
Motivation and Applications: Why Should I Study Probability ?

• As stated by Laplace, “Probability is common sense reduced to
calculation”.

• You need to first learn the theory required to correctly do these
calculations. The examples that I solve and those in the bookand the
homeworks will provide a wonderful practical motivation asto why you
need to learn the theory.

• If you patiently grasp the basics, especially the first 4 chapters of BT, it
will be the most useful thing you’ve ever learnt - whether youpursue a
career in EE or CE or Economics or Finance or Management and also
while you try to invest in stocks or gamble in Las Vegas!

• Applications: communications (telephones, cell phones, TV, ...), signal
processing (image and video denoising, face recognition, tracking
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moving objects from video,...), systems and control (operatingan

airplane, fault detection in a system,...), predicting reliability of a system

(e.g. electrical system), resource allocation, internet protocols,

non-engineering applications (e.g. medicine: predicting how prevalent a

disease is or well a drug works, weather forecasting, economics).
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Introduction: Topics Covered. Chapter 1, 1.1 - 1.6)

• What is Probability

• Set Theory Basics

• Probability Models

• Conditional Probability

• Total Probability and Bayes Rule

• Independence

• Counting
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What is Probability?

• Measured relative frequency of occurrence of an event.
Example: toss a coin 100 times, measure frequency of heads orcompute
probability of raining on a particular day and month (using past years’
data)

• Or subjective belief about how “likely” an event is (when do not have
data to estimate frequency).
Example: any one-time event in history or “how likely is it that a new
experimental drug will work?”
This may either be a subjective belief or derived from the physics, for
e.g. if I flip a symmetric coin (equal weight on both sides), I will get a
head with probability1/2.

• For probabilistic reasoning,two types of problems need to be solved
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1. Specify the probability “model” or learn it (covered in a statistics

class).

2. Use the “model” to compute probability of different events (covered

here).

• We will assume the model is given and will focus on problem 2. in this

course.
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Set Theory Basics

• Set: any collection of objects (elements of a set).

• Discrete sets

– Finite number of elements, e.g. numbers of a die

– Or infinite but countable number of elements, e.g. set of integers

• Continuous sets

– Cannot count the number of elements, e.g. all real numbers between
0 and 1.

• “Universe” (denotedΩ): consists of all possible elements that could be
of interest. In case of random experiments, it is the set of all possible
outcomes. Example: for coin tosses,Ω = {H, T}.

• Empty set (denotedφ): a set with no elements
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• Subset:A ⊆ B: if every element of A also belongs to B.

• Strict subset:A ⊂ B: if every element of A also belongs to B and B has

more elements than A.

• Belongs:∈, Does not belong:/∈

• Complement:A′ or Ac, Union: A ∪ B, Intersection:A ∩ B

– A′ , {x ∈ Ω|x /∈ A}

– A ∪ B , {x|x ∈ A, or x ∈ B}, x ∈ Ω is assumed.

– A ∩ B , {x|x ∈ A, and x ∈ B}

– Visualize using Venn diagrams (see book)

• Disjoint sets: A and B are disjoint if A ∩ B = φ (empty), i.e. they
have no common elements.
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• DeMorgan’s Laws

(A ∪ B)′ = A′ ∩ B′ (1)

(A ∩ B)′ = A′ ∪ B′ (2)

– Proofs: Need to show that every element of LHS (left hand side) is
also an element of RHS (right hand side), i.e. LHS⊆ RHS and show
vice versa, i.e. RHS⊆ LHS.

– We show the proof of the first property

∗ If x ∈ (A ∪ B)′, it means that x does not belong to A or B. In
other words x does not belong to A and x does not B either. This
means x belongs to the complement of A and to the complement
of B, i.e. x ∈ A′ ∩ B′.

∗ Just showing this much does not complete the proof, need to show
the other side also.

∗ If x ∈ A′ ∩B′, it means that x does not belong to A and it does not
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belong to B, i.e. it belongs to neither A nor B, i.e.x ∈ (A ∪ B)′

∗ This completes the argument

– Please read the section on Algebra of Sets, pg 5
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Probabilistic models

• There is an underlying process calledexperiment that produces exactly
ONEoutcome.

• A probabilistic model: consists of a sample space and a probability law

– Sample space (denotedΩ): set of all possible outcomes of an
experiment

– Event: any subset of the sample space

– Probability Law: assigns a probability to every set A of possible
outcomes (event)

– Choice of sample space (or universe): every element should be
distinct and mutually exclusive (disjoint); and the space should be
“collectively exhaustive” (every possible outcome of an experiment
should be included).
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• Probability Axioms:

1. Nonnegativity. P (A) ≥ 0 for every eventA.

2. Additivity. If A and B are twodisjoint events, then

P (A ∪ B) = P (A) + P (B)

(also extends to any countable number of disjoint events).

3. Normalization. Probability of the entire sample space,P (Ω) = 1.

• Probability of the empty set,P (φ) = 0 (follows from Axioms 2 & 3).

• Sequential models, e.g. three coin tosses or two sequential rolls of a die.

Tree-based description: see Fig. 1.3

• Discrete probability law: sample space consists of a finite number of

possible outcomes, law specified by probability of single element events.

– Example: for a fair coin toss,Ω = {H, T}, P (H) = P (T ) = 1/2

– Discrete uniform law for any eventA:
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P (A) = number of elements in A
n

• Continuous probability law: e.g.Ω = [0, 1]: probability of any single
element event is zero, need to talk of probability of a subinterval,[a, b]

of [0, 1].
See Example 1.4, 1.5 (This is slightly more difficult. We will cover
continuous probability and examples later).

• Properties of probability laws

1. If A ⊆ B, thenP (A) ≤ P (B)

2. P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

3. P (A ∪ B) ≤ P (A) + P (B)

4. P (A ∪ B ∪ C) = P (A) + P (A′ ∩ B) + P (A′ ∩ B′ ∩ C)

5. Note: book usesAc for A′ (complement of set A).

6. Proofs: Will be covered in next class. Visualize: Venn diagrams.
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Conditional Probability

• Given that we know that an event B has occurred, what is the probability
that event A occurred? Denoted byP (A|B). Example: Roll of a 6-sided
die. Given that the outcome is even, what is the probability of a 6?
Answer: 1/3

• When number of outcomes is finite and all are equally likely,

P (A|B) =
number of elements ofA ∩ B

number of elements ofB
(3)

• In general,

P (A|B) ,
P (A ∩ B)

P (B)
(4)

• P (A|B) is a probability law (satisfies axioms) on the universeB.
Exercise: show this.
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• Examples/applications

– Example 1.7, 1.8, 1.11

– Construct sequential models:P (A ∩ B) = P (B)P (A|B). Example:

Radar detection (Example 1.9). What is the probability of theaircraft

not present and radar registers it (false alarm)?

– See Fig. 1.9: Tree based sequential description
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Total Probability and Bayes Rule

• Total Probability Theorem: LetA1, . . . An be disjoint events which form

a partition of the sample space (∪n
i=1Ai = Ω). Then for any event B,

P (B) = P (A1 ∩ B) + . . . P (An ∩ B)

= P (A1)P (B|A1) + . . . P (An)P (B|An) (5)

Visualization and proof: see Fig. 1.13

• Example 1.13, 1.15

• Bayes rule: LetA1, . . . An be disjoint events which form a partition of

the sample space. Then for any event B, s.t.P (B) > 0, we have

P (Ai|B) =
P (Ai)P (B|Ai)

P (B)
=

P (Ai)P (B|Ai)

P (A1)P (B|A1) + . . . P (An)P (B|An)
(6)
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• Inference using Bayes rule

– There are multiple “causes”A1, A2, ..An that result in a certain

“effect” B. Given that we observe the effectB, what is the

probability that the cause wasAi? Answer: use Bayes rule. See Fig.

1.14

– Radar detection: what is the probability of the aircraft being present

given that the radar registers it? Example 1.16

– False positive puzzle, Example 1.18: very interesting!
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Independence

• P (A|B) = P (A) and soP (A ∩ B) = P (B)P (A): the fact that B has
occurred gives no information about the probability of occurrence of A.
Example: A= head in first coin toss, B = head in second coin toss.

• “Independence”: DIFFERENT from “mutually exclusive” (dis joint)

– Events A and B are disjoint ifP (A∩B) = 0: cannot be independent
if P (A) > 0 andP (B) > 0.
Example: A = head in a coin toss, B = tail in a coin toss

– Independence: a concept for events in a sequence. Independent
events withP (A) > 0, P (B) > 0 cannot be disjoint

• Conditional independence **

• Independence of a collection of events
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– P (∩i∈SAi) = Πi∈SP (Ai) for every subsetS of {1, 2, ..n}

• Reliability analysis of complex systems: independence assumption often
simplifies calculations

– Analyze Fig. 1.15: what isP (system fails) of the systemA → B?

∗ Let pi = probability of success of componenti.
∗ m components in series:P (system fails) = 1 − p1p2 . . . pm

(succeeds if all components succeed).
∗ m components in parallel:

P (system fails) = (1 − p1) . . . (1 − pm) (fails if all the
components fail).

• Independent Bernoulli trials and Binomial probabilities

– A Bernoulli trial: a coin toss (or any experiment with two possible
outcomes, e.g. it rains or does not rain, bit values)

– Independent Bernoulli trials: sequence of independent coin tosses
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– Binomial: Givenn independent coin tosses,what is the probability of

k heads (denotedp(k))?

∗ probability of any one sequence withk heads ispk(1 − p)n−k

∗ number of such sequences (from counting arguments):
(

n

k

)

∗ p(k) =
(

n

k

)

pk(1 − p)n−k, where
(

n

k

)

, n!
(n−k)!k!

– Application: what is the probability that more thanc customers need

an internet connection at a given time? We know that at a giventime,

the probability that any one customer needs connection isp.

Answer:
n

∑

k=c+1

p(k)
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Counting

• Needed in many situations. Two examples are:

1. Sample space has a finite number of equally likely outcomes
(discrete uniform), compute probability of any event A.

2. Or compute the probability of an event A which consists of afinite
number of equally likely outcomes each with probabilityp, e.g.
probability ofk heads inn coin tosses.

• Counting principle (See Fig. 1.17): Consider a process consisting ofr
stages. If at stage 1, there aren1 possibilities, at stage 2,n2 possibilities
and so on, then the total number of possibilities =n1n2 . . . nr.

– Example 1.26 (number of possible telephone numbers)

– Counting principle applies even when second stage depends on the
first stage and so on, Ex. 1.28 (no. of words with 4 distinct letters)
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• Applications:k-permutations.

– n distinct objects, how many different ways can we pickk objects
and arrange them in a sequence?

∗ Use counting principle: choose first object inn possible ways,
second one inn − 1 ways and so on. Total no. of ways:
n(n − 1) . . . (n − k + 1) = n!

(n−k)!

∗ If k = n, then total no. of ways =n!

∗ Example 1.28, 1.29

• Applications:k-combinations.

– Choice ofk elements out of ann-element set without regard to order.

– Most common example: There aren people, how many different
ways can we form a committee ofk people? Here order of choosing

thek members is not important. Denote answer by
(

n

k

)

– Note that selecting ak-permutation is the same as first selecting a
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k-combination and then ordering the elements (ink!) different ways,

i.e. n!
(n−k)! =

(

n

k

)

k!

– Thus
(

n

k

)

= n!
k!(n−k)! .

– How will you relate this to the binomial coefficient (number of ways
to getk heads out ofn tosses)?
Toss number j = person j, a head in a toss = the person (toss number)
is in committee

• Applications:k-partitions. **

– A combination is a partition of a set into two parts

– Partition: given ann-element set, consider its partition intor subsets
of sizen1, n2, . . . , nr wheren1 + n2 + . . . nr = n.

∗ Use counting principle andk-combinations result.

∗ Form the first subset. Choosen1 elements out ofn:
(

n

n1

)

ways.

∗ Form second subset. Choosen2 elements out ofn − n1 available
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elements:
(

n − n1

n2

)

and so on.

∗ Total number of ways to form the partition:
(

n

n1

)(

n − n1

n2

)

. . .
(

(n − n1 − n2...nr−1)

nr

)

= n!
n1!n2!...nr!
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