}{1} \sum_{n=0}^{0} A^{2} \cos ^{2} \theta=A^{2} \cos ^{2} \theta$

$\Omega_{0}=\pi$
$N=2$
$x[n]=A \cos (\pi n+\theta)=A \cos \theta(-1)^{n}$
$P_{N}=\frac{1}{2} \sum_{n=0}^{1} A^{2} \cos ^{2} \theta(-1)^{2 n}=A^{2} \cos ^{2}(\theta)$

$\underline{0<\Omega_{0}<\pi} \quad$ e.g. $\Omega_{0}=\frac{\pi}{2}, \theta=\frac{\pi}{4}, N=4$

Compute P_{N} for general N. Recall inverse Euler's formula:

$$
\cos \left(\Omega_{0} n+\theta\right)=\frac{1}{2}\left(e^{j\left(\Omega_{0} n+\theta\right)}+e^{-j\left(\Omega_{0} n+\theta\right)}\right)
$$

and note that we now focus on periodic $x[n]$ with

$$
\begin{equation*}
\Omega_{0}=2 \pi \frac{m}{N} \quad m=1,2, \ldots, N-1 . \tag{5}
\end{equation*}
$$

Then

$$
\begin{aligned}
P_{N} & =\frac{1}{N} \sum_{n=0}^{N-1} A^{2} \cos ^{2}\left(\Omega_{0} n+\theta\right)=\frac{A^{2}}{4 N} \sum_{n=0}^{N-1}\left(e^{j\left(\Omega_{0} n+\theta\right)}+e^{-j\left(\Omega_{0} n+\theta\right)}\right)^{2} \\
& =\frac{A^{2}}{4 N}\left(\sum_{n=0}^{N-1} e^{2 j\left(\Omega_{0} n+\theta\right)}\right)+\frac{A^{2}}{4 N}\left(\sum_{n=0}^{N-1} e^{-2 j\left(\Omega_{0} n+\theta\right)}\right)+\frac{A^{2}}{4 N} 2 N \\
& =\frac{A^{2}}{2}+e^{2 j \theta} S_{1}+e^{-2 j \theta} S_{2}=\frac{A^{2}}{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{n=0}^{N-1} e^{2 j \Omega_{0} n} \stackrel{z_{1}=e^{2 j m / N}}{=} \sum_{n=0}^{N-1} z_{1}^{n}=\frac{z_{1}^{N}-1}{z_{1}-1}=0 \\
& S_{2}=\sum_{n=0}^{N-1} e^{-2 j \Omega_{0} n} \stackrel{z_{2}=e^{-2 j m / N}}{=} \sum_{n=0}^{N-1} z_{2}^{n}=\frac{z_{2}^{N}-1}{z_{2}-1}=0
\end{aligned}
$$

since $z_{1}^{N}=1$ and $z_{2}^{N}=1$.
To summarize, for $N>2$, the power of the periodic DT sinusoid

$$
x[n]=A \cos \left(2 \pi \frac{m}{N} n+\theta\right) \quad m=0,1, \ldots, N
$$

is

$$
P_{N}=\frac{1}{N} \sum_{n=\langle N\rangle}|x[n]|^{2}=\left\{\begin{array}{cc}
A^{2} \cos ^{2} \theta, & m=0, N=1 \\
A^{2} \cos ^{2} \theta, & m=1, N=2 \\
\frac{A^{2}}{2}, & m=1,2, \ldots, N-1, N>2
\end{array} .\right.
$$

Hence, the power of a periodic DT sinusoid [at frequency Ω_{0} in (5)] with period $N>2$ is

$$
P_{N}=\frac{1}{N} \sum_{n=\langle N\rangle}|x[n]|^{2}=\frac{A^{2}}{2}
$$

which is not a function of θ, m, or N.

References

A. V. Oppenheim and A. S. Willsky. Signals \mathcal{E} Systems. Prentice Hall, Upper Saddle River, NJ, second edition, 1997.

[^0]: ${ }^{2}$ Here, \mathbb{N} denotes the set of all integers.

