Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel.

1 Random Variable: Topics

- Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3
- What is a random variable?
- Discrete random variable (r.v.)
- Probability Mass Function (pmf)
- pmf of Bernoulli, Binomial, Geometric, Poisson
-pmf of $Y=g(X)$
- Mean and Variance, Computing for Bernoulli, Poisson
- Continuous random variable
- Probability Density Function (pdf) and connection with pmf
- Mean and Variance
- Uniform and exponential random variables
- Cumulative Distribution Function (cdf)
- Relation with pdf and pmf
- Connection between Geometric and Exponential **
- Connection between Binomial and Poisson **
- Gaussian (or Normal) random variable

2 What is a random variable (r.v.)?

- A real valued function of the outcome of an experiment
- Example: Coin tosses. r.v. $X=1$ if heads and $X=0$ if tails (Bernoulli r.v.).
- A function of a r.v. defines another r.v.
- Discrete r.v.: X takes values from the set of integers

3 Discrete Random Variables \& Probability Mass Function (pmf)

- Probability Mass Function (pmf): Probability that the r.v. X takes a value x is pmf of X computed at $X=x$. Denoted by $p_{X}(x)$. Thus

$$
\begin{equation*}
p_{X}(x)=P(\{X=x\})=P(\text { all possible outcomes that result in the event }\{X=x\}) \tag{1}
\end{equation*}
$$

- Everything that we learnt in Chap 1 for events applies. Let Ω is the sample space (space of all possible values of X in an experiment). Applying the axioms,
$-p_{X}(x) \geq 0$
$-P(\{X \in S\})=\sum_{x \in S} p_{X}(x)$ (follows from Additivity since different events $\{X=x\}$ are disjoint)
$-\sum_{x \in \Omega} p_{X}(x)=1$ (follows from Additivity and Normalization).
- Example: $X=$ number of heads in 2 fair coin tosses $(p=1 / 2) . P(X>0)=\sum_{x=1}^{2} p_{X}(x)=$ 0.75 .
- Can also define a binary r.v. for any event A as: $X=1$ if A occurs and $X=0$ otherwise. Then X is a Bernoulli r.v. with $p=P(A)$.
- Bernoulli ($X=1$ (heads) or $X=0$ (tails)) r.v. with probability of heads p

$$
\begin{equation*}
\operatorname{Bernoulli}(p): p_{X}(x)=p^{x}(1-p)^{1-x}, x=0, \text { or } x=1 \tag{2}
\end{equation*}
$$

- Binomial ($X=x$ heads out of n independent tosses, probability of heads p)

$$
\begin{equation*}
\operatorname{Binomial}(n, p): p_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1, \ldots n \tag{3}
\end{equation*}
$$

- Geometric r.v., X, with probability of heads p ($X=$ number of coin tosses needed for a head to come up for the first time or number of independent trials needed to achieve the first "success").
- Example: I keep taking a test until I pass it. Probability of passing the test in the $x^{\text {th }}$ try is $p_{X}(x)$.
- Easy to see that

$$
\begin{equation*}
\operatorname{Geometric}(p): p_{X}(x)=(1-p)^{x-1} p, \quad x=0,1,2, \ldots \infty \tag{4}
\end{equation*}
$$

- Poisson r.v. X with expected number of arrivals Λ (e.g. if $X=$ number of arrivals in time τ with arrival rate λ, then $\Lambda=\lambda \tau$)

$$
\begin{equation*}
\operatorname{Poisson}(\Lambda): p_{X}(x)=\frac{e^{-\Lambda}(\Lambda)^{x}}{x!}, x=0,1, \ldots \infty \tag{5}
\end{equation*}
$$

- Uniform(a,b):

$$
p_{X}(x)=\left\{\begin{array}{cc}
1 /(b-a+1), & \text { if } x=a, a+1, \ldots b \tag{6}\\
0, & \text { otherwise }
\end{array}\right.
$$

- pmf of $Y=g(X)$
$-p_{Y}(y)=P(\{Y=y\})=\sum_{x \mid g(x)=y} p_{X}(x)$
Example $Y=|X|$. Then $p_{Y}(y)=p_{X}(y)+p_{X}(-y)$, if $y>0$ and $p_{Y}(0)=p_{X}(0)$. Exercise: $X \sim \operatorname{Uniform}(-4,4)$ and $Y=|X|$, find $p_{Y}(y)$.
- Expectation, mean, variance
- Motivating example: Read pg 81
- Expected value of X (or mean of X): $E[X] \triangleq \sum_{x \in \Omega} x p_{X}(x)$
- Interpret mean as center of gravity of a bar with weights $p_{X}(x)$ placed at location x (Fig. 2.7)
- Expected value of $Y=g(X): E[Y]=E[g(X)]=\sum_{x \in \Omega} g(x) p_{X}(x)$. Exercise: show this.
- $n^{\text {th }}$ moment of $X: E\left[X^{n}\right] . n^{\text {th }}$ central moment: $E\left[(X-E[X])^{n}\right]$.
- Variance of $X: \operatorname{var}[X] \triangleq E\left[(X-E[X])^{2}\right]$ (2nd central moment)
$-Y=a X+b$ (linear fn): $E[Y]=a E[X]+b, \operatorname{var}[Y]=a^{2} \operatorname{var}[X]$
- Poisson: $E[X]=\Lambda, \operatorname{var}[X]=\Lambda$ (show this)
- Bernoulli: $E[X]=p, \operatorname{var}[X]=p(1-p)$ (show this)
- Uniform $(\mathrm{a}, \mathrm{b}): E[X]=(a+b) / 2, \operatorname{var}[X]=\frac{(b-a+1)^{2}-1}{12}$ (show this)
- Application: Computing average time. Example 2.4
- Application: Decision making using expected values. Example 2.8 (Quiz game, compute expected reward with two different strategies to decide which is a better strategy).
- Binomial (n, p) becomes Poisson $(n p)$ if time interval between two coin tosses becomes very small (so that n becomes very large and p becomes very small, but $\Lambda=n p$ is finite). ${ }^{* *}$

4 Continuous R.V. \& Probability Density Function (pdf)

- Example: velocity of a car
- A r.v. X is called continuous if there is a function $f_{X}(x)$ with $f_{X}(x) \geq 0$, called probability density function (pdf), s.t. $P(X \in B)=\int_{B} f_{X}(x) d x$ for all subsets B of the real line.
- Specifically, for $B=[a, b]$,

$$
\begin{equation*}
P(a \leq X \leq b)=\int_{x=a}^{b} f_{X}(x) d x \tag{7}
\end{equation*}
$$

and can be interpreted as the area under the graph of the pdf $f_{X}(x)$.

- For any single value $a, P(\{X=a\})=\int_{x=a}^{a} f_{X}(x) d x=0$.
- Thus $P(a \leq X \leq b)=P(a<X<b)=P(a \leq X<b)=P(a<X \leq b)$
- Sample space $\Omega=(-\infty, \infty)$
- Normalization: $P(\Omega)=P(-\infty<X<\infty)=1$. Thus $\int_{x=-\infty}^{\infty} f_{X}(x) d x=1$
- Interpreting the pdf: For an interval $[x, x+\delta]$ with very small δ,

$$
\begin{equation*}
P([x, x+\delta])=\int_{t=x}^{x+\delta} f_{X}(t) d t \approx f_{X}(x) \delta \tag{8}
\end{equation*}
$$

Thus $f_{X}(x)=$ probability mass per unit length near x. See Fig. 3.2.

- Continuous uniform pdf, Example 3.1
- Piecewise constant pdf, Example 3.2
- Connection with a pmf (explained after cdf is explained) ${ }^{* *}$
- Expected value: $E[X]=\int_{x=-\infty}^{\infty} x f_{X}(x) d x$. Similarly define $E[g(X)]$ and $\operatorname{var}[X]$
- Mean and variance of uniform, Example 3.4
- Exponential r.v.

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x}, & \text { if } x \geq 0 \tag{9}\\
0, & \text { otherwise }
\end{array}\right.
$$

- Show it is a legitimate pdf.
$-E[X]=1 / \lambda, \operatorname{var}[X]=1 / \lambda^{2}$ (show).
- Example: $X=$ amount of time until an equipment breaks down or a bulb burns out.
- Example 3.5 (Note: you need to use the correct time unit in the problem, here days).

5 Cumulative Distribution Function (cdf)

- Cumulative Distribution Function (cdf), $F_{X}(x) \triangleq P(X \leq x)$ (probability of event $\{X \leq x\}$).
- Defined for discrete and continuous r.v.'s

$$
\begin{align*}
\text { Discrete: } & F_{X}(x) \tag{10}
\end{align*}=\sum_{k \leq x} p_{X}(k)
$$

- Note the pdf $f_{X}(x)$ is NOT a probability of any event, it can be >1.
- But $F_{X}(x)$ is the probability of the event $\{X \leq x\}$ for both continuous and discrete r.v.'s.
- Properties
- $F_{X}(x)$ is monotonically nondecreasing in x.
- $F_{X}(x) \rightarrow 0$ as $x \rightarrow-\infty$ and $F_{X}(x) \rightarrow 1$ as $x \rightarrow \infty$
- $F_{X}(x)$ is continuous for continuous r.v.'s and it is piecewise constant for discrete r.v.'s
- Relation to pmf, pdf

$$
\begin{array}{r}
\text { Discrete: } p_{X}(k)=F_{X}(k)-F_{X}(k-1) \\
\text { Continuous: } f_{X}(x)=\frac{d F_{X}}{d x}(x) \tag{13}
\end{array}
$$

- Using cdf to compute pmf.
- Example 3.6: Compute pmf of maximum of 3 r.v.'s: What is the pmf of the maximum score of 3 test scores, when each test score is independent of others and each score takes any value between 1 and 10 with probability $1 / 10$?
Answer: Compute $F_{X}(k)=P(X \leq k)=P\left(\left\{X_{1} \leq k\right\}\right.$, and $\left\{X_{2} \leq k\right\}$, and $\left.\left\{X_{3} \leq k\right\}\right)=$ $\left.P\left(\left\{X_{1} \leq k\right\}\right) P\left(\left\{X_{2} \leq k\right\}\right) P\left\{X_{3} \leq k\right\}\right)$ (follows from independence of the 3 events) and then compute the pmf using (12).
- For continuous r.v.'s, in almost all cases, the correct way to compute the cdf of a function of a continuous r.v. (or of a set of continuous r.v.'s) is to compute the cdf first and then take its derivative to get the pdf. We will learn this later.
- Connection of a pdf with a pmf **
- You learnt the Dirac delta function in EE 224. We use it to define a pdf for discrete r.v.
- The pdf of a discrete r.v. X, $f_{X}(x) \triangleq \sum_{j=-\infty}^{\infty} p_{X}(j) \delta(x-j)$.
- If I integrate this, I get $F_{X}(x)=\int_{t \leq x} f_{X}(t) d t=\sum_{j \leq x} p_{X}(j)$ which is the same as the cdf definition given in (10)
- Geometric and exponential cdf **
- Let $X_{g e o, p}$ be the number of trials required for the first success (geometric) with probability of success $=p$. Then we can show that the probability of $\left\{X_{g e o, p} \leq k\right\}$ is equal to the probability of an exponential r.v. $\left\{X_{\text {expo }, \lambda} \leq k \delta\right\}$ with parameter λ, if δ satisfies $1-p=e^{-\lambda \delta}$ or $\delta=-\ln (1-p) / \lambda$
Proof: Equate $F_{X_{\text {geo,p }}}(k)=1-(1-p)^{k}$ to $F_{X_{\text {expo }, \lambda}}(k \delta)=1-e^{-\lambda k \delta}$
- Implication: When δ (time interval between two Bernoulli trials (coin tosses)) is small, then $F_{X_{\text {geo,p }}}(k) \approx F_{X_{\text {expo, }}}(k \delta)$ with $p=\lambda \delta$ (follows because $e^{-\lambda \delta} \approx 1-\lambda \delta$ for δ small).
- Binomial (n, p) becomes Poisson $(n p)$ for small time interval, δ, between coin tosses (Details in Chap 5) **
Proof idea:
- Consider a sequence of n independent coin tosses with probability of heads p in any toss (number of heads $\sim \operatorname{Binomial}(n, p)$).
- Assume the time interval between two tosses is δ.
- Then expected value of X in one toss (in time δ) is p.
- When δ small, expected value of X per unit time is $\lambda=p / \delta$.
- The total time duration is $\tau=n \delta$.
- When $\delta \rightarrow 0$, but λ and τ are finite, $n \rightarrow \infty$ and $p \rightarrow 0$.
- When δ small, can show that the pmf of a $\operatorname{Binomial}(n, p)$ r.v. is approximately equal to the pmf of $\operatorname{Poisson}(\lambda \tau)$ r.v. with $\lambda \tau=n p$
- The Poisson process is a continuous time analog of a Bernoulli process (Details in Chap 5) **

6 Normal (Gaussian) Random Variable

- The most commonly used r.v. in Communications and Signal Processing
- X is normal or Gaussian if it has a pdf of the form

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

where one can show that $\mu=E[X]$ and $\sigma^{2}=\operatorname{var}[X]$.

- Standard normal: Normal r.v. with $\mu=0, \sigma^{2}=1$.
- Cdf of a standard normal Y, denoted $\Phi(y)$

$$
\Phi(y) \triangleq P(Y \leq y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-t^{2} / 2} d t
$$

It is recorded as a table (See pg 155).

- Let X is a normal r.v. with mean μ, variance σ^{2}. Then can show that $Y=\frac{X-\mu}{\sigma}$ is a standard normal r.v.
- Computing cdf of any normal r.v. X using the table for Φ : $F_{X}(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)$. See Example 3.7.
- Signal detection example (computing probability of error): Example 3.8. See Fig. 3.11. A binary message is tx as a signal S which is either -1 or +1 . The channel corrupts the tx with additive Gaussian noise, N, with mean zero and variance σ^{2}. The received signal, $Y=S+N$. The receiver concludes that a -1 (or +1) was tx'ed if $Y<0(Y \geq 0)$. What is the probability of error? Answer: It is given by $P(N \geq 1)=1-\Phi(1 / \sigma)$. How we get the answer will be discussed in class.
- Normal r.v. models the additive effect of many independent factors well ${ }^{* *}$
- This is formally stated as the central limit theorem (see Chap 7) : sum of a large number of independent and identically distributed (not necessarily normal) r.v.'s has an approximately normal cdf.

Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel.

1 Multiple Discrete Random Variables: Topics

- Joint PMF, Marginal PMF of 2 and or more than 2 r.v.'s
- PMF of a function of 2 r.v.'s
- Expected value of functions of 2 r.v's
- Expectation is a linear operator. Expectation of sums of n r.v.'s
- Conditioning on an event and on another r.v.
- Bayes rule
- Independence

2 Joint \& Marginal PMF, PMF of function of r.v.s, Expectation

- For everything in this handout, you can think in terms of events $\{X=x\}$ and $\{Y=y\}$ and apply what you have learnt in Chapter 1.
- The joint PMF of two random variables X and Y is defined as

$$
p_{X, Y}(x, y) \triangleq P(X=x, Y=y)
$$

where $P(X=x, Y=y)$ is the same as $P(\{X=x\} \cap\{Y=y\})$.

- Let A be the set of all values of x, y that satisfy a certain property, then

$$
P((X, Y) \in A)=\sum_{(x, y) \in A} p_{X, Y}(x, y)
$$

- e.g. $X=$ outcome of first die toss, Y is outcome of second die toss, $A=$ sum of outcomes of the two tosses is even.
- Marginal PMF is another term for the PMF of a single r.v. obtained by "marginalizing" the joint PMF over the other r.v., i.e. the marginal PMF of $X, p_{X}(x)$ can be computed as follows:
Apply Total Probability Theorem to $p_{X, Y}(x, y)$, i.e. sum over $\{Y=y\}$ for different values y (these are a set of disjoint events whose union is the sample space):

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)
$$

Similarly the marginal PMF of $Y, p_{Y}(y)$ can be computed by "marginalizing" over X

$$
p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
$$

- PMF of a function of r.v.'s: If $Z=g(X, Y)$,

$$
p_{Z}(z)=\sum_{(x, y): g(x, y)=z} p_{X, Y}(x, y)
$$

- Read the above as $p_{Z}(z)=P(Z=z)=P($ all values of (X, Y) for which $g(X, Y)=z)$
- Expected value of functions of multiple r.v.'s

If $Z=g(X, Y)$,

$$
E[Z]=\sum_{(x, y)} g(x, y) p_{X, Y}(x, y)
$$

- See Example 2.9
- More than 2 r.v.s.
- Joint PMF of n r.v.'s: $p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)$
- We can marginalize over one or more than one r.v., e.g. $p_{X_{1}, X_{2}, \ldots X_{n-1}}\left(x_{1}, x_{2}, \ldots x_{n-1}\right)=\sum_{x_{n}} p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)$
e.g. $p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\sum_{x_{3}, x_{4}, \ldots x_{n}} p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)$
e.g. $p_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}, x_{3}, \ldots x_{n}} p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)$

See book, Page 96, for special case of 3 r.v.'s

- Expectation is a linear operator. Exercise: show this

$$
E\left[a_{1} X_{1}+a_{2} X_{2}+\ldots a_{n} X_{n}\right]=a_{1} E\left[X_{1}\right]+a_{2} E\left[X_{2}\right]+\ldots a_{n} E\left[X_{n}\right]
$$

- Application: $\operatorname{Binomial}(n, p)$ is the sum of n Bernoulli r.v.'s. with success probability p, so its expected value is $n p$ (See Example 2.10)
- See Example 2.11

3 Conditioning and Bayes rule

- PMF of r.v. X conditioned on an event A with $P(A)>0$

$$
p_{X \mid A}(x) \triangleq P(\{X=x\} \mid A)=\frac{P(\{X=x\} \cap A)}{P(A)}
$$

- $p_{X \mid A}(x)$ is a legitimate PMF, i.e. $\sum_{x} p_{X \mid A}(x)=1$. Exercise: Show this
- Example 2.12, 2.13
- PMF of r.v. X conditioned on r.v. Y. Replace A by $\{Y=y\}$

$$
p_{X \mid Y}(x \mid y) \triangleq P(\{X=x\} \mid\{Y=y\})=\frac{P(\{X=x\} \cap\{Y=y\})}{P(\{Y=y\})}=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

The above holds for all y for which $p_{y}(y)>0$. The above is equivalent to

$$
\begin{aligned}
& p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y) \\
& p_{X, Y}(x, y)=p_{Y \mid X}(y \mid x) p_{X}(x)
\end{aligned}
$$

- $p_{X \mid Y}(x \mid y)\left(\right.$ with $\left.p_{Y}(y)>0\right)$ is a legitimate PMF, i.e. $\sum_{x} p_{X \mid Y}(x \mid y)=1$.
- Similarly, $p_{Y \mid X}(y \mid x)$ is also a legitimate PMF, i.e. $\sum_{y} p_{Y \mid X}(y \mid x)=1$. Show this.
- Example 2.14 (I did a modification in class), 2.15
- Bayes rule. How to compute $p_{X \mid Y}(x \mid y)$ using $p_{X}(x)$ and $p_{Y \mid X}(y \mid x)$,

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \\
& =\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{\sum_{x^{\prime}} p_{Y \mid X}\left(y \mid x^{\prime}\right) p_{X}\left(x^{\prime}\right)}
\end{aligned}
$$

- Conditional Expectation given event A

$$
\begin{aligned}
E[X \mid A] & =\sum_{x} x p_{X \mid A}(x) \\
E[g(X) \mid A] & =\sum_{x} g(x) p_{X \mid A}(x)
\end{aligned}
$$

- Conditional Expectation given r.v. $Y=y$. Replace A by $\{Y=y\}$

$$
E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

Note this is a function of $Y=y$.

- Total Expectation Theorem

$$
E[X]=\sum_{y} p_{Y}(y) E[X \mid Y=y]
$$

Proof on page 105.

- Total Expectation Theorem for disjoint events $A_{1}, A_{2}, \ldots A_{n}$ which form a partition of sample space.

$$
E[X]=\sum_{i=1}^{n} P\left(A_{i}\right) E\left[X \mid A_{i}\right]
$$

Note A_{i} 's are disjoint and $\cup_{i=1}^{n} A_{i}=\Omega$

- Application: Expectation of a geometric r.v., Example 2.16, 2.17

4 Independence

- Independence of a r.v. \& an event A. r.v. X is independent of A with $P(A)>0$, iff

$$
p_{X \mid A}(x)=p_{X}(x), \text { for all } x
$$

- This also implies: $P(\{X=x\} \cap A)=p_{X}(x) P(A)$.
- See Example 2.19
- Independence of 2 r.v.'s. R.v.'s X and Y are independent iff

$$
p_{X \mid Y}(x \mid y)=p_{X}(x), \text { for all } x \text { and for all } y \text { for which } p_{Y}(y)>0
$$

This is equivalent to the following two things(show this)

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

$$
p_{Y \mid X}(y \mid x)=p_{Y}(y), \text { for all } y \text { and for all } x \text { for which } p_{X}(x)>0
$$

- Conditional Independence of r.v.s X and Y given event A with $P(A)>0{ }^{* *}$ $p_{X \mid Y, A}(x \mid y)=p_{X \mid A}(x)$ for all x and for all y for which $p_{Y \mid A}(y)>0$ or that $p_{X, Y \mid A}(x, y)=p_{X \mid A}(x) p_{Y \mid A}(y)$
- Expectation of product of independent r.v.s.
- If X and Y are independent, $E[X Y]=E[X] E[Y]$.

$$
\begin{aligned}
E[X Y] & =\sum_{y} \sum_{x} x y p_{X, Y}(x, y) \\
& =\sum_{y} \sum_{x} x y p_{X}(x) p_{Y}(y) \\
& =\sum_{y} y p_{Y}(y) \sum_{x} x p_{X}(x) \\
& =E[X] E[Y]
\end{aligned}
$$

- If X and Y are independent, $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$. (Show).
- If $X_{1}, X_{2}, \ldots X_{n}$ are independent,

$$
p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right) \ldots p_{X_{n}}\left(x_{n}\right)
$$

- Variance of sum of 2 independent r.v.'s.

Let X, Y are independent, then $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.
See book page 112 for the proof

- Variance of sum of \mathbf{n} independent r.v.'s.

If $X_{1}, X_{2}, \ldots X_{n}$ are independent,

$$
\operatorname{Var}\left[X_{1}+X_{2}+\ldots X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\ldots \operatorname{Var}\left[X_{n}\right]
$$

- Application: Variance of a Binomial, See Example 2.20

Binomial r.v. is a sum of n independent Bernoulli r.v.'s. So its variance is $n p(1-p)$

- Application: Mean and Variance of Sample Mean, Example 2.21

Let $X_{1}, X_{2}, \ldots X_{n}$ be independent and identically distributed, i.e. $p_{X_{i}}(x)=p_{X_{1}}(x)$ for all i. Thus all have the same mean (denote by a) and same variance (denote by v).
Sample mean is defined as $S_{n}=\frac{X_{1}+X_{2}+\ldots X_{n}}{n}$.
Since $E[$.$] is a linear operator, E\left[S_{n}\right]=\sum_{i=1}^{n} \frac{1}{n} E\left[X_{i}\right]=\frac{n a}{n}=a$.
Since the X_{i} 's are independent, $\operatorname{Var}\left[S_{n}\right]=\sum_{i=1}^{n} \frac{1}{n^{2}} \operatorname{Var}\left[X_{i}\right]=\frac{n v}{n^{2}}=\frac{v}{n}$

- Application: Estimating Probabilities by Simulation, See Example 2.22

Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel.

1 Multiple Continuous Random Variables: Topics

- Conditioning on an event
- Joint and Marginal PDF
- Expectation, Independence, Joint CDF, Bayes rule
- Derived distributions
- Function of a Single random variable: $Y=g(X)$ for any function g
- Function of a Single random variable: $Y=g(X)$ for linear function g
- Function of a Single random variable: $Y=g(X)$ for strictly monotonic g
- Function of Two random variables: $Z=g(X, Y)$ for any function g

2 Conditioning on an event

- Read the book Section 3.4

3 Joint and Marginal PDF

- Two r.v.s X and Y are jointly continuous iff there is a function $f_{X, Y}(x, y)$ with $f_{X, Y}(x, y) \geq$ 0 , called the joint PDF, s.t. $P((X, Y) \in B)=\int_{B} f_{X, Y}(x, y) d x d y$ for all subsets B of the 2D plane.
- Specifically, for $B=[a, b] \times[c, d] \triangleq\{(x, y): a \leq x \leq b, c \leq y \leq d\}$,

$$
P(a \leq X \leq b, c \leq Y \leq d)=\int_{y=c}^{d} \int_{x=a}^{b} f_{X, Y}(x, y) d x d y
$$

- Interpreting the joint PDF: For small positive numbers δ_{1}, δ_{2},

$$
P\left(a \leq X \leq a+\delta_{1}, c \leq Y \leq c+\delta_{2}\right)=\int_{y=c}^{c+\delta_{2}} \int_{x=a}^{a+\delta_{1}} f_{X, Y}(x, y) d x d y \approx f_{X, Y}(a, c) \delta_{1} \delta_{2}
$$

Thus $f_{X, Y}(a, c)$ is the probability mass per unit area near (a, c).

- Marginal PDF: The PDF obtained by integrating the joint PDF over the entire range of one r.v. (in general, integrating over a set of r.v.'s)

$$
\begin{aligned}
P(a \leq X \leq b) & =P(a \leq X \leq b,-\infty \leq Y \leq \infty)=\int_{x=a}^{b} \int_{y=-\infty}^{\infty} f_{X, Y}(x, y) d y d x \\
\Longrightarrow f_{X}(x) & =\int_{y=-\infty}^{\infty} f_{X, Y}(x, y) d y
\end{aligned}
$$

- Example 3.12, 3.13

4 Conditional PDF

- Conditional PDF of X given that $Y=y$ is defined as

$$
f_{X \mid Y}(x \mid y) \triangleq \frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

- For any $y, f_{X \mid Y}(x \mid y)$ is a legitimate PDF: integrates to 1 .
- Example 3.15
- Interpretation: For small positive numbers δ_{1}, δ_{2}, consider the probability that X belongs to a small interval $\left[x, x+\delta_{1}\right]$ given that Y belongs to a small interval $\left[y, y+\delta_{2}\right]$

$$
\begin{gathered}
P\left(x \leq X \leq x+\delta_{1} \mid y \leq Y \leq y+\delta_{2}\right)=\frac{P\left(x \leq X \leq x+\delta_{1}, y \leq Y \leq y+\delta_{2}\right)}{P\left(y \leq Y \leq y+\delta_{2}\right)} \\
\approx \frac{f_{X, Y}(x, y) \delta_{1} \delta_{2}}{f_{Y}(y) \delta_{2}} \\
\\
=f_{X \mid Y}(x \mid y) \delta_{1}
\end{gathered}
$$

- Since $f_{X \mid Y}(x \mid y) \delta_{1}$ does not depend on δ_{2}, we can think of the limiting case when $\delta_{2} \rightarrow 0$ and so we get
$P\left(x \leq X \leq x+\delta_{1} \mid Y=y\right)=\lim _{\delta_{2} \rightarrow 0} P\left(x \leq X \leq x+\delta_{1} \mid y \leq Y \leq y+\delta_{2}\right) \approx f_{X \mid Y}(x \mid y) \delta_{1} \quad \delta_{1}$ small
- In general, for any region A, we have that

$$
P(X \in A \mid Y=y)=\lim _{\delta \rightarrow 0} P(X \in A \mid y \leq Y \leq y+\delta)=\int_{x \in A} f_{X \mid Y}(x \mid y) d x
$$

5 Expectation, Independence, Joint \& Conditional CDF, Bayes rule

- Expectation: See page 172 for $E[g(X) \mid Y=y], E[g(X, Y) \mid Y=y]$ and total expectation theorem for $E[g(X)]$ and for $E[g(X, Y)]$.
- Independence: X and Y are independent iff $f_{X \mid Y}=f_{X}$ (or iff $f_{X, Y}=f_{X} f_{Y}$, or iff $\left.f_{Y \mid X}=f_{Y}\right)$
- If X and Y independent, any two events $\{X \in A\}$ and $\{Y \in B\}$ are independent.
- If X and Y independent, $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$ and $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$ Exercise: show this.

- Joint CDF:

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\int_{t=-\infty}^{y} \int_{s=-\infty}^{x} f_{X, Y}(s, t) d s d t
$$

- Obtain joint PDF from joint CDF:

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y)
$$

- Conditional CDF:

$$
F_{X \mid Y}(x \mid y)=P(X \leq x \mid Y=y)=\lim _{\delta \rightarrow 0} P(X \leq x \mid y \leq Y \leq y+\delta)=\int_{t=-\infty}^{x} f_{X \mid Y}(t \mid y) d t
$$

- Bayes rule when unobserved phenomenon is continuous. Pg 175 and Example 3.18
- Bayes rule when unobserved phenomenon is discrete. $\operatorname{Pg} 176$ and Example 3.19. For e.g., say discrete r.v. N is the unobserved phenomenon. Then for δ small,

$$
\begin{aligned}
P(N=i \mid X \in[x, x+\delta]) & =P(N=i \mid X \in[x, x+\delta]) \\
& =\frac{P(n=i) P(X \in[x, x+\delta] \mid N=i)}{P(X \in[x, x+\delta])} \\
& \approx \frac{p_{N}(i) f_{X \mid N=i}(x) \delta}{\sum_{j} p_{N}(j) f_{X \mid N=j}(x) \delta} \\
& =\frac{p_{N}(i) f_{X \mid N=i}(x)}{\sum_{j} p_{N}(j) f_{X \mid N=j}(x)}
\end{aligned}
$$

Notice that the right hand side is independent of δ. Thus we can take $\lim _{\delta \rightarrow 0}$ on both sides and the right side will not change. Thus we get

$$
P(N=i \mid X=x)=\lim _{\delta \rightarrow 0} P(N=i \mid X \in[x, x+\delta])=\frac{p_{N}(i) f_{X \mid N=i}(x)}{\sum_{j} p_{N}(j) f_{X \mid N=j}(x)}
$$

- More than 2 random variables (Pg 178, 179) **

6 Derived distributions: PDF of $g(X)$ and of $g(X, Y)$

- Obtaining PDF of $Y=g(X)$. ALWAYS use the following 2 step procedure:
- Compute CDF first. $F_{Y}(y)=P(g(X) \leq y)=\int_{x \mid g(x) \leq y} f_{X}(x) d x$
- Obtain PDF by differentiating F_{Y}, i.e. $f_{Y}(y)=\frac{\partial F_{Y}}{\partial y}(y)$
- Example 3.20, 3.21, 3.22
- Special Case 1: Linear Case: $Y=a X+b$. Can show that

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

Proof: see Pg 183.

- Example 3.23, 3.24
- Special Case 2: Strictly Monotonic Case.
- Consider $Y=g(X)$ with g being a strictly monotonic function of X.
- Thus g is a one to one function.
- Thus there exists a function h s.t. $y=g(x)$ iff $x=h(y)$ (i.e. h is the inverse function of g, often denotes as $h \triangleq g^{-1}$).
- Then can show that

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h}{d y}(y)\right|
$$

- Proof for strictly monotonically increasing g :
$F_{Y}(y)=P(g(X) \leq Y)=P(X \leq h(Y))=F_{X}(h(y))$.
Differentiate both sides w.r.t y (apply chain rule on the right side) to get:

$$
f_{Y}(y)=\frac{d F_{Y}}{d y}(y)=\frac{d F_{X}(h(y))}{d y}=f_{X}(h(y)) \frac{d h}{d y}(y)
$$

For strictly monotonically decreasing g, using a similar procedure, we get $f_{Y}(y)=$ $-f_{X}(h(y)) \frac{d h}{d y}(y)$

- See Figure 3.22, 3.23 for intuition
- Example 3.21 (page 186)
- Functions of two random variables. Again use the 2 step procedure, first compute CDF of $Z=g(X, Y)$ and then differentiate to get the PDF.
- CDF of Z is computed as: $F_{Z}(z)=P(g(X, Y) \leq z)=\int_{x, y: g(x, y) \leq z} f_{X, Y}(x, y) d y d x$.
- Example 3.26, 3.27
- Example 3.28
- Special case 1: PDF of $Z=e^{s X}$ (moment generating function): Chapter 4, 4.1
- Special case 2: PDF of $Z=X+Y$ when X, Y are independent: convolution of PDFs of X and Y: Chapter 4, 4.2

