Statistical Models for Deformable Contour Tracking

Namrata Vaswani
Dept. of Electrical \& Computer Engineering Iowa State University http://www.ece.iastate.edu/~namrata

Based on joint work with Rathi,Tannenbaum \& Yezzi

Goal

- Sequentially segment moving \& deforming objects or Regions of Interest (ROIs) from video or spatial image sequences
- Deforming contours occur due to
- Deforming objects, e.g. ROIs in heart, brain slices
- Partial occlusions
- Perspective effects: changing camera viewpoints

Problem Formulation

- Formulate sequential segmentation as a causal Bayesian estimation of the "optimal" state:
"Tracking" or "Optimal Filtering"
- State = contour, contour velocity at t
- Contour: represented using level set method
- Contour velocity = global motion + local deformation
- Local deformation = large (infinite) dim.
- Observation $=$ image at t

State Space Model \& Tracker

Observation Likelihood (OL)

- Image $=$ noisy \& nonlinear function of contour
$-p\left(Y_{t} \mid C_{t}\right) \propto \exp \left[-E\left(Y_{t}, C_{t}\right) / \sigma^{2}\right]$
$-E=$ any segmentation energy functional
- e.g. E=Chan-Vese energy, edge energy, or sum of both
- OL may be highly non-Gaussian
- e.g. multimodal or heavy tailed or flat

Examples: Non-Gaussian OL

- Multimodal OL
- Multiple separate objects
- Background clutter
- Partial occlusions
- Heavy tailed or flat OL
- Low contrast b/w object \& background
- Outliers

Examples: Deformation

- Actual deformations
- Human tracking: surveillance, sports videos,...
- Animals such as a fish
- Medical sequences: ROIs in brain or heart
- Changing region of partial occlusions
- Automatic vehicle navigation
- Robot navigation
- Frequently changing camera viewpoint
- Tracking using a UAV

Multiple fishes, partial occlusions + deformation

Background clutter (light grey object) + deformation

11

12

$\$$

Partial occlusion of car by street light: Multiple, deforming contours

N.Vaswani - Iowa State University

Low contrast + Frequent viewpoint changes

Outlier image+ background clutter + deformation

Deforming ROI: Right ventricle tracking

Low Contrast + Deforming ROI: Tumor tracking

Outline

- Main Issues to Address
- Particle Filtering (PF)
- Solution 1: PF on space of affine deform ${ }^{n}$, MT for non-affine
- Solution 2: PF on space of translations \& sub-sampled local deformation, MT for rest

Three Issues

- Nonlinearities
- Space of contours: not a vector space
- Affine/similarity group applied to contour
- Non-Gaussian Observation Likelihood
- Multimodal or heavy tailed
- Local deformation: Large dim state space

Contour Tracking Literature

- Tracking as Bayesian state estimation
- Fixed finite representation of contour
- Affine tracking: Condensation \& precursors
- Deformable templates, Landmark based,...
- Exemplars to handle non-affine deformations
- Separate linear observers (posterior mode trackers) for global \& local deformation separately
- Other formulations: OF, region tracking,...

Past Work: Problems

- Finite dim. representation: do not handle large changes in contour length/ topology
- Exemplars: very restrictive
- Posterior mode trackers (approx. linear observers
- Assume unimodality of posterior
- Uncoupled observers for global \& local deformation (coupled observer: nonlinear)

A Possible Solution

- Replace the approx. linear observer by a particle filter
- Can track nonlinear systems: able to use a coupled observer
- Can handle multimodal observation likelihoods (multimodal posteriors)

Particle Filtering (PF)

- Sequential Importance Sampling (SIS)
- IS: MC method to approx $p(x \mid y) \propto p(y \mid x) p(x)$
- For $i=1, . . N$, sample: $x^{i} \sim q(x \mid y)$: importance density
- Weight x^{i} by $w^{i} \propto p\left(y \mid x^{i}\right) p\left(x^{i}\right) / q\left(x^{i} \mid y\right)$
- $\mathrm{E}[\mathrm{f}(\mathrm{x}) \mid \mathrm{y}]=\sum_{\mathrm{i}} \mathrm{f}\left(x^{i}\right) w^{i}$
- Sequential IS:
- At t, use $x_{t} \equiv X_{0: t} \mid Y_{1: t-1}, y_{t} \equiv Y_{t}$,
- Choose $q_{t}: q_{t}=q_{t-1} q\left(X_{t} \mid X_{t-1}, Y_{t}\right) \rightarrow$ recursive update
- + Resampling to reduce degeneracy

Particle Filter Algorithm

Given $\pi_{t-1}^{N}\left(x_{0: t-1} \mid Y_{1: t-1}\right)=\sum_{i} w_{t-1}^{i} \delta\left(x_{0: t-1}-x_{0 t-1}^{i}\right)$. At t, do

- Imp. Sample: For $i=1,2, . . N$ do, $x_{t}^{i} \sim q\left(x_{t} \mid x_{t-1}^{i}, Y_{t}\right)$
- Weight: For $i=1,2, . . N$ do, $\breve{w}_{t}^{i}=w_{t-1}^{i} \frac{p\left(Y_{t} \mid x_{t}^{i}\right) p\left(x_{t}^{i} \mid x_{t-1}^{i}\right)}{q\left(x_{t} \mid x_{t-1}^{i}, Y_{t}\right)}, w_{t}^{i}=\frac{\breve{w}_{t}^{i}}{\sum_{i} \breve{w}_{t}^{i}}$
$\pi_{t}^{N}\left(x_{0: t} \mid Y_{1: t}\right)=\sum_{i} w_{t}^{i} \delta\left(x_{0: t}-x_{0 t}^{i}\right)$
- Resample

Solution 1: PF + MT for affine basis

PF-MT: Main Idea [CVPR'05]

- Use a PF to track affine deformation and use an approx. Mode Tracker (MT) that computes mode of posterior of local deformation given the affine deformation
- PF on large dim state spaces is expensive \& inaccurate (for manageable N)

State Space Model

- State: $X_{t}=\left[C_{t}, A_{t}\right]$,
$-C_{t}=$ contour at $t, A_{t}=$ affine deform ${ }^{\mathrm{n}} \mathrm{b} / \mathrm{w} C_{t-1} \& C_{t}$
- A_{t} : random walk motion model
$-\hat{C}_{t}=A_{t}\left(C_{t-1}\right)$
$-p\left(C_{t} \mid \hat{C}_{t}\right) \propto \exp \left[-d^{2}\left(C_{t}, \hat{C}_{t}\right) / \Delta\right]$
- Observation: $Y_{t}=$ image at t
- OL: $p\left(Y_{t} \mid C_{t}\right) \propto \exp -\left[E\left(C_{t}, Y_{t}\right)\right]$
$-E=$ Chan-Vese energy + edge energy (Condensation)
- Multimodal: clutter/occlusions/multiple objects

PF - MT (Exact)

- At t, for each particle $i=1,2, \ldots . N$
- IS for $\mathrm{A}_{\mathrm{t}}: A_{t}^{i} \sim$ state transition pdf
- Compute $\hat{C}_{t}^{i}=A_{t}^{i}\left(C_{t-1}{ }^{i}\right)$
- Compute the single mode of $p\left(C_{t} \mid \hat{C}_{t}^{i}, Y_{t}\right)$

$$
m_{t}^{i}=\arg \min _{C}\left[E(C)+d^{2}\left(C, \hat{C}_{t}^{i}\right) / \Delta\right]
$$

- IS for $\mathrm{C}_{\mathrm{t}}: C_{t}^{i} \sim N\left(C ; m_{t}^{i}, \Delta I\right)$
- Compute IS weights \& resample

$$
w_{t}^{i} \propto \frac{\exp \left[-E\left(C_{t}^{i}\right)\right] \exp \left[-d^{2}\left(C_{t}^{i}, \hat{C}_{t}^{i}\right)\right]}{\mathcal{N}\left(C_{t}^{i} ; m_{t}^{i}, \Delta I\right)}
$$

PF - MT: Approx. 1

- At t, for each particle $i=1,2, \ldots N$
- IS for $\mathrm{A}_{\mathrm{t}}: A_{t}^{i} \sim$ state transition pdf
- Compute $\hat{C}_{t}^{j}=A_{t}^{i}\left(C_{t-1}{ }^{i}\right)$
- Compute the single mode of $p\left(C_{t} \mid \hat{C}_{t}^{i}, Y_{t}\right)$

$$
m_{t}^{i}=\arg \min _{C}\left[E(C)+d^{2}\left(C, \hat{C}_{t}^{i}\right) / \Delta\right]
$$

- IS for C_{t} : Deterministically set $C_{t}^{i}=m_{t}^{i}$
- Compute IS weights \& resample

$$
w_{t}^{i} \propto \frac{\exp \left[-E\left(C_{t}^{i}\right)\right] \exp \left[-d^{2}\left(C_{t}^{i}, \hat{C}_{t}^{i}\right)\right]}{\mathcal{N}\left(C_{t}^{i} ; m_{t}^{i}, \Delta I\right)}
$$

Implicit Assumption [ICASSP’06]

- Non-affine deformation per frame "small" enough compared to distance b/w modes of OL at same affine location, to ensure unimodality of $p\left(C_{t} \mid \hat{C}_{t}, Y_{t}\right)$

$$
\begin{aligned}
p\left(C_{t} \mid \hat{C}_{t}, Y_{t}\right) & \propto p\left(Y_{t} \mid C_{t}\right) p\left(C_{t} \mid \hat{C}_{t}\right) \\
& \propto \exp -\left[E\left(C_{t}\right)+d^{2}\left(C_{t}, \hat{C}_{t}\right) / \Delta\right]
\end{aligned}
$$

- Δ small enough, so that $E+d^{2} / \Delta$ has a single minimum on space of non-affine deform ${ }^{\text {n }}$

Ensuring Unimodality of $p\left(C_{t} \mid \hat{C}_{t}, Y_{t}\right)$

- $p\left(C_{t} \mid \hat{C}_{t} Y_{t}\right) \propto p\left(Y_{t} \mid C_{t}\right) p\left(C_{t} \mid \hat{C}_{t}\right)$

$$
\alpha \exp -\left[E\left(C_{t}\right)+d^{2}\left(C_{t} \hat{C}_{t}\right) / \Delta\right]
$$

- $E+d^{2} / \Delta$ has a single minimum if
$-\hat{C}_{t}$ lies in a locally convex region of E
${ }^{-} \Delta<\Delta^{*}=\min _{C \in A} \max _{p} \frac{\left|\left(\nabla_{C} D\left(C, \hat{C}_{t}\right)\right)(p)\right|}{\left|\left(\nabla_{C} E(C)\right)(p)\right|}$
- $D=d^{2}$
- $A=\left\{C \in R^{c}: \nabla D(p) \cdot \nabla E(p)<0, \forall p\right\}$
- $R=\left\{\right.$ largest region of Q containing $\hat{C}_{t} \&$ where E is locally convex $\}, Q=\left\{\hat{C}_{t}+\right.$ non-affine deformations $\}$

Approx. MT [ICASSP’06]

- Approximate: $m_{t}^{i}=\arg \min _{C}\left[E(C)+d^{2}\left(C, \hat{C}_{t}^{i}\right) / \Delta\right]$
- m_{t}^{i} satisfies $E\left(C_{\text {min }}\right)<E\left(m_{t}^{i}\right)<E\left(\hat{C}_{t}^{i}\right)$
$-C_{\text {min }}=$ minimizer of E in R (locally convex region of E containing \hat{C}_{t}^{i})
- Start from $\hat{C}_{t}^{i} \&$ perform Gradient Descent (GD) to minimize E : GD will go towards $C_{\text {min }}$
- If GD iterations slow enough, will cross m_{t}^{i} at "some" iteration
- Approx. solution: starting with \hat{C}_{t}^{i}, run "some" iterations of GD to minimize E

A New PF Technique?

- Extends optimal IS [Doucet'98] for multimodal $p\left(X_{t} \mid X_{t-1}, Y_{t}\right)$ satisfying " $p\left(X_{t} \mid X_{t-1}, X_{t, s}, Y_{t}\right)$ is unimodal" assumption \& for which Δ is small
- Fast PF technique for large dim states: sample only from a small dim subspace, MT for rest.

Validity of "Assumption"

- "Non-affine deformation per frame small compared to distance b/w modes of OL at same affine location" valid for
- Distinct objects (separated by translation)
- Concentric contours (separated by scale)
- Low contrast \& camera viewpoint changes (small non-affine deformation per frame)

Multiple fishes, partial occlusions + deformation (Modes separated by translation)

Plane Sequence taken from a UAV:

Low contrast \& Frequent viewpoint changes (Small non-affine deformation per frame)

Assumption Fails when

- 2 or more OL modes at same affine location \& large deformation per frame
- e.g. car sequence, medical image sequences

- Outlier observations (multiple modes of OL very close) \& large deformation per frame
- Both cases: Contour attracted to wrong mode in MT step

Background clutter - light grey object (2 OL modes at same affine location) \& Large non-affine deformation per frame

Outlier observations at every even frame (Multiple OL modes at same affine location) \& Large non-affine deformation per frame

Solution 2: PF for sub-sampled local deformation + MT for rest

Background clutter (2 OL modes at same affine location) \& Large non-affine deformation per frame

Outlier observations at every even frame (Multiple OL modes at same affine location) \& Large non-affine deformation per frame

Car left of pole

Full car

Weakening the Assumption

- Previous assumption fails when
- Non-affine deformation separates modes of OL
- Outlier observations
- But, if space of deformations is a separable Hilbert space, it has a countable orthogonal basis
- There exists a K-dim subspace (K-dim basis) in which "most" of the deformation occurs
- Can achieve any approx error, Δ, for "residual deformation" by choosing K large enough

Spatial Frequency Interpretation

- Contour length is finite and spatial frequency of contour deformation is approx band-limited, so that $K=L /\left(2 f_{\max }\right)$ or a bit larger (in practice): Nyquist criterion
- Using a smaller $K \Leftrightarrow$ low pass filtering (estimating a smoothed contour)
- Using a much larger $K \Leftrightarrow$ estimating noise

PF-MT-NonAffine: Main Idea

- Replace affine basis by a K-dim B-spline basis to parameterize contour deformation velocity, K can change with t
-B-spline basis only for contour velocity: need a much smaller K than for contour
- Run a PF to track velocity at K control points (random walk model on velocity), run approx MT for rest, detect need to change K

State Dynamics

$\tau=$ frame interval, $\vec{N}=$ normal, $B_{s}=$ basis
$v_{t, s} \in R^{K}, \rho_{t, s} \in R^{2}, C_{t}$ in a manifold of $R^{M_{t}}$
$v_{t, s}=v_{t-1, s}+w_{n}, \quad w_{n} \sim N(0, \Sigma \tau), \quad \rho_{t, s}=\rho_{t-1, s}+w_{n, \rho}$
$k=\operatorname{ceil}\left(\tau / \tau_{\text {CFL }}\right), \tau_{\text {CFL }}=1 / \max _{j}\left(v_{t, s, j}\right)$
For $m=1,2, \ldots k: \hat{C}_{t-1}=C_{t-1}$
$\hat{C}_{t-1+\frac{m}{k}}(p)=\hat{C}_{t-1+\frac{m-1}{k}}(p)+\frac{\tau}{k} \vec{N}(p)\left[B_{s}(p) v_{t, s}+\vec{N}^{T} \rho_{t, s}\right]$
$p\left(C_{t} \mid \hat{C}_{t}\right)=($ const $) \exp \left[-\frac{d^{2}\left(C_{t}, \hat{C}_{t}\right)}{\Delta}\right]$

PF-MT-NonAffine Algorithm

- Importance Sample velocity at K control points
- Interpolate to get contour velocity, $v_{t, s}{ }^{i}$
- Move $C_{t-1}{ }^{i}$ by $v_{t, s}{ }^{i}$ to get \hat{C}_{t}^{i}
- Move slowly enough to satisfy CFL condition: multiple level set evolution iterations for one $v_{t, s}{ }^{i}$
- Approx. MT for "rest of deformation": $C_{t}^{i}=m_{t}^{i}$
- Weight \& Resample
- Detect if K-dim basis suffices, else increase K

Deformation due to partial occlusions

Full car

Car left of pole

Advantages over PF-MT-Affine

- "Rest of deformation": much smaller, lesser GD iterations needed even for large non-affine deformations
- Handles two OL modes at "similar" affine "location"
- Back in track easily after outliers: able to return to correct mode

Ongoing Work

Brain MRI: Tracking the right ventricle

Brain MRI: Tracking the tumor

Choosing K: Ongoing Work

- Choose K large enough s.t. expected residual deformation, Δ_{K}, small enough to ensure unimodality of $p\left(C_{t} \mid \hat{C}_{t}, Y_{t}\right)$, i.e. $\Delta_{K}<\Delta^{*}$
- Problem: Δ^{*} also depends on K, so run an iterative procedure to find K

Choosing K: Ongoing Work

- Given a training sequence of contours
- Learn a K_{0}-dim approx to deformation, $v_{t, s}, \forall t$
- Learn $\Delta_{K_{0}}=$ expected residual deformation
- Using Y_{t}, compute $\Delta_{t, K_{0}}{ }^{*}$ at each t
- If $\Delta_{K_{0}}>\min _{t} \Delta_{t, K_{0}}{ }^{*}$, set $\varepsilon=\min _{t} \Delta_{t, K_{0}}{ }^{*}$
- Find $K>K_{0}$ large enough so that $\Delta_{K}<\varepsilon$: K exists because of countable orthogonal basis assumption
- $\Delta_{t, K}{ }^{*}$ non-decreasing with $K: \Delta_{t, K}{ }^{*} \geq \Delta_{t, K_{0}}{ }^{*}>\Delta_{K}$

Basis Change: Ongoing Work

- Assuming K is piecewise constant with time
- Change K when L changes or $f_{\text {max }}$ changes
- Require methods to detect this \& estimate new K
- Non-uniformly allocate control points based on prior information: space varying $f_{\text {max }}$
- Issues related to stability of PF algorithm when delay or errors in estimating new basis

Future Work

- Basis to parameterize velocity w.r.t. contour arclength or w.r.t. x-y location?
- Parametrizing velocity w.r.t x-y locations handles topology change, but velocities may not satisfy comparison principle
- Basis change detection \& estimation
- Proving that $\Delta_{K}{ }^{*}$ is non-decreasing in K
- Choosing an orthogonal basis?

