Motivation and Applications: Why Should I Study Probability?

- As stated by Laplace, "Probability is common sense reduced to calculation".
- You need to first learn the theory required to correctly do these calculations. The examples that I solve and those in the book and the homeworks will provide a wonderful practical motivation as to why you need to learn the theory.
- If you patiently grasp the basics, especially the first 4 chapters of BT, it will be the most useful thing you've ever learnt - whether you pursue a career in EE or CE or Economics or Finance or Management and also while you try to invest in stocks or gamble in Las Vegas!
- Applications: communications (telephones, cell phones, TV, ...), signal processing (image and video denoising, face recognition, tracking
moving objects from video,...), systems and control (operating an airplane, fault detection in a system,...), predicting reliability of a system (e.g. electrical system), resource allocation, internet protocols, non-engineering applications (e.g. medicine: predicting how prevalent a disease is or well a drug works, weather forecasting, economics).

Introduction: Topics Covered. Chapter 1, 1.1-1.6)

- What is Probability
- Set Theory Basics
- Probability Models
- Conditional Probability
- Total Probability and Bayes Rule
- Independence
- Counting

What is Probability?

- Measured relative frequency of occurrence of an event.

Example: toss a coin 100 times, measure frequency of heads or compute probability of raining on a particular day and month (using past years' data)

- Or subjective belief about how "likely" an event is (when do not have data to estimate frequency).
Example: any one-time event in history or "how likely is it that a new experimental drug will work?"
This may either be a subjective belief or derived from the physics, for e.g. if I flip a symmetric coin (equal weight on both sides), I will get a head with probability $1 / 2$.
- For probabilistic reasoning, two types of problems need to be solved

1. Specify the probability "model" or learn it (covered in a statistics class).
2. Use the "model" to compute probability of different events (covered here).

- We will assume the model is given and will focus on problem 2. in this course.

Set Theory Basics

- Set: any collection of objects (elements of a set).
- Discrete sets
- Finite number of elements, e.g. numbers of a die
- Or infinite but countable number of elements, e.g. set of integers
- Continuous sets
- Cannot count the number of elements, e.g. all real numbers between 0 and 1.
- "Universe" (denoted Ω): consists of all possible elements that could be of interest. In case of random experiments, it is the set of all possible outcomes. Example: for coin tosses, $\Omega=\{H, T\}$.
- Empty set (denoted ϕ): a set with no elements
- Subset: $A \subseteq B$: if every element of A also belongs to B .
- Strict subset: $A \subset B$: if every element of A also belongs to B and B has more elements than A .
- Belongs: \in, Does not belong: \notin
- Complement: A^{\prime} or A^{c}, Union: $A \cup B$, Intersection: $A \cap B$
- $A^{\prime} \triangleq\{x \in \Omega \mid x \notin A\}$
- $A \cup B \triangleq\{x \mid x \in A$, or $x \in B\}, x \in \Omega$ is assumed.
- $A \cap B \triangleq\{x \mid x \in A$, and $x \in B\}$
- Visualize using Venn diagrams (see book)
- Disjoint sets: A and B are disjoint if $A \cap B=\phi$ (empty), i.e. they have no common elements.
- DeMorgan's Laws

$$
\begin{align*}
& (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \tag{1}\\
& (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \tag{2}
\end{align*}
$$

- Proofs: Need to show that every element of LHS (left hand side) is also an element of RHS (right hand side), i.e. LHS \subseteq RHS and show vice versa, i.e. RHS \subseteq LHS .
- We show the proof of the first property
* If $x \in(A \cup B)^{\prime}$, it means that x does not belong to A or B . In other words x does not belong to A and x does not B either. This means x belongs to the complement of A and to the complement of B, i.e. $x \in A^{\prime} \cap B^{\prime}$.
* Just showing this much does not complete the proof, need to show the other side also.
* If $x \in A^{\prime} \cap B^{\prime}$, it means that x does not belong to A and it does not
belong to B , i.e. it belongs to neither A nor B , i.e. $x \in(A \cup B)^{\prime}$
* This completes the argument
- Please read the section on Algebra of Sets, pg 5

Probabilistic models

- There is an underlying process called experiment that produces exactly ONE outcome.
- A probabilistic model: consists of a sample space and a probability law
- Sample space (denoted Ω): set of all possible outcomes of an experiment
- Event: any subset of the sample space
- Probability Law: assigns a probability to every set A of possible outcomes (event)
- Choice of sample space (or universe): every element should be distinct and mutually exclusive (disjoint); and the space should be "collectively exhaustive" (every possible outcome of an experiment should be included).
- Probability Axioms:

1. Nonnegativity. $P(A) \geq 0$ for every event A.
2. Additivity. If A and B are two disjoint events, then

$$
P(A \cup B)=P(A)+P(B)
$$

(also extends to any countable number of disjoint events).
3. Normalization. Probability of the entire sample space, $P(\Omega)=1$.

- Probability of the empty set, $P(\phi)=0$ (follows from Axioms $2 \& 3$).
- Sequential models, e.g. three coin tosses or two sequential rolls of a die. Tree-based description: see Fig. 1.3
- Discrete probability law: sample space consists of a finite number of possible outcomes, law specified by probability of single element events.
- Example: for a fair coin toss, $\Omega=\{H, T\}, P(H)=P(T)=1 / 2$
- Discrete uniform law for any event A :

$$
P(A)=\frac{\text { number of elements in } \mathrm{A}}{n}
$$

- Continuous probability law: e.g. $\Omega=[0,1]$: probability of any single element event is zero, need to talk of probability of a subinterval, $[a, b]$ of $[0,1]$.
See Example 1.4, 1.5 (This is slightly more difficult. We will cover continuous probability and examples later).
- Properties of probability laws

1. If $A \subseteq B$, then $P(A) \leq P(B)$
2. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
3. $P(A \cup B) \leq P(A)+P(B)$
4. $P(A \cup B \cup C)=P(A)+P\left(A^{\prime} \cap B\right)+P\left(A^{\prime} \cap B^{\prime} \cap C\right)$
5. Note: book uses A^{c} for A^{\prime} (complement of set A).
6. Proofs: Will be covered in next class. Visualize: Venn diagrams.

Conditional Probability

- Given that we know that an event B has occurred, what is the probability that event A occurred? Denoted by $P(A \mid B)$. Example: Roll of a 6 -sided die. Given that the outcome is even, what is the probability of a 6 ? Answer: 1/3
- When number of outcomes is finite and all are equally likely,

$$
\begin{equation*}
P(A \mid B)=\frac{\text { number of elements of } A \cap B}{\text { number of elements of } B} \tag{3}
\end{equation*}
$$

- In general,

$$
\begin{equation*}
P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)} \tag{4}
\end{equation*}
$$

- $P(A \mid B)$ is a probability law (satisfies axioms) on the universe B. Exercise: show this.
- Examples/applications
- Example 1.7, 1.8, 1.11
- Construct sequential models: $P(A \cap B)=P(B) P(A \mid B)$. Example: Radar detection (Example 1.9). What is the probability of the aircraft not present and radar registers it (false alarm)?
- See Fig. 1.9: Tree based sequential description

Total Probability and Bayes Rule

- Total Probability Theorem: Let $A_{1}, \ldots A_{n}$ be disjoint events which form a partition of the sample space $\left(\cup_{i=1}^{n} A_{i}=\Omega\right)$. Then for any event B ,

$$
\begin{align*}
P(B) & =P\left(A_{1} \cap B\right)+\ldots P\left(A_{n} \cap B\right) \\
& =P\left(A_{1}\right) P\left(B \mid A_{1}\right)+\ldots P\left(A_{n}\right) P\left(B \mid A_{n}\right) \tag{5}
\end{align*}
$$

Visualization and proof: see Fig. 1.13

- Example 1.13, 1.15
- Bayes rule: Let $A_{1}, \ldots A_{n}$ be disjoint events which form a partition of the sample space. Then for any event B , s.t. $P(B)>0$, we have

$$
\begin{equation*}
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P(B)}=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+\ldots P\left(A_{n}\right) P\left(B \mid A_{n}\right)} \tag{6}
\end{equation*}
$$

- Inference using Bayes rule
- There are multiple "causes" $A_{1}, A_{2}, . . A_{n}$ that result in a certain "effect" B. Given that we observe the effect B, what is the probability that the cause was A_{i} ? Answer: use Bayes rule. See Fig. 1.14
- Radar detection: what is the probability of the aircraft being present given that the radar registers it? Example 1.16
- False positive puzzle, Example 1.18: very interesting!

Independence

- $P(A \mid B)=P(A)$ and so $P(A \cap B)=P(B) P(A)$: the fact that B has occurred gives no information about the probability of occurrence of A. Example: $\mathrm{A}=$ head in first coin toss, $\mathrm{B}=$ head in second coin toss.
- "Independence": DIFFERENT from "mutually exclusive" (disjoint)
- Events A and B are disjoint if $P(A \cap B)=0$: cannot be independent if $P(A)>0$ and $P(B)>0$.
Example: $\mathrm{A}=$ head in a coin toss, $\mathrm{B}=$ tail in a coin toss
- Independence: a concept for events in a sequence. Independent events with $P(A)>0, P(B)>0$ cannot be disjoint
- Conditional independence **
- Independence of a collection of events
- $P\left(\cap_{i \in S} A_{i}\right)=\Pi_{i \in S} P\left(A_{i}\right)$ for every subset S of $\{1,2, . . n\}$
- Reliability analysis of complex systems: independence assumption often simplifies calculations
- Analyze Fig. 1.15: what is P (system fails) of the system $A \rightarrow B$?
* Let $p_{i}=$ probability of success of component i.
* m components in series: $P($ system fails $)=1-p_{1} p_{2} \ldots p_{m}$ (succeeds if all components succeed).
* m components in parallel:
$P($ system fails $)=\left(1-p_{1}\right) \ldots\left(1-p_{m}\right)$ (fails if all the components fail).
- Independent Bernoulli trials and Binomial probabilities
- A Bernoulli trial: a coin toss (or any experiment with two possible outcomes, e.g. it rains or does not rain, bit values)
- Independent Bernoulli trials: sequence of independent coin tosses
- Binomial: Given n independent coin tosses, what is the probability of k heads (denoted $p(k)$)?
* probability of any one sequence with k heads is $p^{k}(1-p)^{n-k}$ * number of such sequences (from counting arguments): $\binom{n}{k}$ * $p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$, where $\binom{n}{k} \triangleq \frac{n!}{(n-k)!k!}$
- Application: what is the probability that more than c customers need an internet connection at a given time? We know that at a given time, the probability that any one customer needs connection is p.
Answer: $\sum_{k=c+1}^{n} p(k)$

Counting

- Needed in many situations. Two examples are:

1. Sample space has a finite number of equally likely outcomes (discrete uniform), compute probability of any event A.
2. Or compute the probability of an event A which consists of a finite number of equally likely outcomes each with probability p, e.g. probability of k heads in n coin tosses.

- Counting principle (See Fig. 1.17): Consider a process consisting of r stages. If at stage 1 , there are n_{1} possibilities, at stage $2, n_{2}$ possibilities and so on, then the total number of possibilities $=n_{1} n_{2} \ldots n_{r}$.
- Example 1.26 (number of possible telephone numbers)
- Counting principle applies even when second stage depends on the first stage and so on, Ex. 1.28 (no. of words with 4 distinct letters)
- Applications: k-permutations.
- n distinct objects, how many different ways can we pick k objects and arrange them in a sequence?
* Use counting principle: choose first object in n possible ways, second one in $n-1$ ways and so on. Total no. of ways:
$n(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!}$
* If $k=n$, then total no. of ways $=n$!
* Example 1.28, 1.29
- Applications: k-combinations.
- Choice of k elements out of an n-element set without regard to order.
- Most common example: There are n people, how many different ways can we form a committee of k people? Here order of choosing the k members is not important. Denote answer by $\binom{n}{k}$
- Note that selecting a k-permutation is the same as first selecting a
k-combination and then ordering the elements (in $k!$) different ways, i.e. $\frac{n!}{(n-k)!}=\binom{n}{k} k!$
- Thus $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
- How will you relate this to the binomial coefficient (number of ways to get k heads out of n tosses)?
Toss number $\mathrm{j}=$ person j , a head in a toss $=$ the person (toss number) is in committee
- Applications: k-partitions. **
- A combination is a partition of a set into two parts
- Partition: given an n-element set, consider its partition into r subsets of size $n_{1}, n_{2}, \ldots, n_{r}$ where $n_{1}+n_{2}+\ldots n_{r}=n$. * Use counting principle and k-combinations result.
* Form the first subset. Choose n_{1} elements out of n : $\binom{n}{n_{1}}$ ways.
* Form second subset. Choose n_{2} elements out of $n-n_{1}$ available
elements: $\binom{n-n_{1}}{n_{2}}$ and so on.
* Total number of ways to form the partition:

$$
\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \ldots\binom{\left(n-n_{1}-n_{2} \ldots n_{r-1}\right)}{n_{r}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}
$$

