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ABSTRACT in object-based video sequence, [8] uses a context basbdatic

h d | model-based . Hiai coding of 2D shape sequences. A low bit-rate video compyassi
We have proposed a novel model-based compression techitique o hnique utilizing compact encoding of motion fields hasrbero-

nonstatilonary Igndmark shape data gxtracted from videoesegs. posed in [9]. A lossless and near-lossless compressionmecher
The main goal is to develop a technique for the compact 60689 41 yolyme biomedical image sequences has been proposeld in [2

landmark shape data. We use Nonstationary Shape ActivBs@) o . ]
to model the shape sequences. The shape data is encoded by %)_Paper Organization: We explain the NSSA model and the cor

plying Differential Pulse Code Modulation (DPCM) on the pha spondmg shape compression tephmques n Sec. 2 and Sec. 3
velocity coefficients under the NSSA model. We have studied t respef:tlvely. Performance evalgatlons are discusseddn Send

. S ; experimental results are shown in Sec. 5.
system performance in terms of compressibility-distorti@de off.
NSSA based compression technique has been compared with two
other methods based on existing shape modeling technigumesly
Stationary Shape Activity (SSA) and Active Shape Model (ASM
We tested our system with landmark shape data extractedrfroin ~ The shape at each time instant is described by an ordered &et o
tiple video sequences of the CMU mocap database. It was foun@ndmark locations. The landmarks @aénts of interest for describ-
that NSSA outperforms both SSA and ASM in terms of compressing the shape of an object. An example has been shown in Fig. 1.

2. MODELING SHAPE SEQUENCES

ibility for a given distortion tolerance. Thus NSSA basednpoes-
sion technique could be very useful in the applications $itarage
of large volumes of biomedical landmarks’ data.

1. INTRODUCTION

The goal of our work is to develop a model-based compressitimn t
nigue for landmark shapes (ordered configuration of fegtorats

The configuration of the set of landmark locations, denated
(at time t) is represented as a complex vector (x locationg y
locations) wherg = /—1. As explained in [10], we first perform
translation normalization on; to get the centered shapg,, i.e.

yr = Crst whereCy is,
Cr = I — 11§ [k @)

Here,I} is ak x k identity matrix andly, is a column vector with

of interest). An example of a such shape sequence has been shok "ows with all entries as. Then we scale normalizg to generate

in Fig. 1. There are multiple applications where key landmanf
interest are extracted either manually(e.g. by doctat&lagists in
medical imaging applications) or using marker based matapiure
technologies(e.g. these are used for human joint motioenstehd-
ing for biomechanics applications). An example is, the CMation
capture database ([1], http://mocap.cs.cmu.edu). Navgttestion
is: Can we model the correlation between temporal landmzake
sequences and use the model for efficient lossy-compretsief
ficiently reduce the amount of data to be stored? If we cam ithe
would be a very efficient way of storing large volumes of bialicel
landmarks’ data. Related work addressing similar questi®f?].

the corresponding pre-shape as,w: = m We define the initial
shape agy = wo. Fort > 1, we define the rotation alignment of
current pre-shape: w.r.t the previous shapa_; as,

[2¢, 0] = align(wy, z¢—1)

)

oo
Wy Zg—1

Where, the aligned shape is given as= w: ey and the align-
T

ment angle is given a®; = angle(w;z:—1). Here(.)* denotes

conjugate transpose. If the shape variation over a sequescaall,

one can compute a single Procrustes mean shape/[1f2); the en-

There are quite a few shape models being recently used in tHé€ sequence, project all the's into the tangent space at denoted

shape modeling literature. Stationary Shape Activity(PE) as-

T,, and define an autoregressive (AR) model on the tangent space

sumes a constant mean shape over time and tries to modelape sh Projections, denoted; (). v is obtained as follows [10],

variations w.r.t a tangent space defined at the mean shapée Ac
Shape Models(ASM) [4] also assumes a fixed mean shape and mod-

els the deviations from the mean shape. Non-stationaryeShetiv/-
ity(NSSA) [5], however, does not require a constant meapehad

ve(p) = [ — ppze ©)

The inverse map (projection from tangent space to shapespac

and it models the shape sequences assuming as if the meanishap;g given by [10],

changing at each time instant. We use this non-stationadehfor
shape data compression (details in Sec. 2).

2= (1— )2+ v (4)

In recent years, there has been a significant amount of work on
model based video and shape compression. Quite a few of tteem a  SSA [3] used the above and then defined an AR or ARMA model

in the field of biomedical imaging [2, 6, 7]. For the shape ogdi
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onv:. ASM (or PDM)[4] assumed both stationarity and the fact that
z¢ belongs to a Euclidean space and computeg z; — u. Statistics
of v, were modeled.
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Fig. 1. Fig. 1(a) and Fig. 1(b) shows original and reconstructeddaark shapes over two frames of a video sequence of motiasityac
“Run”. Fig. 1(c) shows landmarks corresponding to a videgusace. Fig. 1(d) shows the histogram corresponding to btteecscalar
dimension off;

2.1. Nonstationary Shape Activity(NSSA) modéel NSSA model can be summarized as:
In non-stationary shape activities, the mean shape camigevery- ¢t = Aci—1+n:, ne ~N(0,Q)
ing. We useu; = z:—1, i.e. we use the shape @t 1 as the pole creat = UpcaCt
for the current tangent space projections. Hence, modtimghape U = gUi1,21)
deformation dynamics requires a tangent space to be defin¢the t = 9 tT !
current shape. Thus the tangent space coordinater.t z;_; can 2 = (1= e HY 2 1 4+ Uwee ' (e,™*™)
be termed as th&hape Velocity at time instant. ®)
The shape velocityy; has onlyk — 2 independent complex di-
H H _ complex W|th,
mensions [5], i.e. it can be rewritten as = U.c} where 20 = zimsts Uo = basis(Cy), co = 0 ©)

(Ut)kxk—2 contains the: — 2 orthonormal basis directions spanning

T.,_, andc;°"?'** € ¥~ are the basis coefficients;”"”'** may  Starting with{w, } the computation of; andf; can be summarized
be interpreted as a “shape speed” vector. as:

For computing successivé:'s we have used the technique pro- 1 Set 2, = 2 = wo. Compute, [z;,0:] =
posed in [11], which fixes a major error in [5]. To obtain argakd align(we, z—1) V>0

sequence of basis directions over time, we obtain each eohfm
U: by starting with the corresponding column Gf_, making it
perpendicular ta.—1 and applying a Gram-Schmidt orthogonaliza-
tion proqedure on the resulting set of vectors. This promedan be Ui = g(Ui-1, 2e-1)
summarized as follows,

2. Begin with computind/y = basis(Cy) by performing Singu-
lar Value Decomposition(SVD) off, — 2z025]Ck. Then,

complex *
i’ = Ul

Us = gUold, 201a), where it = vee(comPeT) (10)
m—1
9 )m 2 (I = zotazig — Z 9(.);9()i)0ota,m,¥m  (5) 3. Perform PCA on{c;*"'} and computel/,.,. Then,c¢; =
* real
j=1 pcat

The AR model parameter A and Q can be computed ffoph using
Yule-Walker equation. These parameters are used whiledamgo
{c:} to perform compression on the shape data.

Here,g(.) denotes then!™ column 0ofg(Uoid, zo14)- Since the

columns ofU; are aligned, it is fair to assume th@’f’m”l”’s are
identically distributed. Since they are also correlatee model

them b
comple:)vl _an AR model. . For S.ImphClty of notation, we first CC_J“VG 3. NSSA MODEL-BASED COMPRESSION
cy into a2k — 4 dimensional real vector. We denote this op-
eration by, We assume that translation and global scale are unimpoafaoht

need not be stored. We are only interested in storing theagtoba-
tion and the shape change. Rotation is also not needed iflitaso
camera motion, but some part of it may be due to actual retatio
and the inverse operation (obtaining the complex vectadeisoted  the landmark configuratiorThus our goal isto take the preshape se-
by ¢f°"PT = pec ! (cfe). We perform Principal Component quence {w; } and compressit so as to achieve the minimum possible
AnaIyS|s(PCA) on{c;**'} and retain onlyM,., number of most shape distortion for a given bit budget.

c:eal _ vec(ccomplex) (6)

significant eigen directions. The correspond{@g — 4) x M., di- We began by first computing the differential entropy of the¢h
mensional basis vector is denoted by,... Now, the representation possible models: NSSA, SSA and ASM, with model parameters
of ¢f°*" in the PCA space is given as, learnt from the data. If the model assumptions are corrbetgdtf-

ferential entropy is proportional to the entropy of the dimed data
for small enough quantization size [12]. We realized thateasare
of the average differential entropy of NSSA was of the order o
250, which is much smaller than that of SSA(-200) or ASM()195
We model{c;} using an Auto-Regressive (AR) model. Thus the[11]. This gives a preliminary indication that NSSA will iedd be

¢t = Upeai ! @)



Algorithm 1 Landmark Shape Data Compression/Decompression

Required Inputs: The pre-shape sequenge; }, A, U, at the transmitter side (compression) dad}, {0+ }, Upca, zinit, A at the receiver

side (decompression).

Initialize: Zo = wo = winst, Up = basis(Cy), o = co = 0. Computation obasis(C}) is performed as mentioned in Sec. 2.1.

For t > 0,
(@) [zt,0:] = align(w, Z:—1). Use the equation (2) for this step.
(b) U: = g(Us_1, %_1). Use equation (5) for this step.
(c) Computer; = Uy, [vec(U; 2¢)]
(d) Computen:
(e) Quantizen:

= Ct — Aﬁtfl

Decompressor (Implemented at eddt the TX end) :
() Computec; = Aér—1 + 7t
(9) Computel; = g(Us—1,%:-1)
U,gvec*l(Upcaé,g)7

(g) Computeii; = = (1 3{0) 251 + 0

(h) Computei; = e, = 0

end

Wy

Quantize(nt), 0, = Quantize(6;). Transmit[fi, ét]

Find px (o) = W the PMF corresponding to thé" dimension of{#;} for the alphabets’s. A Huffman table can thus be

rames

constructed for each scalar dimension. Entropy rate péairsganension is given ag/x = Y, pr(a) logQ(m).

a better model (if model assumptions are valid). Since elaayt

We use simple quantization to encode the rotation anglessegy

of the global rotationg,, is often due to camera motion and hence 6,, although if a Markov model were assumed @&ynthen DPCM

independent of shape dynamics, we compress it separavefytfre

could be used there as well. We experimented with both appesa

shape sequence;. Consider the NSSA model described in (refer with negligible difference in performance.

to eq (8)). The AR model prediction error;, is assumed to be in-
dependent and identically distributed (iid) gaussian dirae. We
show in Fig. 1(d) that this assumption is a valid one for ouasets.

4. PERFORMANCE EVALUATION AND COMPARISON

Hence we propose to compute the sequeiieg}, from the shape To compare the performance of NSSA-based DPCM, we applied an
sequence{z:}, quantize it and store/transmit the Huffman codedexactly analogous scheme to the SSA model and to the ASM model
version of quantizea,. We varied the number of quantization bits per unit time pedasc

Now, if the above quantization is done in an open-loop fashio dimension from 4 to 10 and plotted the mean squared distodio
first compute thgn, } sequence and then quantize it, the reconstructhe preshape against the Huffman-encoded bit rate (R-D) péat

tion error at the decompression/receiver end will increass time.
This is because the quantization erroninwill result in error in the
estimate ofc; and hence ot:, which in turn will propagate to the
next time step - the error in.1 will be both due to error im41
and due to the effect of errors in all past's. This is a standard
problem in all model-based compression schemes.

We use a standard solution to the above standard problem
adopt a two-level Differential Pulse Coded Modulation (DWC
scheme. Thus our encoding scheme involves implementingethe
ceiver at the compression end itself before computing thx mg
i.e. at each:

1. Use the quantized version of, denotedn., to computes; =
A1+ Tt

2. Compute the reconstructed shapeising (4)

3. Computel;; which is the projection matrix for the tangent
space perpendicular t& (and close tolU:—1) using Gram-
Schmidt given in (5).

4. Compute:;1 = Uy 12¢+1 andng1 = ¢+1 — A& and quan-
tize it.

The complete stepwise algorithm is summarized in Algorithm

unit time. The Huffman-coded bit rate will always be withineobit
of the entropy rate [12] defined by,
Mpea
H(b) = Y Hy(fir,k) + Hy(6)
k=1

1y

) V\)é/here,H;,(ﬁt,k) is the entropy rate for th&!" dimension offi,

given the word-lengttb. M., is the dimensionality of.; and
H,,(9) is the corresponding entropy rate féy. Hy(7:,) is com-
puted as,

1

pr(a)

Hy(fie) = ) pr(@) logy( ) (12)

Where, py () I\;f,;”i’“:“) the PMF corresponding to the”

dimension of{7, } for the alphabets’s.
The mean squared distortion is defined as,

1 Niime

> e — @™
Ntime =1

Where,w; is the original preshape at the transmitter anféf* is the
reconstructed preshape at time instaniVe compute the distortion

D= (13)
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(a) RD plot for NSSA (b) RD plot for SSA (c) RD plot for ASM (d) Performance comparison

Fig. 2. RD plots for compression techniques based on various mdstheg. 2(d) shows comparison of NSSA,SSA and ASM with laglesc
on distortion. It is to be noted that the y-axis of the 2(d))2(nd 2(c) are all in linear scale. Due to order of magnituifferences, they are
plotted in separate figures. Distortion for NSSA is of thesprof 10~%  whereas distortions corresponding to SSA and ASM are oftithers

of 107® and10~? respectively. The y-axis of the combined plot (i.e. 2(d)nitog-scale. Note: The bits required for coding the AR model
parameters ang,;; or o are not considered in the plots as they are common to all tee thethods.

per unit time and entropy rate (or Huffman-coded bit rate)dfach ~ SSA and ASM define a first order model and that is clearly one rea

video sequence and plot their average values over all segegn  son for its superior performance. But note that the reas@nribt

total of 80). The results are shown in Fig. 2. possible to define a valid second order Markov model in the BFA
Note that, in all schemes (NSSA, SSA, ASM), one also needs tor ASM [4] framework is because they assume a single meareshap

accurately quantize and store the Huffman table, the ARirmat, and define dynamics in the tangent space w.r.t. this meareshap

the initial shapez;..: (or the mean shapein case of SSA or ASM).

These will require the same number of bits for all methodsterdte 7. REFERENCES
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