Statistical Models for Deformable Contour Tracking

Namrata Vaswani Dept. of Electrical & Computer Engineering Iowa State University http://www.ece.iastate.edu/~namrata

Based on joint work with Rathi, Tannenbaum & Yezzi

Goal

- Sequentially segment moving & deforming objects or Regions of Interest (ROIs) from video or spatial image sequences
- Deforming contours occur due to
 - Deforming objects, e.g. ROIs in heart, brain slices
 - Partial occlusions
 - Perspective effects: changing camera viewpoints

Problem Formulation

- Formulate sequential segmentation as a causal Bayesian estimation of the "optimal" state: "Tracking" or "Optimal Filtering"
 - State = contour, contour velocity at t
 - Contour: represented using level set method
 - Contour velocity = global motion + local deformation
 - Local deformation = large (infinite) dim.
 - Observation = image at t

State Space Model & Tracker

Observation Likelihood (OL)

- Image = noisy & nonlinear function of contour $-p(Y_t|C_t) \propto exp[-E(Y_t,C_t)/\sigma^2]$
 - E = any segmentation energy functional
 - e.g. E=Chan-Vese energy, edge energy, or sum of both
- OL may be highly non-Gaussian
 - e.g. multimodal or heavy tailed or flat

Examples: Non-Gaussian OL

- Multimodal OL
 - Multiple separate objects
 - Background clutter
 - Partial occlusions

- Heavy tailed or flat OL
 - Low contrast b/w object & background
 - Outliers

Examples: Deformation

- Actual deformations
 - Human tracking: surveillance, sports videos,...
 - Animals such as a fish
 - Medical sequences: ROIs in brain or heart
- Changing region of partial occlusions
 - Automatic vehicle navigation
 - Robot navigation
- Frequently changing camera viewpoint
 - Tracking using a UAV

Multiple fishes, partial occlusions + deformation

Background clutter (light grey object) + deformation

Partial occlusion of car by street light: Multiple, deforming contours

N.Vaswani - Iowa State University

Low contrast + Frequent viewpoint changes

Outlier image+ background clutter + deformation

Deforming ROI: Right ventricle tracking

Low Contrast + Deforming ROI: Tumor tracking

Outline

- Main Issues to Address
- Particle Filtering (PF)
- Solution 1: PF on space of affine deformⁿ, MT for non-affine
- Solution 2: PF on space of translations & sub-sampled local deformation, MT for rest

Three Issues

- Nonlinearities
 - Space of contours: not a vector space
 - Affine/similarity group applied to contour

- Non-Gaussian Observation Likelihood

 Multimodal or heavy tailed
- Local deformation: Large dim state space

Contour Tracking Literature

- Tracking as Bayesian state estimation
 - Fixed finite representation of contour
 - Affine tracking: Condensation & precursors
 - Deformable templates, Landmark based,...
 - Exemplars to handle non-affine deformations
 - Separate linear observers (posterior mode trackers) for global & local deformation separately
- Other formulations: OF, region tracking,...

Past Work: Problems

- Finite dim. representation: do not handle large changes in contour length/ topology
- Exemplars: very restrictive
- Posterior mode trackers (approx. linear observers – Assume unimodality of posterior
 - Uncoupled observers for global & local deformation (coupled observer: nonlinear)

A Possible Solution

- Replace the approx. linear observer by a particle filter
 - Can track nonlinear systems: able to use a coupled observer
 - Can handle multimodal observation likelihoods (multimodal posteriors)

Particle Filtering (PF)

Sequential Importance Sampling (SIS)

– IS: MC method to approx $p(x|y) \propto p(y|x) p(x)$

- For *i*=1,...*N*, sample: $x^i \sim q(x|y)$: importance density
- Weight x^i by $w^i \propto p(y|x^i) p(x^i) / q(x^i|y)$
- $E[f(x)|y] = \sum_{i} f(x^{i}) w^{i}$
- Sequential IS:
 - At *t*, use $x_t \equiv X_{0:t} | Y_{1:t-1}, y_t \equiv Y_t$,
 - Choose q_t : $q_t = q_{t-1}q(X_t | X_{t-1}, Y_t) \rightarrow \text{recursive update}$
- + Resampling to reduce degeneracy

Particle Filter Algorithm

Given
$$\pi_{t-1}^{N}(x_{0:t-1} | Y_{1:t-1}) = \sum_{i} w_{t-1}^{i} \delta(x_{0:t-1} - x_{0:t-1}^{i})$$
. At t , do
- Imp. Sample : For $i = 1, 2, ... N$ do, $x_{t}^{i} \sim q(x_{t} | x_{t-1}^{i}, Y_{t})$
- Weight : For $i = 1, 2, ... N$ do, $\breve{w}_{t}^{i} = w_{t-1}^{i} \frac{p(Y_{t} | x_{t}^{i})p(x_{t}^{i} | x_{t-1}^{i})}{q(x_{t} | x_{t-1}^{i}, Y_{t})}$, $w_{t}^{i} = \frac{\breve{w}_{t}^{i}}{\sum_{i} \breve{w}_{t}^{i}}$
 $\pi_{t}^{N}(x_{0:t} | Y_{1:t}) = \sum_{i} w_{t}^{i} \delta(x_{0:t} - x_{0:t}^{i})$
- Resample

N.Vaswani - Iowa State University

Solution 1: PF + MT for affine basis

N.Vaswani - Iowa State University

PF-MT: Main Idea [CVPR'05]

- Use a PF to track affine deformation and use an approx. Mode Tracker (MT) that computes mode of posterior of local deformation given the affine deformation
 - PF on large dim state spaces is expensive & inaccurate (for manageable *N*)

State Space Model

- State: $X_t = [C_t, A_t]$,
 - C_t = contour at t, A_t = affine deformⁿ b/w C_{t-1} & C_t
 - A_t : random walk motion model
 - $-\hat{C}_{t} = A_{t}(C_{t-1})$
 - $p(C_t | \hat{C}_t) \propto exp[-d^2(C_t, \hat{C}_t)/\Delta]$
- Observation: Y_t = image at t
 - OL: $p(Y_t|C_t) \propto exp [E(C_t, Y_t)]$
 - E = Chan-Vese energy + edge energy (Condensation)
 - Multimodal: clutter/occlusions/multiple objects

PF - MT (Exact)

- At *t*, for each particle *i*=1,2,...N
 - IS for A_t : $A_t^i \sim$ state transition pdf
 - Compute $\hat{C}_t^i = A_t^i (C_{t-1}^i)$
 - Compute the single mode of $p(C_t | \hat{C}_t^i, Y_t)$ $m_t^i = \arg \min_C [E(C) + d^2(C, \hat{C}_t^i) / \Delta]$
 - IS for C_t: $C_t^i \sim N(C; m_t^i, \Delta I)$
 - Compute IS weights & resample

$$w_t^i \propto \frac{exp[-E(C_t^i)]exp[-d^2(C_t^i, \hat{C}_t^i)]}{\mathcal{N}(C_t^i; m_t^i, \Delta I)}$$

N.Vaswani - Iowa State University

PF – MT: Approx. 1

- At *t*, for each particle *i*=1,2,...N
 - IS for A_t : $A_t^i \sim$ state transition pdf
 - Compute $\hat{C}_t^i = A_t^i (C_{t-1}^i)$
 - Compute the single mode of $p(C_t | \hat{C}_t^i, Y_t)$ $m_t^i = arg \min_C [E(C) + d^2(C, \hat{C}_t^i) / \Delta]$
 - IS for C_t: Deterministically set $C_t^i = m_t^i$
 - Compute IS weights & resample

$$w_t^i \propto \frac{exp[-E(C_t^i)]exp[-d^2(C_t^i, \hat{C}_t^i)]}{\mathcal{N}(C_t^i; m_t^i, \Delta I)}$$

Implicit Assumption [ICASSP'06]

• Non-affine deformation per frame "small" enough compared to distance b/w modes of OL at same affine location, to ensure unimodality of $p(C_t | \hat{C}_t, Y_t)$

$$egin{aligned} \mathcal{D}(C_t | \hat{C}_t, \mathsf{Y}_t) &\propto \mathcal{D}(\mathsf{Y}_t | C_t) \ \mathcal{D}(C_t | \hat{C}_t) \ &\propto \mathsf{exp} \ -[\ \mathcal{E}(C_t) + d^2(C_t, \hat{C}_t)/\Delta \] \end{aligned}$$

- Δ small enough, so that $E + d^2/\Delta$ has a single minimum on space of non-affine deformⁿ

N.Vaswani - Iowa State University

Ensuring Unimodality of $p(C_t | \hat{C}_t, Y_t)$

- $p(C_t | \hat{C}_t Y_t) \propto p(Y_t | C_t) p(C_t | \hat{C}_t)$ $\propto exp - [E(C_t) + d^2(C_t, \hat{C}_t)/\Delta]$
- $E + d^2/\Delta$ has a single minimum if
 - $-\hat{C}_t$ lies in a locally convex region of E

$$\Delta < \Delta^* = \min_{C \in A} \max_{p} \frac{|(\nabla_C D(C, \hat{C}_t))(p)|}{|(\nabla_C E(C))(p)|}$$

- $D = d^2$
- $A = \{C \in \mathbb{R}^c: \nabla D(p) : \nabla E(p) < 0, \forall p\}$
- $R = \{ \text{largest region of } Q \text{ containing } \hat{C}_t \& \text{ where } E \text{ is locally convex} \}, Q = \{ \hat{C}_t + \text{non-affine deformations} \}$

Approx. MT [ICASSP'06]

- Approximate: $m_t^i = \arg \min_C [E(C) + d^2(C, \hat{C}_t^i) / \Delta]$
- m_t^i satisfies $E(C_{min}) < E(m_t^i) < E(\hat{C}_t^i)$
 - C_{min} = minimizer of *E* in *R* (locally convex region of *E* containing \hat{C}_t^i)
 - Start from \hat{C}_t^i & perform Gradient Descent (GD) to minimize *E*: GD will go towards C_{min}
 - If GD iterations slow enough, will cross m_t^i at "some" iteration
- Approx. solution: starting with Cⁱ_t, run "some" iterations of GD to minimize E

A New PF Technique?

- Extends optimal IS [Doucet'98] for multimodal $p(X_t|X_{t-1}, Y_t)$ satisfying " $p(X_t|X_{t-1}, X_{t,s}, Y_t)$ is unimodal" assumption & for which Δ is small
- Fast PF technique for large dim states: sample only from a small dim subspace, MT for rest.

Validity of "Assumption"

- "Non-affine deformation per frame small compared to distance b/w modes of OL at same affine location" valid for
 - Distinct objects (separated by translation)
 - Concentric contours (separated by scale)
 - Low contrast & camera viewpoint changes (small non-affine deformation per frame)

Multiple fishes, partial occlusions + deformation (Modes separated by translation)

Plane Sequence taken from a UAV: Low contrast & Frequent viewpoint changes (Small non-affine deformation per frame)

Assumption Fails when

- 2 or more OL modes at same affine location & large deformation per frame
 - e.g. car sequence, medical image sequences
- Outlier observations (multiple modes of OL very close) & large deformation per frame
- Both cases: Contour attracted to wrong mode in MT step

Background clutter – light grey object (2 OL modes at same affine location) & Large non-affine deformation per frame

Outlier observations at every even frame (Multiple OL modes at same affine location) & Large non-affine deformation per frame

Solution 2: PF for sub-sampled local deformation + MT for rest

Background clutter (2 OL modes at same affine location) & Large non-affine deformation per frame

Outlier observations at every even frame (Multiple OL modes at same affine location) & Large non-affine deformation per frame

Car left of pole

Full car

N.Vaswani - Iowa State University

Weakening the Assumption

- Previous assumption fails when
 - Non-affine deformation separates modes of OL
 - Outlier observations
- But, if space of deformations is a separable Hilbert space, it has a countable orthogonal basis
 - There exists a K-dim subspace (K-dim basis) in which "most" of the deformation occurs
 - Can achieve any approx error, Δ , for "residual deformation" by choosing K large enough

Spatial Frequency Interpretation

- Contour length is finite and spatial frequency of contour deformation is approx band-limited, so that $K = L/(2f_{max})$ or a bit larger (in practice): Nyquist criterion
- Using a smaller K ⇔ low pass filtering (estimating a smoothed contour)
- Using a much larger $K \Leftrightarrow$ estimating noise

PF-MT-NonAffine: Main Idea

- Replace affine basis by a *K*-dim B-spline basis to parameterize contour deformation velocity, *K* can change with *t*
 - B-spline basis only for contour velocity:
 need a much smaller K than for contour
- Run a PF to track velocity at K control points (random walk model on velocity), run approx MT for rest, detect need to change K

State Dynamics

 τ = frame interval, N = normal, B_s = basis $v_{ts} \in R^{K}, \rho_{ts} \in R^{2}, C_{t}$ in a manifold of $R^{M_{t}}$ $v_{t,s} = v_{t-1,s} + w_n, \quad w_n \sim N(0, \Sigma \tau), \quad \rho_{t,s} = \rho_{t-1,s} + w_{n,\rho}$ $k = ceil (\tau / \tau_{CFL}), \tau_{CFL} = 1 / \max_{i} (v_{tsi})$ For $m = 1, 2, \dots, k : \hat{C}_{t-1} = C_{t-1}$ $\hat{C}_{t-1+\frac{m}{t}}(p) = \hat{C}_{t-1+\frac{m-1}{t}}(p) + \frac{\tau}{k}\vec{N}(p)[B_{s}(p)v_{t,s} + \vec{N}^{T}\rho_{t,s}]$ $p(C_t | \hat{C}_t) = (const) \exp[-\frac{d^2(C_t, C_t)}{\Lambda}]$

PF-MT-NonAffine Algorithm

- Importance Sample velocity at K control points
- Interpolate to get contour velocity, $v_{t,s}^{i}$
- Move C_{t-1}^{i} by $v_{t,s}^{i}$ to get \hat{C}_{t}^{i}
 - Move slowly enough to satisfy CFL condition: multiple level set evolution iterations for one $v_{t,s}^{i}$
- Approx. MT for "rest of deformation": $C_t^i = m_t^i$
- Weight & Resample
- Detect if K-dim basis suffices, else increase K

Deformation due to partial occlusions

Full car

Car left of pole

N.Vaswani - Iowa State University

Advantages over PF-MT-Affine

- "Rest of deformation": much smaller, lesser GD iterations needed even for large non-affine deformations
- Handles two OL modes at "similar" affine "location"
- Back in track easily after outliers: able to return to correct mode

Ongoing Work

Brain MRI: Tracking the right ventricle

Brain MRI: Tracking the tumor

Choosing K: Ongoing Work

Choose K large enough s.t. expected residual deformation, Δ_K, small enough to ensure unimodality of p(C_t|Ĉ_t, Y_t), i.e. Δ_K<Δ*

Problem: *∆** also depends on *K*, so run an iterative procedure to find *K*

Choosing K: Ongoing Work

- Given a training sequence of contours
 - Learn a K_0 -dim approx to deformation, $v_{t,s}$, $\forall t$
 - Learn Δ_{K_0} = expected residual deformation
 - Using Y_t , compute Δ_{t,K_0}^* at each t
 - $\operatorname{If} \Delta_{K_0} > \min_t \Delta_{t,K_0}^*, \operatorname{set} \varepsilon = \min_t \Delta_{t,K_0}^*$
 - Find $K > K_0$ large enough so that $\Delta_K < \varepsilon : K$ exists because of countable orthogonal basis assumption

-
$$\Delta_{t,K}^*$$
 non-decreasing with K: $\Delta_{t,K}^* \geq \Delta_{t,K_0}^* \geq \Delta_K$

Basis Change: Ongoing Work

- Assuming *K* is piecewise constant with time
- Change K when L changes or f_{max} changes

 Require methods to detect this & estimate new K
- Non-uniformly allocate control points based on prior information: space varying f_{max}
- Issues related to stability of PF algorithm when delay or errors in estimating new basis

Future Work

- Basis to parameterize velocity w.r.t. contour arclength or w.r.t. x-y location?
 - Parametrizing velocity w.r.t x-y locations handles topology change, but velocities may not satisfy comparison principle
- Basis change detection & estimation
- Proving that Δ_{K}^{*} is non-decreasing in K
- Choosing an orthogonal basis?