
Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics and an intuitive feel.

1 Random Variable: Topics

• Chap 2, 2.1 - 2.4 and Chap 3, 3.1 - 3.3

• What is a random variable?

• Discrete random variable (r.v.)

– Probability Mass Function (pmf)

– pmf of Bernoulli, Binomial, Geometric, Poisson

– pmf of Y = g(X)

– Mean and Variance, Computing for Bernoulli, Poisson

• Continuous random variable

– Probability Density Function (pdf) and connection with pmf

– Mean and Variance

– Uniform and exponential random variables

• Cumulative Distribution Function (cdf)

– Relation with pdf and pmf

– Connection between Geometric and Exponential **

– Connection between Binomial and Poisson **

• Gaussian (or Normal) random variable

2 What is a random variable (r.v.)?

• A real valued function of the outcome of an experiment

• Example: Coin tosses. r.v. X = 1 if heads and X = 0 if tails (Bernoulli r.v.).

• A function of a r.v. defines another r.v.

• Discrete r.v.: X takes values from the set of integers

3 Discrete Random Variables & Probability Mass Function (pmf)

• Probability Mass Function (pmf): Probability that the r.v. X takes a value x is pmf of

X computed at X = x. Denoted by pX(x). Thus

pX(x) = P ({X = x}) = P (all possible outcomes that result in the event {X = x}) (1)
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• Everything that we learnt in Chap 1 for events applies. Let Ω is the sample space (space of

all possible values of X in an experiment). Applying the axioms,

– pX(x) ≥ 0

– P ({X ∈ S}) =
∑

x∈S

pX(x) (follows from Additivity since different events {X = x} are

disjoint)

–
∑

x∈Ω

pX(x) = 1 (follows from Additivity and Normalization).

– Example: X = number of heads in 2 fair coin tosses (p = 1/2). P (X > 0) =

2
∑

x=1

pX(x) =

0.75.

• Can also define a binary r.v. for any event A as: X = 1 if A occurs and X = 0 otherwise.

Then X is a Bernoulli r.v. with p = P (A).

• Bernoulli (X = 1 (heads) or X = 0 (tails)) r.v. with probability of heads p

Bernoulli(p) : pX(x) = px(1 − p)1−x, x = 0, or x = 1 (2)

• Binomial (X = x heads out of n independent tosses, probability of heads p)

Binomial(n, p) : pX(x) =
(

n

x

)

px(1 − p)n−x, x = 0, 1, . . . n (3)

• Geometric r.v., X, with probability of heads p (X= number of coin tosses needed for a head

to come up for the first time or number of independent trials needed to achieve the first

“success”).

– Example: I keep taking a test until I pass it. Probability of passing the test in the xth

try is pX(x).

– Easy to see that

Geometric(p) : pX(x) = (1 − p)x−1p, x = 0, 1, 2, . . .∞ (4)

• Poisson r.v. X with expected number of arrivals Λ (e.g. if X = number of arrivals in time τ

with arrival rate λ, then Λ = λτ)

Poisson(Λ) : pX(x) =
e−Λ(Λ)x

x!
, x = 0, 1, . . .∞ (5)

• Uniform(a,b):

pX(x) =

{

1/(b − a + 1), if x = a, a + 1, . . . b

0, otherwise
(6)

• pmf of Y = g(X)
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– pY (y) = P ({Y = y}) =
∑

x|g(x)=y

pX(x)

Example Y = |X|. Then pY (y) = pX(y) + pX(−y), if y > 0 and pY (0) = pX(0).

Exercise: X ∼ Uniform(−4, 4) and Y = |X|, find pY (y).

• Expectation, mean, variance

– Motivating example: Read pg 81

– Expected value of X (or mean of X): E[X] ,
∑

x∈Ω

xpX(x)

– Interpret mean as center of gravity of a bar with weights pX(x) placed at location x

(Fig. 2.7)

– Expected value of Y = g(X): E[Y ] = E[g(X)] =
∑

x∈Ω

g(x)pX(x). Exercise: show this.

– nth moment of X: E[Xn]. nth central moment: E[(X − E[X])n].

– Variance of X: var[X] , E[(X − E[X])2] (2nd central moment)

– Y = aX + b (linear fn): E[Y ] = aE[X] + b, var[Y ] = a2var[X]

– Poisson: E[X] = Λ, var[X] = Λ (show this)

– Bernoulli: E[X] = p, var[X] = p(1 − p) (show this)

– Uniform(a,b): E[X] = (a + b)/2, var[X] = (b−a+1)2−1
12 (show this)

• Application: Computing average time. Example 2.4

• Application: Decision making using expected values. Example 2.8 (Quiz game, compute

expected reward with two different strategies to decide which is a better strategy).

• Binomial(n, p) becomes Poisson(np) if time interval between two coin tosses becomes very

small (so that n becomes very large and p becomes very small, but Λ = np is finite). **

4 Continuous R.V. & Probability Density Function (pdf)

• Example: velocity of a car

• A r.v. X is called continuous if there is a function fX(x) with fX(x) ≥ 0, called probability

density function (pdf), s.t. P (X ∈ B) =
∫

B fX(x)dx for all subsets B of the real line.

• Specifically, for B = [a, b],

P (a ≤ X ≤ b) =

∫ b

x=a
fX(x)dx (7)

and can be interpreted as the area under the graph of the pdf fX(x).

• For any single value a, P ({X = a}) =
∫ a
x=a fX(x)dx = 0.

• Thus P (a ≤ X ≤ b) = P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b)

• Sample space Ω = (−∞,∞)
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• Normalization: P (Ω) = P (−∞ < X < ∞) = 1. Thus
∫ ∞
x=−∞ fX(x)dx = 1

• Interpreting the pdf: For an interval [x, x + δ] with very small δ,

P ([x, x + δ]) =

∫ x+δ

t=x
fX(t)dt ≈ fX(x)δ (8)

Thus fX(x)= probability mass per unit length near x. See Fig. 3.2.

• Continuous uniform pdf, Example 3.1

• Piecewise constant pdf, Example 3.2

• Connection with a pmf (explained after cdf is explained) **

• Expected value: E[X] =
∫ ∞
x=−∞ xfX(x)dx. Similarly define E[g(X)] and var[X]

• Mean and variance of uniform, Example 3.4

• Exponential r.v.

fX(x) =

{

λe−λx, if x ≥ 0

0, otherwise
(9)

– Show it is a legitimate pdf.

– E[X] = 1/λ, var[X] = 1/λ2 (show).

– Example: X= amount of time until an equipment breaks down or a bulb burns out.

– Example 3.5 (Note: you need to use the correct time unit in the problem, here days).

5 Cumulative Distribution Function (cdf)

• Cumulative Distribution Function (cdf), FX(x) , P (X ≤ x) (probability of event {X ≤ x}).

• Defined for discrete and continuous r.v.’s

Discrete: FX(x) =
∑

k≤x

pX(k) (10)

Continuous: FX(x) =

∫ x

−∞
fX(t)dt (11)

• Note the pdf fX(x) is NOT a probability of any event, it can be > 1.

• But FX(x) is the probability of the event {X ≤ x} for both continuous and discrete r.v.’s.

• Properties

– FX(x) is monotonically nondecreasing in x.

– FX(x) → 0 as x → −∞ and FX(x) → 1 as x → ∞
– FX(x) is continuous for continuous r.v.’s and it is piecewise constant for discrete r.v.’s
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• Relation to pmf, pdf

Discrete: pX(k) = FX(k) − FX(k − 1) (12)

Continuous: fX(x) =
dFX

dx
(x) (13)

• Using cdf to compute pmf.

– Example 3.6: Compute pmf of maximum of 3 r.v.’s: What is the pmf of the maximum

score of 3 test scores, when each test score is independent of others and each score takes

any value between 1 and 10 with probability 1/10?

Answer: Compute FX(k) = P (X ≤ k) = P ({X1 ≤ k}, and {X2 ≤ k}, and {X3 ≤ k}) =

P ({X1 ≤ k})P ({X2 ≤ k})P{X3 ≤ k}) (follows from independence of the 3 events) and

then compute the pmf using (12).

– For continuous r.v.’s, in almost all cases, the correct way to compute the cdf of a function

of a continuous r.v. (or of a set of continuous r.v.’s) is to compute the cdf first and then

take its derivative to get the pdf. We will learn this later.

• Connection of a pdf with a pmf **

– You learnt the Dirac delta function in EE 224. We use it to define a pdf for discrete r.v.

– The pdf of a discrete r.v. X, fX(x) ,

∞
∑

j=−∞

pX(j)δ(x − j).

– If I integrate this, I get FX(x) =

∫

t≤x
fX(t)dt =

∑

j≤x

pX(j) which is the same as the cdf

definition given in (10)

• Geometric and exponential cdf **

– Let Xgeo,p be the number of trials required for the first success (geometric) with prob-

ability of success = p. Then we can show that the probability of {Xgeo,p ≤ k} is equal

to the probability of an exponential r.v. {Xexpo,λ ≤ kδ} with parameter λ, if δ satisfies

1 − p = e−λδ or δ = − ln(1 − p)/λ

Proof: Equate FXgeo,p
(k) = 1 − (1 − p)k to FXexpo,λ

(kδ) = 1 − e−λkδ

– Implication: When δ (time interval between two Bernoulli trials (coin tosses)) is small,

then FXgeo,p
(k) ≈ FXexpo,λ

(kδ) with p = λδ (follows because e−λδ ≈ 1 − λδ for δ small).

• Binomial(n, p) becomes Poisson(np) for small time interval, δ, between coin tosses (Details

in Chap 5) **

Proof idea:

– Consider a sequence of n independent coin tosses with probability of heads p in any toss

(number of heads ∼ Binomial(n, p)).

– Assume the time interval between two tosses is δ.

– Then expected value of X in one toss (in time δ) is p.

– When δ small, expected value of X per unit time is λ = p/δ.

– The total time duration is τ = nδ.
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– When δ → 0, but λ and τ are finite, n → ∞ and p → 0.

– When δ small, can show that the pmf of a Binomial(n, p) r.v. is approximately equal

to the pmf of Poisson(λτ) r.v. with λτ = np

• The Poisson process is a continuous time analog of a Bernoulli process (Details in Chap 5) **

6 Normal (Gaussian) Random Variable

• The most commonly used r.v. in Communications and Signal Processing

• X is normal or Gaussian if it has a pdf of the form

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

where one can show that µ = E[X] and σ2 = var[X].

• Standard normal: Normal r.v. with µ = 0, σ2 = 1.

• Cdf of a standard normal Y , denoted Φ(y)

Φ(y) , P (Y ≤ y) =
1√
2π

∫ y

−∞
e−t2/2dt

It is recorded as a table (See pg 155).

• Let X is a normal r.v. with mean µ, variance σ2. Then can show that Y = X−µ
σ is a standard

normal r.v.

• Computing cdf of any normal r.v. X using the table for Φ: FX(x) = Φ(x−µ
σ ). See Example 3.7.

• Signal detection example (computing probability of error): Example 3.8. See Fig. 3.11. A

binary message is tx as a signal S which is either -1 or +1. The channel corrupts the tx with

additive Gaussian noise, N , with mean zero and variance σ2. The received signal, Y = S+N .

The receiver concludes that a -1 (or +1) was tx’ed if Y < 0 (Y ≥ 0). What is the probability

of error? Answer: It is given by P (N ≥ 1) = 1 − Φ(1/σ). How we get the answer will be

discussed in class.

• Normal r.v. models the additive effect of many independent factors well **

– This is formally stated as the central limit theorem (see Chap 7) : sum of a large

number of independent and identically distributed (not necessarily normal) r.v.’s has an

approximately normal cdf.
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Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics and an intuitive feel.

1 Multiple Discrete Random Variables: Topics

• Joint PMF, Marginal PMF of 2 and or more than 2 r.v.’s

• PMF of a function of 2 r.v.’s

• Expected value of functions of 2 r.v’s

• Expectation is a linear operator. Expectation of sums of n r.v.’s

• Conditioning on an event and on another r.v.

• Bayes rule

• Independence

2 Joint & Marginal PMF, PMF of function of r.v.s, Expectation

• For everything in this handout, you can think in terms of events {X = x} and {Y = y} and

apply what you have learnt in Chapter 1.

• The joint PMF of two random variables X and Y is defined as

pX,Y (x, y) , P (X = x, Y = y)

where P (X = x, Y = y) is the same as P ({X = x} ∩ {Y = y}).

– Let A be the set of all values of x, y that satisfy a certain property, then

P ((X, Y ) ∈ A) =
∑

(x,y)∈A pX,Y (x, y)

– e.g. X = outcome of first die toss, Y is outcome of second die toss, A = sum of outcomes

of the two tosses is even.

• Marginal PMF is another term for the PMF of a single r.v. obtained by “marginalizing”

the joint PMF over the other r.v., i.e. the marginal PMF of X, pX(x) can be computed as

follows:

Apply Total Probability Theorem to pX,Y (x, y), i.e. sum over {Y = y} for different values y

(these are a set of disjoint events whose union is the sample space):

pX(x) =
∑

y

pX,Y (x, y)

Similarly the marginal PMF of Y , pY (y) can be computed by “marginalizing” over X

pY (y) =
∑

x

pX,Y (x, y)
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• PMF of a function of r.v.’s: If Z = g(X, Y ),

pZ(z) =
∑

(x,y):g(x,y)=z

pX,Y (x, y)

– Read the above as pZ(z) = P (Z = z) = P (all values of (X, Y ) for which g(X, Y ) = z)

• Expected value of functions of multiple r.v.’s

If Z = g(X, Y ),

E[Z] =
∑

(x,y)

g(x, y)pX,Y (x, y)

• See Example 2.9

• More than 2 r.v.s.

– Joint PMF of n r.v.’s: pX1,X2,...Xn
(x1, x2, . . . xn)

– We can marginalize over one or more than one r.v.,

e.g. pX1,X2,...Xn−1
(x1, x2, . . . xn−1) =

∑

xn
pX1,X2,...Xn

(x1, x2, . . . xn)

e.g. pX1,X2
(x1, x2) =

∑

x3,x4,...xn
pX1,X2,...Xn

(x1, x2, . . . xn)

e.g. pX1
(x1) =

∑

x2,x3,...xn
pX1,X2,...Xn

(x1, x2, . . . xn)

See book, Page 96, for special case of 3 r.v.’s

• Expectation is a linear operator. Exercise: show this

E[a1X1 + a2X2 + . . . anXn] = a1E[X1] + a2E[X2] + . . . anE[Xn]

– Application: Binomial(n, p) is the sum of n Bernoulli r.v.’s. with success probability p,

so its expected value is np (See Example 2.10)

– See Example 2.11

3 Conditioning and Bayes rule

• PMF of r.v. X conditioned on an event A with P (A) > 0

pX|A(x) , P ({X = x}|A) =
P ({X = x} ∩ A)

P (A)

– pX|A(x) is a legitimate PMF, i.e.
∑

x pX|A(x) = 1. Exercise: Show this

– Example 2.12, 2.13

• PMF of r.v. X conditioned on r.v. Y . Replace A by {Y = y}

pX|Y (x|y) , P ({X = x}|{Y = y}) =
P ({X = x} ∩ {Y = y})

P ({Y = y}) =
pX,Y (x, y)

pY (y)

The above holds for all y for which py(y) > 0. The above is equivalent to

pX,Y (x, y) = pX|Y (x|y)pY (y)

pX,Y (x, y) = pY |X(y|x)pX(x)
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– pX|Y (x|y) (with pY (y) > 0) is a legitimate PMF, i.e.
∑

x pX|Y (x|y) = 1.

– Similarly, pY |X(y|x) is also a legitimate PMF, i.e.
∑

y pY |X(y|x) = 1. Show this.

– Example 2.14 (I did a modification in class), 2.15

• Bayes rule. How to compute pX|Y (x|y) using pX(x) and pY |X(y|x),

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

=
pY |X(y|x)pX(x)

∑

x′ pY |X(y|x′)pX(x′)

• Conditional Expectation given event A

E[X|A] =
∑

x

xpX|A(x)

E[g(X)|A] =
∑

x

g(x)pX|A(x)

• Conditional Expectation given r.v. Y = y. Replace A by {Y = y}

E[X|Y = y] =
∑

x

xpX|Y (x|y)

Note this is a function of Y = y.

• Total Expectation Theorem

E[X] =
∑

y

pY (y)E[X|Y = y]

Proof on page 105.

• Total Expectation Theorem for disjoint events A1, A2, . . . An which form a partition

of sample space.

E[X] =
n

∑

i=1

P (Ai)E[X|Ai]

Note Ai’s are disjoint and ∪n
i=1Ai = Ω

– Application: Expectation of a geometric r.v., Example 2.16, 2.17

4 Independence

• Independence of a r.v. & an event A. r.v. X is independent of A with P (A) > 0, iff

pX|A(x) = pX(x), for all x

.

– This also implies: P ({X = x} ∩ A) = pX(x)P (A).
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– See Example 2.19

• Independence of 2 r.v.’s. R.v.’s X and Y are independent iff

pX|Y (x|y) = pX(x), for all x and for all y for which pY (y) > 0

This is equivalent to the following two things(show this)

pX,Y (x, y) = pX(x)pY (y)

pY |X(y|x) = pY (y), for all y and for all x for which pX(x) > 0

• Conditional Independence of r.v.s X and Y given event A with P (A) > 0 **

pX|Y,A(x|y) = pX|A(x) for all x and for all y for which pY |A(y) > 0 or that

pX,Y |A(x, y) = pX|A(x)pY |A(y)

• Expectation of product of independent r.v.s.

– If X and Y are independent, E[XY ] = E[X]E[Y ].

E[XY ] =
∑

y

∑

x

xypX,Y (x, y)

=
∑

y

∑

x

xypX(x)pY (y)

=
∑

y

ypY (y)
∑

x

xpX(x)

= E[X]E[Y ]

– If X and Y are independent, E[g(X)h(Y )] = E[g(X)]E[h(Y )]. (Show).

• If X1, X2, . . . Xn are independent,

pX1,X2,...Xn
(x1, x2, . . . xn) = pX1

(x1)pX2
(x2) . . . pXn

(xn)

• Variance of sum of 2 independent r.v.’s.

Let X, Y are independent, then V ar[X + Y ] = V ar[X] + V ar[Y ].

See book page 112 for the proof

• Variance of sum of n independent r.v.’s.

If X1, X2, . . . Xn are independent,

V ar[X1 + X2 + . . . Xn] = V ar[X1] + V ar[X2] + . . . V ar[Xn]

.

– Application: Variance of a Binomial, See Example 2.20

Binomial r.v. is a sum of n independent Bernoulli r.v.’s. So its variance is np(1 − p)

– Application: Mean and Variance of Sample Mean, Example 2.21

Let X1, X2, . . . Xn be independent and identically distributed, i.e. pXi
(x) = pX1

(x) for

all i. Thus all have the same mean (denote by a) and same variance (denote by v).

Sample mean is defined as Sn = X1+X2+...Xn

n .

Since E[.] is a linear operator, E[Sn] =
∑n

i=1
1
nE[Xi] = na

n = a.

Since the Xi’s are independent, V ar[Sn] =
∑n

i=1
1
n2 V ar[Xi] = nv

n2 = v
n

– Application: Estimating Probabilities by Simulation, See Example 2.22
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Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics and an intuitive feel.

1 Multiple Continuous Random Variables: Topics

• Conditioning on an event

• Joint and Marginal PDF

• Expectation, Independence, Joint CDF, Bayes rule

• Derived distributions

– Function of a Single random variable: Y = g(X) for any function g

– Function of a Single random variable: Y = g(X) for linear function g

– Function of a Single random variable: Y = g(X) for strictly monotonic g

– Function of Two random variables: Z = g(X, Y ) for any function g

2 Conditioning on an event

• Read the book Section 3.4

3 Joint and Marginal PDF

• Two r.v.s X and Y are jointly continuous iff there is a function fX,Y (x, y) with fX,Y (x, y) ≥
0, called the joint PDF, s.t. P ((X, Y ) ∈ B) =

∫

B fX,Y (x, y)dxdy for all subsets B of the 2D

plane.

• Specifically, for B = [a, b] × [c, d] , {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d},

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

y=c

∫ b

x=a
fX,Y (x, y)dxdy

• Interpreting the joint PDF: For small positive numbers δ1, δ2,

P (a ≤ X ≤ a + δ1, c ≤ Y ≤ c + δ2) =

∫ c+δ2

y=c

∫ a+δ1

x=a
fX,Y (x, y)dxdy ≈ fX,Y (a, c)δ1δ2

Thus fX,Y (a, c) is the probability mass per unit area near (a, c).

• Marginal PDF: The PDF obtained by integrating the joint PDF over the entire range of

one r.v. (in general, integrating over a set of r.v.’s)

P (a ≤ X ≤ b) = P (a ≤ X ≤ b,−∞ ≤ Y ≤ ∞) =

∫ b

x=a

∫ ∞

y=−∞
fX,Y (x, y)dydx

=⇒ fX(x) =

∫ ∞

y=−∞
fX,Y (x, y)dy

• Example 3.12, 3.13
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4 Conditional PDF

• Conditional PDF of X given that Y = y is defined as

fX|Y (x|y) ,
fX,Y (x, y)

fY (y)

• For any y, fX|Y (x|y) is a legitimate PDF: integrates to 1.

• Example 3.15

• Interpretation: For small positive numbers δ1, δ2, consider the probability that X belongs

to a small interval [x, x + δ1] given that Y belongs to a small interval [y, y + δ2]

P (x ≤ X ≤ x + δ1|y ≤ Y ≤ y + δ2) =
P (x ≤ X ≤ x + δ1, y ≤ Y ≤ y + δ2)

P (y ≤ Y ≤ y + δ2)

≈ fX,Y (x, y)δ1δ2

fY (y)δ2

= fX|Y (x|y)δ1

• Since fX|Y (x|y)δ1 does not depend on δ2, we can think of the limiting case when

δ2 → 0 and so we get

P (x ≤ X ≤ x + δ1|Y = y) = lim
δ2→0

P (x ≤ X ≤ x + δ1|y ≤ Y ≤ y + δ2) ≈ fX|Y (x|y)δ1 δ1 small

• In general, for any region A, we have that

P (X ∈ A|Y = y) = lim
δ→0

P (X ∈ A|y ≤ Y ≤ y + δ) =

∫

x∈A
fX|Y (x|y)dx

5 Expectation, Independence, Joint & Conditional CDF, Bayes

rule

• Expectation: See page 172 for E[g(X)|Y = y], E[g(X, Y )|Y = y] and total expectation

theorem for E[g(X)] and for E[g(X, Y )].

• Independence: X and Y are independent iff fX|Y = fX (or iff fX,Y = fXfY , or iff

fY |X = fY )

• If X and Y independent, any two events {X ∈ A} and {Y ∈ B} are independent.

• If X and Y independent, E[g(X)h(Y )] = E[g(X)]E[h(Y )] and V ar[X+Y ] = V ar[X]+V ar[Y ]

Exercise: show this.

• Joint CDF:

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =

∫ y

t=−∞

∫ x

s=−∞
fX,Y (s, t)dsdt
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• Obtain joint PDF from joint CDF:

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y)

• Conditional CDF:

FX|Y (x|y) = P (X ≤ x|Y = y) = lim
δ→0

P (X ≤ x|y ≤ Y ≤ y + δ) =

∫ x

t=−∞
fX|Y (t|y)dt

• Bayes rule when unobserved phenomenon is continuous. Pg 175 and Example 3.18

• Bayes rule when unobserved phenomenon is discrete. Pg 176 and Example 3.19.

For e.g., say discrete r.v. N is the unobserved phenomenon. Then for δ small,

P (N = i|X ∈ [x, x + δ]) = P (N = i|X ∈ [x, x + δ])

=
P (n = i)P (X ∈ [x, x + δ]|N = i)

P (X ∈ [x, x + δ])

≈
pN (i)fX|N=i(x)δ

∑

j pN (j)fX|N=j(x)δ

=
pN (i)fX|N=i(x)

∑

j pN (j)fX|N=j(x)

Notice that the right hand side is independent of δ. Thus we can take limδ→0 on both sides

and the right side will not change. Thus we get

P (N = i|X = x) = lim
δ→0

P (N = i|X ∈ [x, x + δ]) =
pN (i)fX|N=i(x)

∑

j pN (j)fX|N=j(x)

• More than 2 random variables (Pg 178, 179) **

6 Derived distributions: PDF of g(X) and of g(X, Y )

• Obtaining PDF of Y = g(X). ALWAYS use the following 2 step procedure:

– Compute CDF first. FY (y) = P (g(X) ≤ y) =
∫

x|g(x)≤y fX(x)dx

– Obtain PDF by differentiating FY , i.e. fY (y) = ∂FY

∂y (y)

• Example 3.20, 3.21, 3.22

• Special Case 1: Linear Case: Y = aX + b. Can show that

fY (y) =
1

|a|fX(
y − b

a
)

Proof: see Pg 183.

• Example 3.23, 3.24

• Special Case 2: Strictly Monotonic Case.
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– Consider Y = g(X) with g being a strictly monotonic function of X.

– Thus g is a one to one function.

– Thus there exists a function h s.t. y = g(x) iff x = h(y) (i.e. h is the inverse function of

g, often denotes as h , g−1).

– Then can show that

fY (y) = fX(h(y))|dh

dy
(y)|

– Proof for strictly monotonically increasing g:

FY (y) = P (g(X) ≤ Y ) = P (X ≤ h(Y )) = FX(h(y)).

Differentiate both sides w.r.t y (apply chain rule on the right side) to get:

fY (y) =
dFY

dy
(y) =

dFX(h(y))

dy
= fX(h(y))

dh

dy
(y)

For strictly monotonically decreasing g, using a similar procedure, we get fY (y) =

−fX(h(y))dh
dy (y)

– See Figure 3.22, 3.23 for intuition

• Example 3.21 (page 186)

• Functions of two random variables. Again use the 2 step procedure, first compute CDF

of Z = g(X, Y ) and then differentiate to get the PDF.

• CDF of Z is computed as: FZ(z) = P (g(X, Y ) ≤ z) =
∫

x,y:g(x,y)≤z fX,Y (x, y)dydx.

• Example 3.26, 3.27

• Example 3.28

• Special case 1: PDF of Z = esX (moment generating function): Chapter 4, 4.1

• Special case 2: PDF of Z = X + Y when X, Y are independent: convolution of PDFs of X

and Y: Chapter 4, 4.2
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