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Notation and Definitions

Definition 1. The unit rectangle is defined in Fig. 1.

Definition 2. The sinc function is defined as

sinc(x) =
sin(π x)

π x
(1)

see also Fig. 2.

Definition 3. An indicator function is defined as:

1(a,b)(t) =

{
1, t ∈ (a, b)
0, otherwise

. (2)

Figure 1: Definition and plot of the unit
rectangle.

Definition 4 (CT impulse). We define the continuous-time (CT) impulse
δ(·) by the property that ∫ +∞

−∞
x(t) δ(t) dt = x(0)

for all x(t) that are continuous at t = 0.

Figure 2: Plot of the sinc function.
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A Review: Signal Manipulations, CT Convolution, CTFT and Its
Properties

Signal manipulations

Practice examples:

Figure 3: Time shift: y(t) = x(t− t0).
Where does time t = 0 move?

Figure 4: Scaling: y(t) = x(t/T) where
T > 0.

CT convolution

CT convolution is defined as

x(t) ? h(t) =
∫ +∞

−∞
x(τ) h(t− τ) dτ.

Basic CT linear time-invariant (LTI) systems. The time-shift system
y(t) = x(t− t0) is LTI with impulse response δ(t− t0):

x(t) ? δ(t− t0) = x(t− t0). (3)

Example: Compute y(t) = (x ? h)(t) for x(t) = 21(0,2)(t) and

h(t) = 1(0,1)(t).
First sketch x(t) and h(t):



ee 424 #1: sampling and reconstruction 4

Figure 5: Critical time points: t− 1 = 0
and t = 0 as well as t− 1 = 2 and t = 2,
i.e. t = 0, 1, 2, 3, meaning that we have 5

intervals to consider for t.
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CTFT and its properties

XF(ω) denotes continuous-time Fourier transform (CTFT)
of x(t):

XF(ω) =
∫ +∞

−∞
x(t) e− j ω t dt (4a)

x(t) =
1

2π

∫ +∞

−∞
XF(ω) e j ω t dω (4b)

where ω is the frequency in radians per second (rad/s).

The textbook uses X(j ω) to denote the
CTFT of x(t).

Review EE 224 handout lctftsummary to solve the practice exam-
ples in Fig. 6.
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Figure 6: Examples of CTFT properties.

Modulation property: If x(t) CTFT←→ XF(ω), then

x(t) ej ω0 t CTFT←→ XF(ω−ω0) (complex modulation). (5)

Generalized modulation property. Find CTFT of a signal

x(t) f (t) (6)

where f (t) is periodic with fundamental period T0 and fundamental
frequency ω0 = 2 π/T0. First, express f (t) using Fourier series (FS):

f (t) =
+∞

∑
k=−∞

ak ej k ω0 t

and substitute this expansion into (6):

x(t)
+∞

∑
k=−∞

ak ej k ω0 t =
+∞

∑
k=−∞

ak x(t) ej k ω0 t CTFT←→
+∞

∑
k=−∞

ak XF(ω− k ω0).

(7)
To derive the sampling theorem, we will choose f (t) to be the im-
pulse train, defined in the following.
Ideal lowpass filter. The frequency response of the ideal lowpass
filter in Fig. 7 can be written as2 2 See also Definition 3.

HF(ω) = T 1−π/T,π/T(ω) (8)

and the corresponding impulse response hLP(t) is3 3 See EE 224 handout lctftsummary.

h(t) = T
π/T

π
sinc

(π/T
π

t
)
= sinc

( t
T
)
. (9)
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Figure 7: An ideal lowpass filter.

Poisson Sum Formula

Figure 8: The impulse train pT(t) is
defined as

pT(t) =
+∞

∑
n=−∞

δ(t− n T)

where T denotes its period.

Poisson sum formula. Consider the Fourier-series representation
of the impulse train pT(t) in Fig. 8:

pT(t) =
+∞

∑
k=−∞

ak ej k ω0 t

where
ω0 =

2 π

T
and

ak =
1
T

∫
T

pT(t)e−j k ω0 tdt =
1
T

∫ T/2

−T/2
δ(t) e−j k ω0 t dt =

1
T

.

Therefore,

pT(t) =
+∞

∑
k=−∞

1
T

ej k ω0 t. (10)

Sampling

Introduction

Sampling: Conversion of a continuous-time signal (usu-
ally not quantized) to a discrete-time signal (usually

quantized).
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Reconstruction: Conversion of a discrete-time signal

(usually quantized) to a continuous-time signal.
Why Sample and Reconstruct?

• Digital storage (CD, DVD, etc.)

• Digital transmission (optical fiber, cellular phone, etc.)

• Digital switching (telephone circuit switch, Internet packet switch,
etc.)

• Digital signal processing (video compression, speech compression,
etc.)

• Digital synthesis (speech, music, etc.).

Applications

Here is a typical sampling and reconstruction system:

Quantization causes “noise,” limiting the signal-to-noise ratio (SNR) to about 6 dB per bit. We mostly
neglect the quantization effects in this class.

Point and impulse sampling

There are two ways of looking at the sampled signal: as

1. a sequence of numbers

x[n] = x(n T), n integer

point sampling of x(t), depicted in Fig. 9 (b), or
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2. a continuous-time signal

xP(t) =
+∞

∑
n=−∞

x(n T) δ(t− n T)

impulse sampling of x(t), depicted in Fig. 9 (c).

Figure 9: Sampling: (a) CT signal x(t),
(b) the point-sampled sequence x[n],
and (c) the impulse-sampled signal
xP(t).
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Point sampling: An actual sampling system mixes continuous and discrete time.

• Continuous-time x(t) specified for all t.

• Spectrum XF(ω) analyzed by CTFT, frequency
variable ω.

• Discrete-time
x[n] = x(n T)

at n T, n integer.

• Spectrum Xf(Ω) analyzed by DTFT, frequency
variable Ω = ω T.

Impulse sampling: An equivalent all-CT system.

• “Continuous-time” signal xP(t) specified for all t, but zero except at t = n T.

• Spectrum XF
P (ω) analyzed using CTFT (which is why we use impulse sampling), with

XF
P (ω) = Xf(ω T︸︷︷︸

Ω

). (11)
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Sampling theorem

In this handout, we focus on impulse sampling because it

requires only the knowledge of theory of CT signals and

CTFT. 4 Recall the impulse train pT(t) = ∑+∞
n=−∞ δ(t− n T) and define 4 Since this is a course on digital signal

processing, we will turn to DT signals
and point sampling starting hand-
out #2. Then, (11) will be the bridge
between the CT sampling theory devel-
oped in this handout and DT results in
the remainder of the class.

xP(t) = x(t) pT(t) =
+∞

∑
n=−∞

x(t) δ(t− n T) =
+∞

∑
n=−∞

x(n T)︸ ︷︷ ︸
x[n]

δ(t− n T)

(12)
which is formally a CT signal.5 By the Poisson sum formula (10), we 5 However, it is clear that the informa-

tion it conveys about x(t) is limited to
the values x(n T), n integer.

have

xP(t) =
+∞

∑
k=−∞

1
T

x(t) ej k ω0 t. (13)

Take CTFT of (13):

XF
P (ω) =

+∞

∑
k=−∞

1
T

CTFT{x(t) ej k ω0 t} = 1
T

+∞

∑
k=−∞

XF(ω− k ω0) (14)

where
ω0 =

2 π

T
(rad/s).

For x(t) CTFT←→ XF(ω) bandlimited to |ω| < ωm, we have:

Figure 10: A bandlimited signal spec-
trum XF(ω) and the spectrum XF

P (ω) of
the corresponding sampled signal.

Sampling Theorem. Suppose x(t) CTFT←→ XF(ω) bandlimited to |ω| <
ωm.
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• If the sampling frequency satisfies6 6 (15) is known as the Nyquist criterion.

ω0 > 2 ωm (15)

as in Fig. 10, no aliasing occurs and we can perfectly reconstruct x(t)
from its samples

x[n] = x(t)|t=n T , n = 0,±1,±2, . . .

or, equivalently, from xP(t).

• If
ω0 6 2 ωm

aliasing occurs and we cannot reconstruct x(t) perfectly from x[n] in
general. (In special cases, we can.)

Reconstruction

Assume that the Nyquist requirement ω0 > 2 ωm is satis-
fied. We consider two reconstruction schemes:

• ideal reconstruction (with ideal bandlimited interpolation),

• reconstruction with zero-order hold.

Ideal Reconstruction: Shannon interpolation formula

Recall (14):

XP(t) = . . . +
1
T

XF(ω + ω0) +
1
T

XF(ω) +
1
T

XF(ω−ω0) + . . .

Figure 11: To reconstruct the original
CT signal x(t), apply an ideal lowpass
filter to the impulse-sampled signal
xP(t) = x(t) pT(t).

Our ideal reconstruction filter has the frequency response:

HF(ω) = T 1(−π/T,π/T)(ω)
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and, consequently, the impulse response [see (9)]

h(t) = sinc
( t

T
)
.

Figure 12: An equivalent all-CT recon-
struction system.

Now, the reconstructed signal is

x(t) = xP(t)︸ ︷︷ ︸
impulse-sampled signal

? h(t) =
+∞

∑
n=−∞

x(n T) δ(t− n T) ? h(t)︸ ︷︷ ︸
h(t− n T), see (3)

=
+∞

∑
n=−∞

x(n T) sinc
( t− n T

T

)

which is the Shannon interpolation (reconstruction) formula. The actual
reconstruction system mixes continuous and discrete time.

• The reconstructed signal xr(t) is a train of sinc pulses scaled by the
samples x[n].

• This system is difficult to implement because each sinc pulse ex-
tends over a long (theoretically infinite) time interval.

Ideal reconstruction: Summary

• Easy to analyze.

• Hard to implement.

• Based on bandlimited sinc pulses.
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Figure 13: The interpolated signal is
a sum of shifted sincs, weighted by
the samples x(n T). The sinc function
h(t) = sinc

(
t/T

)
shifted to n T, i.e.

h(t− T), is equal to one at n T and zero
at all other samples l T, l 6= n. The sum
of the weighted shifted sincs will agree
with all samples x(n T), n integer.

A general reconstruction filter

For the development of the theory, it is handy to consider the
impulse-sampled signal xP(t) and its CTFT.

HF
LP(ω) in Fig. 14 may not be a fre-

quency response of an ideal lowpass
filter, in contrast with HF(ω) in Fig. 11.

Figure 14: Reconstruction in the fre-
quency domain is lowpass filtering.
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Here, the reconstructed signal is xr(t), with CTFT

XF
r (ω) = HF

LP(ω) XF
P (ω)

sampling th.
= HF

LP(ω)
1
T

+∞

∑
k=−∞

XF
(

ω− 2 π k
T︸ ︷︷ ︸

k ω0

)
.

Note: As sketched in Fig. 14, hLP(t)
CTFT←→ HF

LP(ω) can be made more
flexible than the ideal sinc/boxcar pair; yet, we can still achieve per-
fect reconstruction. The more we sample above the Nyquist rate, the
more flexibility we gain in terms of designing this filter. An example
of a more flexible filter is given in Fig. 15.

Figure 15: Frequency response of a
flexible lowpass reconstruction filter.
If ωm = ω0/2, then this frequency
response reduces to the standard boxcar
frequency response.

Reconstruction with zero-order hold

• Many practical reconstruction systems use zero-order
hold circuits for reconstruction.

• Why? Rectangular pulses are (much) easier to generate than (ap-
proximate) sinc pulses.

• Replace the ideal sinc with a rectangular pulse7 7 See Definition 1.

hZOH(t) = rect
( t− 0.5 T

T

)
yielding

xZOH(t) =
+∞

∑
n=−∞

x[n] hZOH(t− n T).

Frequency response of the zero-order hold:

HF
ZOH(ω) =

∫ T

0
e−j ω t dt =

1− e−j ω T

j ω
= T sinc

(ω T
2 π

)
e−j 0.5 ω T = T sinc

( ω

ω0

)
e−j π ω

ω0 (16)

recall ω0 = 2 π/T and (1).
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Reconstruction system (mixes continuous and discrete time).

Figure 16: The zero-order hold out-
put xZOH(t) is a train of rectangular
pulses scaled by the samples x[n] (a
staircase approximation of x(t)), easy to
generate.

• Rewrite the zero-order hold output as

xZOH(t) =
+∞

∑
n=−∞

x[n] hZOH(t− n T) =
+∞

∑
n=−∞

x[n] hZOH(t) ? δ(t− n T)︸ ︷︷ ︸
see (3)

= hZOH(t) ?
+∞

∑
n=−∞

x[n] δ(t− n T)

= hZOH(t) ? [x(t)
+∞

∑
n=−∞

δ(t− n T)︸ ︷︷ ︸
pT(t)

]

= hZOH(t) ? xP(t).

Now, take CTFT of (17):

XF
ZOH(ω) = HF

ZOH(ω)XF
P (ω)

sampling th.
= HF

ZOH(ω)
1
T

+∞

∑
k=−∞

XF(ω− k ω0).
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Finally, the output of the reconstruction filter has the following spectrum [see (16)]:

XF
r (ω) = HF

r (ω) XF
ZOH(ω) = HF

r (ω) HF
ZOH(ω) XF

P (ω) = HF
r (ω)︸ ︷︷ ︸

reconstruction
filter

T sinc
( ω

ω0

)
e−j π ω

ω0︸ ︷︷ ︸
sinc with phase factor
from the ZOH circuit

1
T

+∞

∑
k=−∞

XF(ω− k ω0)︸ ︷︷ ︸
shifted copies
from sampling

.

• We can reconstruct the signal perfectly, i.e.

xr(t) = x(t) CTFT←→ XF
r (ω) = XF(ω)

if

− the Nyquist criterion is satisfied and

− we can design a reconstruction filter with the following fre-
quency response:

HF
r (ω) =

ej π ω
ω0

sinc
(

ω
ω0

)
︸ ︷︷ ︸

compensates ZOH
including delay (hence not causal)

·1(−ω0/2,ω0/2)(ω)︸ ︷︷ ︸
removes copies

k 6= 0

.
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We achieve flexibility in designing HF
r (ω) by utilizing a sampling

rate that is significantly higher than the Nyquist rate, which provides
a guard band.

We can boost the sampling rate by digital interpolation — you will
see how to do that in Lab 1 and learn the theory later in class.

Examples of sampling and reconstruction

In practice, we often use one of the standard analog lowpass filters
having order 2 to 10 (or so) as reconstruction filters HF

r (ω). The last
two of the following examples use a second-order analog Butterworth
filter with cutoff frequency ωc = ω0/2.

First, recall Fig. 10.
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Comments on Lab 1

Sampling part of Lab 1

Basic fact: A bandlimited signal with bandwidth fm (in

Hz) can be reconstructed perfectly from its samples if the sampling
rate f0 = 1/T is twice the signal bandwidth (or more): f0 > 2 fm.

Typically, we think of sampled sinusoids as looking like that in
Fig. 17.

Figure 17: Sampled sinusoid. At this
sampling rate, it is easy to believe that
we can reconstruct the sinusoid from its
samples.

Most sampled sinusoids are much less recognizable:

Figure 18: Sinusoid sampled at a much
lower sampling rate.

Conclusion: The fact that the signal was bandlimited before
sampling is a very powerful constraint in the reconstruction of the
continuous-time signal.
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Figure 19: Continuous-time model of
the reconstruction of a discrete-time
signal.

Reconstruction part of Lab 1

How important is the lowpass filter response of the re-
construction filter in Fig. 19? You will look at the improve-
ment in reconstruction as you go from a very simple lowpass filter to
higher-performance lowpass filters.
Basic Problem: You have one second of a 200 Hz sinusoid, sam-
pled at 1024 Hz. You want to reconstruct it as accurately as possible.
Since everything in Matlab is inherently discrete time, we will
consider a closely related problem.

• We start with a 200 Hz sinusoid sampled at 8192 Hz.

• If we take every eighth sample (subsampling, or decimating by a
factor of eight), we have the 200 Hz sinusoid sampled at 1024 Hz.

• We then wish to recover the 7/8ths of the samples we threw away.

Conceptually, the 8192 Hz sampling rate is so high that we can con-
sider the sampled 200 Hz sinusoid to be continuous.
The 8192 Hz sampling rate was chosen so that the signals would
all be in the audio range. This is the sampling rate that Matlab

assumes for sound — you can play and hear the reconstructions.
The first 16 ms of the 1024 Hz sampled signal look like this:
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This is sampled well above the Nyquist rate, which is 400 Hz. Simple
interpolation methods will not be adequate.

Lowpass reconstruction filters

One-sample zero-order hold:

Figure 20: Convolution with a one-
sample wide (at 1024 Hz) rect() func-
tion.

Common approach, often followed by an additional reconstruction
filter HF

r (ω) to correct for the passband frequency response of the
rect() and suppress sidelobes at multiples of ω0 (in rad/s), see the
earlier discussion in this handout.
Linear interpolation:
This has better suppression of the sidelobes and more passband
distortion than the rect().

Ideally, we wish to use the perfect filter with a sinc() impulse re-
sponse. This is not practical, so instead we approximate the infinite-
duration sinc by a segment that we extract with a window function.
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Figure 21: Convolution with a two-
sample wide (at 1024 Hz) wedge()
function.

Figure 22: The rect() and wedge()
filters are zero- and first-order approxi-
mations to the sinc.

Figure 23: Approximate interpolation:
Convolution with a windowed sinc.
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Figure 24: First case: A 4-sample
windowed sinc (at 1024 Hz sampling).

Figure 25: Second case: An 8-sample
windowed sinc (at 1024 Hz sampling).
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DT lowpass reconstruction filters

In Lab 1, we will do the filtering in discrete time using
sampled versions of the filters, and the convolution sum.

What we actually do here is upsampling or discrete-time interpolation:
the sampling rate is increased by a factor of M in discrete time, in
order to reduce the demands of the D/A conversion. This allows us
to use a very simple D/A converter. We will come back to this later
at the end of semester.
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This is commonly done in CD players, where the data sampling rate
is 44.1 kHz. This rate is upsampled by a factor of 8 to 352.8 kHz. By
doing so, the need for correction of the ZOH passband distortion is
effectively eliminated.
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