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ABSTRACT

We have proposed a novel model-based compression techniquefor
nonstationary landmark shape data extracted from video sequences.
The main goal is to develop a technique for the compact storage of
landmark shape data. We use Nonstationary Shape Activity (NSSA)
to model the shape sequences. The shape data is encoded by ap-
plying Differential Pulse Code Modulation (DPCM) on the shape
velocity coefficients under the NSSA model. We have studied the
system performance in terms of compressibility-distortion trade off.
NSSA based compression technique has been compared with two
other methods based on existing shape modeling techniques namely,
Stationary Shape Activity (SSA) and Active Shape Model (ASM).
We tested our system with landmark shape data extracted frommul-
tiple video sequences of the CMU mocap database. It was found
that NSSA outperforms both SSA and ASM in terms of compress-
ibility for a given distortion tolerance. Thus NSSA based compres-
sion technique could be very useful in the applications likestorage
of large volumes of biomedical landmarks’ data.

1. INTRODUCTION

The goal of our work is to develop a model-based compression tech-
nique for landmark shapes (ordered configuration of featurepoints
of interest). An example of a such shape sequence has been shown
in Fig. 1. There are multiple applications where key landmarks of
interest are extracted either manually(e.g. by doctors/radiologists in
medical imaging applications) or using marker based motioncapture
technologies(e.g. these are used for human joint motion understand-
ing for biomechanics applications). An example is, the CMU motion
capture database ([1], http://mocap.cs.cmu.edu). Now, the question
is: Can we model the correlation between temporal landmark shape
sequences and use the model for efficient lossy-compressionto ef-
ficiently reduce the amount of data to be stored? If we can, then it
would be a very efficient way of storing large volumes of biomedical
landmarks’ data. Related work addressing similar questions is [2].

There are quite a few shape models being recently used in the
shape modeling literature. Stationary Shape Activity(SSA) [3] as-
sumes a constant mean shape over time and tries to model the shape
variations w.r.t a tangent space defined at the mean shape. Active
Shape Models(ASM) [4] also assumes a fixed mean shape and mod-
els the deviations from the mean shape. Non-stationary Shape Activ-
ity(NSSA) [5], however, does not require a constant mean shape and
and it models the shape sequences assuming as if the mean shape is
changing at each time instant. We use this non-stationary model for
shape data compression (details in Sec. 2).

In recent years, there has been a significant amount of work on
model based video and shape compression. Quite a few of them are
in the field of biomedical imaging [2, 6, 7]. For the shape coding
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in object-based video sequence, [8] uses a context based arithmetic
coding of 2D shape sequences. A low bit-rate video compression
technique utilizing compact encoding of motion fields has been pro-
posed in [9]. A lossless and near-lossless compression scheme for
4D volume biomedical image sequences has been proposed in [2].

Paper Organization: We explain the NSSA model and the cor-
responding shape compression techniques in Sec. 2 and Sec. 3
respectively. Performance evaluations are discussed in Sec. 4 and
experimental results are shown in Sec. 5.

2. MODELING SHAPE SEQUENCES

The shape at each time instant is described by an ordered set of k
landmark locations. The landmarks arepoints of interest for describ-
ing the shape of an object. An example has been shown in Fig. 1.

The configuration of the set of landmark locations, denotedst

(at time t) is represented as a complex vector (x locations +j y
locations) wherej =

√−1. As explained in [10], we first perform
translation normalization onst to get the centered shape,yt, i.e.
yt = Ckst whereCk is,

Ck = Ik − 1k1T
k /k (1)

Here,Ik is ak× k identity matrix and1k is a column vector with
k rows with all entries as1. Then we scale normalizeyt to generate
the corresponding pre-shapewt as,wt = yt

||yt||
. We define the initial

shape asz0 = w0. For t ≥ 1, we define the rotation alignment of
current pre-shapewt w.r.t the previous shapezt−1 as,

[zt, θt] = align(wt, zt−1) (2)

Where, the aligned shape is given as,zt = wt
w∗

t zt−1

|w∗

t zt−1|
and the align-

ment angle is given as,θt = angle(w∗
t zt−1). Here(.)∗ denotes

conjugate transpose. If the shape variation over a sequenceis small,
one can compute a single Procrustes mean shape [10],µ, for the en-
tire sequence, project all thezt’s into the tangent space atµ, denoted
Tµ, and define an autoregressive (AR) model on the tangent space
projections, denotedvt(µ). vt is obtained as follows [10],

vt(µ) = [I − µµ∗]zt (3)

The inverse map (projection from tangent space to shape space)
is given by [10],

zt = (1 − v∗
t vt)

1

2 µ + vt (4)

SSA [3] used the above and then defined an AR or ARMA model
onvt. ASM (or PDM)[4] assumed both stationarity and the fact that
zt belongs to a Euclidean space and computedvt = zt−µ. Statistics
of vt were modeled.
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Fig. 1. Fig. 1(a) and Fig. 1(b) shows original and reconstructed landmark shapes over two frames of a video sequence of motion activity
“Run”. Fig. 1(c) shows landmarks corresponding to a video sequence. Fig. 1(d) shows the histogram corresponding to one of the scalar
dimension of̃nt

2.1. Nonstationary Shape Activity(NSSA) model

In non-stationary shape activities, the mean shape can be time vary-
ing. We useµt = zt−1, i.e. we use the shape att − 1 as the pole
for the current tangent space projections. Hence, modelingthe shape
deformation dynamics requires a tangent space to be defined w.r.t the
current shape. Thus the tangent space coordinatevt w.r.t zt−1 can
be termed as theShape Velocity at time instantt.

The shape velocity,vt has onlyk − 2 independent complex di-
mensions [5], i.e. it can be rewritten asvt = Utc

complex
t where

(Ut)k×k−2 contains thek−2 orthonormal basis directions spanning
Tzt−1

andccomplex
t ∈ Ck−2 are the basis coefficients.ccomplex

t may
be interpreted as a “shape speed” vector.

For computing successiveUt’s we have used the technique pro-
posed in [11], which fixes a major error in [5]. To obtain an aligned
sequence of basis directions over time, we obtain each column of
Ut by starting with the corresponding column ofUt−1, making it
perpendicular tozt−1 and applying a Gram-Schmidt orthogonaliza-
tion procedure on the resulting set of vectors. This procedure can be
summarized as follows,

Ut = g(Uold, zold), where

g(.)m , [I − zoldz
∗
old −

m−1∑

j=1

g(.)jg(.)∗j ]Uold,m,∀ m (5)

Here,g(.)m denotes themth column ofg(Uold, zold). Since the
columns ofUt are aligned, it is fair to assume thatccomplex

t,j ’s are
identically distributed. Since they are also correlated, we model
them by an AR model. For simplicity of notation, we first convert
ccomplex
t into a2k − 4 dimensional real vector. We denote this op-

eration by,

creal
t = vec(ccomplex

t ) (6)

and the inverse operation (obtaining the complex vector) isdenoted
by ccomplex

t = vec−1(creal
t ). We perform Principal Component

Analysis(PCA) on{creal
t } and retain onlyMpca number of most

significant eigen directions. The corresponding(2k−4)×Mpca di-
mensional basis vector is denoted by,Upca. Now, the representation
of creal

t in the PCA space is given as,

ct = U∗
pcacreal

t (7)

We model{ct} using an Auto-Regressive (AR) model. Thus the

NSSA model can be summarized as:

ct = Act−1 + nt, nt ∼ N (0, Q)

creal
t = Upcact

Ut = g(Ut−1, zt−1)

zt = (1 − creal
t

T
creal
t )1/2zt−1 + Utvec−1(ct

real)

(8)

with,
z0 = zinit, U0 = basis(Ck), c0 = 0 (9)

Starting with{wt} the computation ofct andθt can be summarized
as:

1. Set zinit = z0 = w0. Compute, [zt, θt] =
align(wt, zt−1) ∀t > 0

2. Begin with computingU0 = basis(Ck) by performing Singu-
lar Value Decomposition(SVD) on[Ik − z0z

∗
0 ]Ck. Then,

Ut = g(Ut−1, zt−1)

ccomplex
t = U∗

t zt

creal
t = vec(ccomplex

t ) (10)

3. Perform PCA on{creal
t } and computeUpca. Then, ct =

U∗
pcacreal

t

The AR model parameter A and Q can be computed from{ct} using
Yule-Walker equation. These parameters are used while encoding
{ct} to perform compression on the shape data.

3. NSSA MODEL-BASED COMPRESSION

We assume that translation and global scale are unimportantand
need not be stored. We are only interested in storing the global rota-
tion and the shape change. Rotation is also not needed if it isdue to
camera motion, but some part of it may be due to actual rotation of
the landmark configuration.Thus our goal is to take the preshape se-
quence {wt} and compress it so as to achieve the minimum possible
shape distortion for a given bit budget.

We began by first computing the differential entropy of the three
possible models: NSSA, SSA and ASM, with model parameters
learnt from the data. If the model assumptions are correct, the dif-
ferential entropy is proportional to the entropy of the quantized data
for small enough quantization size [12]. We realized that a measure
of the average differential entropy of NSSA was of the order of -
250, which is much smaller than that of SSA(-200) or ASM(-195)
[11]. This gives a preliminary indication that NSSA will indeed be



Algorithm 1 Landmark Shape Data Compression/Decompression

Required Inputs: The pre-shape sequence{wt}, A, Upca at the transmitter side (compression) and{ñt}, {θ̃t}, Upca, zinit, A at the receiver
side (decompression).

Initialize: z̃0 = w0 = winit, Ũ0 = basis(Ck), c̃0 = c0 = 0. Computation ofbasis(Ck) is performed as mentioned in Sec. 2.1.

For t > 0,

(a) [zt, θt] = align(wt, z̃t−1). Use the equation (2) for this step.

(b) Ũt = g(Ũt−1, z̃t−1). Use equation (5) for this step.

(c) Computect = U∗
pca[vec(Ũ∗

t zt)]

(d) Computent = ct − Ac̃t−1

(e) Quantizẽnt = Quantize(nt), θ̃t = Quantize(θt). Transmit[ñt, θ̃t]

Decompressor (Implemented at eacht at the TX end) :

(f) Computec̃t = Ac̃t−1 + ñt

(g) ComputeŨt = g(Ũt−1, z̃t−1)

(g) Computẽvt = Ũtvec−1(Upcac̃t), z̃t = (1 − ṽ∗
t ṽt)

1

2 z̃t−1 + ṽt

(h) Computew̃t = z̃te
−jθ̃t , w̃RX

t = w̃t

end
Find pk(α) =

N(ñt,k=α)

Nframes
, the PMF corresponding to thekth dimension of{ñt} for the alphabetsα’s. A Huffman table can thus be

constructed for each scalar dimension. Entropy rate per scalar dimension is given as,Hk =
∑

α pk(α) log2(
1

pk(α)
).

a better model (if model assumptions are valid). Since a large part
of the global rotation,θt, is often due to camera motion and hence
independent of shape dynamics, we compress it separately from the
shape sequence,zt. Consider the NSSA model described in (refer
to eq (8)). The AR model prediction error,nt, is assumed to be in-
dependent and identically distributed (iid) gaussian overtime. We
show in Fig. 1(d) that this assumption is a valid one for our datasets.
Hence we propose to compute the sequence,{nt}, from the shape
sequence,{zt}, quantize it and store/transmit the Huffman coded
version of quantizednt.

Now, if the above quantization is done in an open-loop fashion -
first compute the{nt} sequence and then quantize it, the reconstruc-
tion error at the decompression/receiver end will increaseover time.
This is because the quantization error innt will result in error in the
estimate ofct and hence ofzt, which in turn will propagate to the
next time step - the error inzt+1 will be both due to error innt+1

and due to the effect of errors in all pastnt’s. This is a standard
problem in all model-based compression schemes.

We use a standard solution to the above standard problem - we
adopt a two-level Differential Pulse Coded Modulation (DPCM)
scheme. Thus our encoding scheme involves implementing there-
ceiver at the compression end itself before computing the next nt,
i.e. at eacht:

1. Use the quantized version ofnt, denoted̃nt, to computec̃t =
Ac̃t−1 + ñt

2. Compute the reconstructed shapez̃t using (4)

3. ComputeŨt+1 which is the projection matrix for the tangent
space perpendicular tõzt (and close toŨt−1) using Gram-
Schmidt given in (5).

4. Computect+1 = Ũ∗
t+1zt+1 andnt+1 = ct+1−Ac̃t and quan-

tize it.

The complete stepwise algorithm is summarized in Algorithm1.

We use simple quantization to encode the rotation angle sequence,
θt, although if a Markov model were assumed onθt then DPCM
could be used there as well. We experimented with both approaches,
with negligible difference in performance.

4. PERFORMANCE EVALUATION AND COMPARISON

To compare the performance of NSSA-based DPCM, we applied an
exactly analogous scheme to the SSA model and to the ASM model.
We varied the number of quantization bits per unit time per scalar
dimension from 4 to 10 and plotted the mean squared distortion of
the preshape against the Huffman-encoded bit rate (R-D plot) per
unit time. The Huffman-coded bit rate will always be within one bit
of the entropy rate [12] defined by,

H(b) =

Mpca∑

k=1

Hb(ñt,k) + Hb(θ) (11)

Where,Hb(ñt,k) is the entropy rate for thekth dimension ofñt,
given the word-lengthb. Mpca is the dimensionality ofnt and
Hb(θ) is the corresponding entropy rate forθ̃t. Hb(ñt,k) is com-
puted as,

Hb(ñt,k) =
∑

α

pk(α) log2(
1

pk(α)
) (12)

Where,pk(α) =
N(ñt,k=α)

Nframes
, the PMF corresponding to thekth

dimension of{ñt} for the alphabetsα’s.
The mean squared distortion is defined as,

D =
1

Ntime

Ntime∑

t=1

||wt − w̃RX
t ||2 (13)

Where,wt is the original preshape at the transmitter andw̃RX
t is the

reconstructed preshape at time instantt. We compute the distortion
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(a) RD plot for NSSA
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(b) RD plot for SSA
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(c) RD plot for ASM
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(d) Performance comparison

Fig. 2. RD plots for compression techniques based on various methods. Fig. 2(d) shows comparison of NSSA,SSA and ASM with log scale
on distortion. It is to be noted that the y-axis of the 2(a),2(b) and 2(c) are all in linear scale. Due to order of magnitude differences, they are
plotted in separate figures. Distortion for NSSA is of the order of10−4 whereas distortions corresponding to SSA and ASM are of the orders
of 10−3 and10−2 respectively. The y-axis of the combined plot (i.e. 2(d)) isin log-scale. Note: The bits required for coding the AR model
parameters andzinit or µ are not considered in the plots as they are common to all the three methods.

per unit time and entropy rate (or Huffman-coded bit rate) for each
video sequence and plot their average values over all sequences (a
total of 80). The results are shown in Fig. 2.

Note that, in all schemes (NSSA, SSA, ASM), one also needs to
accurately quantize and store the Huffman table, the AR matrix, A,
the initial shapezinit (or the mean shapeµ in case of SSA or ASM).
These will require the same number of bits for all methods andhence
are not compared. Also, this will be a one-time cost and its effect on
the total number of bits will become negligible as the lengthof the
sequence increases.

5. EXPERIMENTAL RESULTS

We studied the compression performance of our system over mul-
tiple video sequences. In the encoding process, we tried seven dif-
ferent quantization word-length ranging from 4 to 10 bits. For each
word-length, we computed average entropy rate per frame andthe
average distortion over all the video sequences. Thus we gotthe
rate-distortion(R-D) plot of the system. The RD plot characterized
the system performance in terms of trade-off between distortion tol-
erance and compressibility. Lower is the entropy rate(i.e.higher the
compressibility), higher is the distortion in the reconstructed shape
sequences. We compare the compression performance of NSSA,
SSA, and ASM using their corresponding RD curves. The plots
are shown in Fig. 2. It can be clearly seen that the performance
of NSSA based compression technique is better than that SSA and
ASM. NSSA gave much lower distortion for a given compressibility.
For similar entropy rates, the NSSA based method gave a distortion
of the order of10−4, while distortions corresponding to SSA and
ASM were of the order of10−3 and10−2 respectively.

Another measure of the system performance for a specific word-
length can be given by peak signal-to-noise ratio(PSNR). Where,

PSNR(b) = 10 log10(
||wt||2

Davg(b)
) = 10 log10(

1

Davg(b)
) (14)

Since||wt|| = 1 by definition. PSNR values forb = 4 are 30 dB for
NSSA, 23.5 dB for SSA and 17.2 dB for ASM respectively.

6. CONCLUSION

In this paper, we have proposed an efficient compression technique
for landmark shape data extracted from video sequences. It is found
that NSSA based compression technique outperforms SSA and ASM
based techniques in terms of Compressibility-Distortion trade off.
NSSA defines a second order Markov model on shape data while

SSA and ASM define a first order model and that is clearly one rea-
son for its superior performance. But note that the reason itis not
possible to define a valid second order Markov model in the SSA[3]
or ASM [4] framework is because they assume a single mean shape
and define dynamics in the tangent space w.r.t. this mean shape.
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