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ABSTRACT

In this work, we study the “stability” of Regularized modi-
fied CS(noisy) for recursive reconstruction of sparse signal se-
quences from noisy measurements. By “stability” we mean that
the number of misses from the current support estimate; the
number of extras in it; and the ℓ2 norm of the reconstruction er-
ror remain bounded by a time-invariant value at all times. The
concept is meaningful only if the support error bounds are small
compared to the signal support size.
Regularized modified CS(noisy) is the noisy relaxation of reg-
ularized modified CS. The key assumption that reg-mod-CSN
uses is that both the sparse signal’s support and its nonzero sig-
nal values change slowly over time. Denote the support esti-
mate from the previous time by T . Modified-CS tries to find
a signal that is sparsest outside of T and satisfies the data con-
straint. Denote the signal estimate from the previous time by
µT . Reg-mod-CSN augments mod-CS by also putting the ℓ2
distance of the current solution from µT as a constraint.

Index Terms— CS, mod-BPDN, reg-mod-CSN

1. INTRODUCTION

In this work, we study the “stability” of Regularized modi-
fied CS(noisy) for recursive reconstruction of sparse signal se-
quences from noisy measurements. By “stability” we mean that
the number of misses from the current support estimate; the
number of extras in it; and the ℓ2 norm of the reconstruction er-
ror remain bounded by a time-invariant value at all times. The
concept is meaningful only if the support error bounds are small
compared to the signal support size.
Regularized modified CS(noisy)(reg-mod-CSN) is the noisy re-
laxation of regularized modified CS (reg-mod-cs) proposed in
[1]. The key assumption that reg-mod-CSN uses is that both
the sparse signal’s support and its nonzero signal values change
slowly over time. This assumption has been empirically veri-
fied in earlier work [2] for medical image sequences. Denote
the support estimate from the previous time by T . Modified-
CS(mod-CS) [3] tries to find a signal that is sparsest outside of
T and satisfies the data constraint. Denote the signal estimate
from the previous time by µT . Reg-mod-CSN tries to find a
signal that is sparsest outside of T ; is “close” enough to µT on
T ; and satisfies the data constraint.
Other algorithms for recursive reconstruction include our older
work on Least Squares CS-residual (LS-CS) and Kalman fil-
tered CS-residual (KF-CS) [4, 5, 6]; modified-CS [1]; homo-

topy methods [7] (use past reconstructions to speed up cur-
rent optimization but not to improve reconstruction error with
fewer measurements); and [8] (a recent modification of KF-
CS). Another recent work on CS for time-varying signals [9]
proposed a series of causal but batch approaches that assume a
time-invariant support. Two other algorithms that are also de-
signed for static CS with partial knowledge of support include
[10] and [11]. The work of [10] proposed an approach simi-
lar to modified-CS but did not analyze it and also did not show
real experiments either. The work of [11], which appeared in
parallel with modified-CS, assumed a probabilistic prior on the
support.
To the best of our knowledge, stability of recursive sparse re-
construction algorithms has not been studied in any other work
except in our older works [6, 3] for LS-CS and modified-CS
respectively. The limitation of the result of [6] was that it as-
sumed a signal model where support changes are only allowed
every-so-often. But this assumption often does not hold in prac-
tice, e.g. for dynamic MRI sequences, support changes occur at
every time. This limitation was removed in [3] where we used a
signal model that allows support changes at every time t. In this
work, we use the same signal model and our overall approach is
also motivated by that of [3] for modified-CS. But there are sig-
nificant differences since for reg-mod-CSN, the current recon-
struction also depends on the previously reconstructed signal
values (not just its support estimate), which makes its stability
analysis more difficult.
The paper is organized as follows. We begin by giving notation
and problem definition in Section 2. In Section 3, Regularized
Modified CSN is developed and we obtain the reconstruction
error bound under certain conditions. In Section 4 we give the
stepwise algorithm which implements the Regularized Modi-
fied CSN over time. In Section 5 we show error stability over
time under mild assumptions, and for a fairly realistic signal
change model. The performence of reg-mod-CSN, modified
BPDN [12], modified CS [1] and CS is compared using simu-
lation in Section 6.

2. NOTATION AND PROBLEM DEFINITION

The set operations ∪, ∩, \ have their usual meanings. ∅ denotes
the empty set. We use T c to denote the complement of a set
T w.r.t. [1,m] := [1, 2, . . .m], i.e. T c := [1,m] \ T . |T |
denotes the cardinality of T . For a vector, v, and a set, T , vT
denotes the |T | length sub-vector containing the elements of



v corresponding to the indices in the set T . ∥v∥k denotes the
ℓk norm of a vector v. If just ∥v∥ is used, it refers to ∥v∥2.
Similarly, for a matrix M , ∥M∥k denotes its induced k-norm,
while just ∥M∥ refers to ∥M∥2. M ′ denotes the transpose of
M . For a fat matrix A, AT denotes the sub-matrix obtained by
extracting the columns of A corresponding to the indices in T .
We obtain an n-length measurement vector yt by:

yt = Axt + wt

A is an n × m (n < m) matrix that we call the measurement
matrix. xt is an m length sparse vector with support Nt, yt is
the n length observation vector and wt is the n length noise ob-
servation vector with ∥wt∥ ≤ ρ. We assume partial knowledge
of support and denote it by Tt. Also we assume partial knowl-
edge of the signal estimate on Tt, and denote it by (µt)Tt . The
signal estimate is assumed to be zero along Tt

c.
Our goal is to recursively estimate xt using y1, ...yt. By recur-
sively, we mean, use only yt and the estimate from t− 1, x̂t−1

to compute the estimate at time t. Recursive recovery ensures
both computational and storage complexity remains the same
as that of simple CS (CS done for each time instant separately).
The S-restricted isometry constant δS , for a matrix, A, pro-
posed in [13], is defined as the smallest positive number satis-
fying (1− δS)∥c∥2 ≤ ∥AT c∥ ≤ (1 + δS)∥c∥2

for all subsets of T with cardinality |T | ≤ S and all real vectors
c of length |T |. The S, S′ restricted orthogonality constant ,
θS,S′ , proposed in [13], is defined as the smallest real number
satisfying

⟨AT1c1, AT2c2⟩ ≤ θS,S′∥c1∥∥c2∥

for all disjoints sets T1,T2 with |T1| ≤ S, |T2| ≤ S′ and
S + S′ ≤ m, and for all vectors c1,c2 of length |T1|,|T2| re-
spectively.

Definition 1 (Tt, ∆t, ∆e,t). We use Tt to denote the support
estimate at time t from the previous time t − 1. We use ∆t :=
Nt \Tt to denote the unknown part of the support estimate and
∆e,t := Tt \Nt to denote the “erroneous” part of Tt.

Definition 2 (T̃t, ∆̃t, ∆̃e,t). We use T̃t to denote the final sup-
port estimate at current time t. We use ∆̃t := Nt \ T̃t and
∆̃e,t := T̃t \Nt .

3. ERROR BOUND FOR REGULARIZED MODIFIED
CSN

In this section we introduce regularized Modified CSN and de-
rive the bound for its reconstruction error. In this section we
consider the case where there is one measurement vector, y,
and a signal vector x.

y := Ax+ w, where ∥w∥ ≤ ϵ

Let N denote the support of x, i.e N := {i : xi > 0}. As-
sume that we know partial part of support denoted by T . We
define ∆ = N\T . In addition to the measurements and partial
knowledge of signal support, T , we know that signal x satisfies

∥xT − µT ∥2 ≤ γ

where µT is the partial knowledge of the signal estimate on T .
Regularized Modified CSN solves the following problem.

min ∥βT c∥1 s.t ∥y −Aβ∥2 ≤ ϵ and ∥βT − µT ∥2 ≤ γ (1)

Theorem 1. Let u := |T | and k := |∆|. Assume that δu < 1,
1− δ2k − θk,2k > 0 and ∥xT −µT ∥ ≤ γ. Then the solution x̂
to (1) obeys

∥x− x̂∥ ≤ Cu,kϵ+Du,kγ

where

Cu,k = 2

√
1 + δu
1− δu

+ 2
(2 +

(
√

2+1)θu,k

1−δu
)
√
1 + δ2k

1− δ2k − θk,2k

Du,k =
2(2 +

(
√

2+1)θu,k

1−δu
)θu,2k

1− δ2k − θk,2k

Proof : Proof is given in Appendix .
4. ALGORITHM FOR REGULARIZED MODIFIED

CSN OVER TIME

Regularized Modified CSN was introduced in the previous sec-
tion as the solution to the problem of (1). In other word, Reg-
ularized Modified CSN is the solution to the problem of sparse
reconstruction (3) with partial knowledge of the support and
signal value on the known support. For recursively reconstruc-
tion a time sequence of sparse signals, we use the support es-
timate from the previous time, T̃t−1 as the set T and use the
signal estimate from the previous time on this support, (x̂t−1)T
as the (µ)T . At the initial time, t = 0,we let T be the empty
set,i.e we do simple CS. Therefore at t = 0 we need more mea-
surements, n0 > n. Denote the n0 × m measurement matrix
used at t = 0 by A0.
We summarize the Regularized modified CSN algorithm in Al-
gorithm 1. Here α denote the support estimation threshold.
Consider that in step 3 of algorithm we update our support es-
timation as T̃t at time t .

Algorithm 1 Regularized Modified CSN over time
For t ≥ 0, do

1. Simple CS. If t = 0, set T0 = ∅ and compute x̂0 as the
solution of

min ∥β∥1 s.t ∥y0 −Aβ∥2 ≤ ϵ (2)

2. Regularized Modified CSN. If t > 0, set Tt = T̃t−1 and
compute x̂t as the solution of

min ∥βTt
c∥1 s.t ∥y−Aβ∥2 ≤ ϵ and ∥βTt−µTt∥2 ≤ γ

(3)

3. Estimate the Support. Compute T̃t as

T̃t = {i ∈ [1,m] : |(x̂t)i| > α} (4)

4. Set µ = x̂t. Output x̂t. Feedback µ and T̃t.



5. STABILITY RESULT FOR REGULARIZED
MODIFIED CSN OVER TIME

5.1. Signal Model

The proposed algorithm does not assume any signal model. But
to prove its stability, we need certain assumptions on the signal
changes over time. We use the Signal Model introduced in [3]
as our signal sequence over time.

Assume the following
1. (addition) At each t > 0, Sa new coefficients get added

to the support at magnitude r. Denote this set by At.
2. (increase) At each t > 0, the magnitude of Sa coeffi-

cients which had magnitude (j − 1)r at t− 1 increases
to jr. This occurs for all 2 ≤ j ≤ d. Thus the maximum
magnitude reached by any coefficient is M := dr.

3. (decrease) At each t > 0, the magnitude of Sa coeffi-
cients which had magnitude (j + 1)r at t− 1 decreases
to jr. This occurs for all 1 ≤ j ≤ (d− 1).

4. (removal) At each t > 0, Sa coefficients which had
magnitude r at t−1 get removed from the support (mag-
nitude becomes zero). Denote this set by Rt.

5. (initial time) At t = 0, the support size is S0 and it con-
tains 2Sa elements each with magnitude r, 2r, . . . (d −
1)r, and (S0 − (2d − 2)Sa) elements with magnitude
M .

Notice that, in the above model, the size and composition of
the support at any t is the same as that at t = 0. Also, at
each t, there are Sa new additions and Sa removals. The new
coefficient magnitudes increase gradually at rate r and do not
increase beyond a maximum value M := dr. Similarly for
decrease. The support size is always S0 and the signal power is
(S0 − (2d− 2)Sa)M

2 + 2Sa

∑d−1
j=1 j

2r2.

5.2. Stability Result

In this part we are finding the conditions under which the error
bound for proposed algorithm remains bounded. For this pur-
pose, we should develop the conditions for a certain set of large
coefficients to definitely get detected and the elements of ∆e to
definitely get deleted.
In the following lemma we bring some simple facts that we use
through the proof of Theorem 2.

Proposition 1. In the third step of Algorithm 1 we have the
following facts

1. An i ∈ Nt will definitely get detected if |xi| > α+∥xt−
x̂t∥. This follows since ∥xt − x̂t∥ ≥ ∥xt − x̂t∥∞ ≥
|xt − x̂t|i

2. Similarly, all i ∈ ∆̃e,t (the zero elements of T̃t) will
definitely not get detected if α ≥ ∥xt − x̂t∥. This is true
since if (xt)i = 0 and (x̂t)i get detected as nonzero
value (x̂t)i, then α ≤ ∥(x̂t)i − (xt)i∥ ≤ ∥xt − x̂t∥
which is a contradiction with the assumption α ≥ ∥xt−
x̂t∥.

Proposition 2. Under proposed Signal Model we have

∥(xt)Tt − (x̂t−1)Tt∥2 ≤ ∥xt−1 − x̂t−1∥2 +
√
2dSar

Proof : Proof is straightforward form the fact that by Signal
Model we have ∥xt − xt−1∥2 ≤

√
2dSar.

In the following theorem we bring the conditions that makes
the error bounded by a time independent value.
Theorem 2 (Stability of Regularized Modified CSN over time).
Assume the Signal Model given above. For a d0 such that 1 ≤
d0 ≤ d, set S1 = (2d0−2)Sa. If the following conditions hold

1. min(1−δS0 , 1−δ2S1−θS1,2S1−2(2+
(
√

2+1)θS0,S1
1−δS0

)θS0,2S1) >

0

2. γ =
CS0,S1

ϵ+
√

2dSar

1−DS0,S1

3. α = CS0,S1ϵ+DS0,S1γ

4. r satisfy

r ≥ 2CS0,S1ϵ

d0(1−DS0,S1)− 2DS0,S1

√
2dSa

(it ensures that d0r ≥ 2× (CS0,S1ϵ+DS0,S1γ))

5. n0 is large enough so that
∥ x0 − x̂0 ∥≤ CS0,S1ϵ+DS0,S1γ

Then we can conclude that

1. |Tt| ≤ S0 , |∆t| ≤ S1

2. ∥xt − x̂t∥ ≤ CS0,S1ϵ+DS0,S1γ

Proof : Our approach for the proof is based on induction. As-
sume that the results hold at t−1. Using condition 2 and Propo-
sition 2, we can show that ∥xt − x̂t−1∥ ≤ γ. Condition 2 is
meaningful when DS0,S1 < 1 which is equivalent to the sec-
ond term of condition 1.
Next, we try to show that |Tt| ≤ S0 and |∆t| ≤ S1. Finally,
this, along with conditions 1 and 2 allows us to apply Theorem
1 to get the bound on ∥xt − x̂t−1∥. To show |Tt| ≤ S0 and
|∆t| ≤ S1, we first use the induction assumption, conditions 3
and 4 and Proposition 1 to bound |T̃t−1| and |∆̃t−1|; and then
use the signal model to bound |Tt| and |∆t|. The complete
proof is given in the Appendix.

5.3. Discussion of Theorem

We can observe some results from Theorem 2. As we can see
in the first condition of Theorem 2, reg-mod-CSN needs two
requirements to hold, δS0 < 1 and 1− δ2S1 −θS1,2S1 −α > 0

where α = 2(2 +
(
√
2+1)θS0,S1
1−δS0

)θS0,2S1 . Consider the case

where δS0 = 3
4

and θS0,2S1 = 1
8

then it can be concluded that
α = 7

8
. So the second requirement of condition 1 is simplified

to δ2S1+θS1,2S1 ≤ 1
8

. Since in practise S1 is small in compare
with S0, we can see that the condition δ2S1 + θS1,2S1 ≤ 1

8
will

be satisfied easily.
We showed that if δS0 = 3

4
and θS0,2S1 = 1

8
then The-

orem 2. Comparing these with the results for modified-cs
[3],δS0+S1 ≤

√
2−1
2

, we observe that reg-mod-CSN remain
stable under weaker conditions.
Also recall that CS results [14] needs δ2S0 ≤

√
2 − 1 that

is an stronger condition in compare with δS0 = 3
4

which we
obtained for reg-mod-CSN.



6. SIMULATION RESULT

We compared regularized modified CSN, modified BPDN [12],
modified CS [1] and simple CS for different values of S0

m
. In

Figure 1 we used Signal Model with m = 100, n = 50, S0 =
20, 30, 40, Sa = 1, r = 1

6
and wt ∼iid uniform(−c, c)

with c = .05. γ1 is the value of γ in minimization problem
(1) regularized modified CSN and γ2 is the value of γ for prob-
lem (2) in [12] for modified BPDN respectively. The measure-
ment matrix was random Gaussian. The simulation results have
been obtained by averaging over 100 samples. We set the α to
some value in the noise level(α = .1). By this value it gives a
fairly accurate estimate of nonzero elements with a low num-
ber of falsely detections. In Figure 1 we showed a set of plots.
Normalized MSE (NMSE), average number of extras( mean of
the |Tt \Nt| over the 100 simulations) and average number of
misses (mean of |Nt\Tt|) are plotted in parts (b) and (c). Since
in (b) and (c) the error was over 0.2 for CS, we just showed CS
in (a). As it can be seen in (a) (S0

m
= .2) reg-mod-CSN ,mod-

BPDN and mod-CS are stable and works almost the same (the
errors are under 0.02) while the CS has a large error. In (b) as
S0
m

is increased (S0
m

= .3) modified BPDN and modified CS
starts to become unstable( The NMSE is increased gradually
over time) while reg mod CSN is still stable( The NMSE re-
mains under 0.02 over time). In the case where S0

m
= .4 all

three methods become unstable.
7. CONCLUSION

An algorithm was proposed for using Regularized modified
CSN over time in a way that we utilize the estimated signal
from the previous time as an prior estimate for current time
signal. It was shown that this algorithm remains stable under a
proposed Signal Model and certain conditions. It was demon-
strated that reg-mod-CS remain stable under weaker conditions
in compare with mod-CS and simple CS.

8. APPENDIX

8.1. Proof of Theorem 1

Here we consider the general case where the signal is not
sparse. Let V = [1...m]. Assume that we know partial
part of support denoted by T . We redefine set N such that
T ⊂ N ⊂ V . To prove the Theorem, first let us get the follow-
ing relation by using the fact that both x and x̂ are feasible

∥A(x̂− x)∥2 ≤ ∥Ax̂− y∥2 + ∥y −Ax∥2 ≤ 2ϵ (5)

Basically our approach is a modification of the proof [14]. Let
us write x̂ = x + h. Our aim in the rest of the proof is to
make an upper bound for ∥h∥2. We decompose the vector h
into a sum of vectors. We define ∆0 = N \ T and ∆j for
j ≥ 1 as the the support of k largest coefficient of hSc

j
with

Sj = T ∪
∪j−1

l=0 ∆l. The plan of the proof is to bound ∥hT ∥2,
∥h∆0∪∆1∥2 and ∥h(T∪∆0∪∆1)c∥2 .
Using the triangular inequality, we have ∥h(T∪∆0∪∆1)c∥2 ≤
Σj=2∥h∆j∥2. For j ≥ 1, ∥h∆j∥2 ≤ k

1
2 ∥h∆j∥∞ ≤

k− 1
2 ∥h∆j−1∥1 this leads to

∥h(T∪∆0∪∆1)c∥2 ≤ Σj=2∥h∆j∥2 ≤ 1√
k
∥h(T∪∆0)c∥1. (6)

Since x̂ = x + h is the solution to (1) and both x̂ and x are
feasible, we have

∥xT c∥1 ≥ ∥(x+ h)T c∥1
= ∥x∆0 + h∆0∥1 + ∥x(T∪∆0)c + h(T∪∆0)c∥1
≥ ∥x∆0∥1 − ∥h∆0∥1 + ∥h(T∪∆0)c∥1 − ∥x(T∪∆0)c∥1

So then we have

∥h(T∪∆0)c∥1 ≤ ∥h∆0∥1 + 2∥x(T∪∆0)c∥1 (7)

First we bound ∥hT ∥2. To do that, observe that AhT = Ah−
Σj=0Ah∆j and, therefore,

∥AhT ∥2 = ⟨AhT , Ah⟩ − ⟨AhT ,Σj=0Ah∆j ⟩

Applying Cauchy-Schwartz, it follows from (5) and the re-
stricted isometry and orthogonality property that

(1−δu)∥hT ∥22 ≤
√
1 + δu∥hT ∥2(2ϵ)+θu,k∥hT ∥2(Σj=0∥h∆j∥2)

∥hT ∥2 ≤
√
1 + δu
1− δu

(2ϵ) +
θu,k

1− δu
(Σj=0∥h∆j∥2) (8)

We can break the term Σj=0∥h∆j∥2 = ∥h∆0∥2 + ∥h∆1∥2 +

Σj=0∥h∆j∥2. Since ∥h∆0∥2 + ∥h∆1∥2 ≤
√
2∥h∆0∪∆1∥2,

Using (6) we can conclude

Σj=0∥h∆j∥2 ≤
√
2∥h∆0∪∆1∥2 +

1√
k
∥h(T∪∆0)c∥1 (9)

Using (9) we can rewrite inequality (8) as,

∥hT ∥2 ≤
√
1 + δu
1− δu

(2ϵ)+
θu,k

1− δu
(
√
2∥h∆0∪∆1∥2+

1√
k
∥h(T∪∆0)c∥1)

(10)
In the next step we bound ∥h∆0∪∆1∥2. To do that we first
make a bound for ∥hT ∥2. Since both x and x̂ are feasible and
by using the second constraint of problem (1) we have

∥hT ∥2 = ∥xT − x̂T ∥2 ≤ ∥xT − µT ∥2 + ∥x̂T − µT ∥2 ≤ 2γ
(11)

Same as previous step we can write ∥Ah∆0∪∆1∥22 as

∥Ah∆0∪∆1∥
2
2 = ⟨Ah∆0∪∆1 , Ah⟩ − ⟨Ah∆0∪∆1 , AhT ⟩−

⟨Ah∆0∪∆1 , A(Σj=2h∆j )⟩

Using Cauchy-Schwartz, (5) and the restricted isometry prop-
erty we have

⟨Ah∆0∪∆1 , Ah⟩ ≤ 2
√

1 + δ2kϵ∥h∆0∪∆1∥2 (12)

Employing the restricted orthogonality property and (11) we
get

⟨Ah∆0∪∆1 , AhT ⟩ ≤ 2θu,2kγ∥h∆0∪∆1∥2 (13)

Using the restricted orthogonality property we get

⟨Ah∆0∪∆1 , AΣj=2h∆j ⟩ ≤ θk,2k∥h∆0∪∆1∥2(Σj=2∥h∆j∥2)
(14)

Using (6) we can rewrite the above inequality as

⟨Ah∆0∪∆1 , AΣj=2h∆j ⟩ ≤
θk,2k√

k
|∥h∆0∪∆1∥2∥h(T∪∆0)c∥1

(15)
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(b)n = 50,m = 100, S0 = 30, γ1 = .4, γ2 = .3
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Fig. 1. Normalized MSE (NMSE), number of extras and number of misses over time for CS, modified CS, modified BPDN, and
regularized modified CSN. In part (b) and (c), NMSE for CS was more than 20%.(plotted only in (a)

Combining (12), (13) and (15), we get

(1− δ2k)∥h∆0∪∆1∥
2
2 ≤

√
1 + δ2k(2ϵ)∥h∆0∪∆1∥2

+ θu,2k∥hT ∥2∥h∆0∪∆1∥2 +
θk,2k√

k
|∥h∆0∪∆1∥2∥h(T∪∆0)c∥1

(16)

By simplifying the above inequality we have

∥h∆0∪∆1∥2 ≤ 2

√
1 + δ2k
1− δ2k

ϵ+2
θu,2k

1− δ2k
γ+

θk,2k√
k(1− δ2k)

∥h(T∪∆0)c∥1

(17)
By inequality (7) we can conclude

∥h(T∪∆0)c∥1 ≤
√
k∥h∆0∥2 + 2∥x(T∪∆0)c∥1

≤
√
k∥h∆0∪∆1∥2 + 2∥x(T∪∆0)c∥1 (18)

We use this inequality to replace it with ∥h(T∪∆0)c∥1 in in-
equality (17).

∥h∆0∪∆1∥2 ≤ 2

√
1 + δ2k
1− δ2k

ϵ+ 2
θu,2k
1− δ2k

γ

+
θk,2k

1− δ2k
∥h∆0∪∆1∥2 + 2

θk,2k√
k(1− δ2k)

∥x(T∪∆0)c∥1

Simplifying the above inequality lead to

∥h∆0∪∆1∥2 ≤ F̃1ϵ+ F̃2γ + F̃3e0(T,∆0) (19)

where

e0(T,∆) = 2
∥x(T∪∆)c∥1√

|∆|

F̃1 =
2
√
1 + δ2k

1− δ2k − θk,2k
, F̃2 =

2θu,2k
1− δ2k − θk,2k

F̃3 =
θk,2k

1− δ2k − θk,2k



Here we use the previous bounds on ∥hT ∥2, ∥h∆0∪∆1∥2 and
∥h(T∪∆0∪∆1)c∥2 to bound ∥h∥2. Using (10), (17) and (6) we
have

∥h∥ ≤ ∥hT ∥2 + ∥h∆0∪∆1∥2 + ∥h(T∪∆0∪∆1)c∥2 ≤
√
1 + δu
1− δu

(2ϵ) +
θu,k

1− δu
(
√
2∥h∆0∪∆1∥2

+
1√
k
∥h(T∪∆0)c∥1) + ∥h∆0∪∆1∥2 +

1√
k
∥h(T∪∆0)c∥1

Using (18) and reordering the terms lead to

∥h∥ ≤ 2

√
1 + δu
1− δu

ϵ+ (2 +
(
√
2 + 1)θu,k
1− δu

)∥h∆0∪∆1∥2

+ 2(1 +
θu,k

1− δu
)
∥x(T∪∆)c∥1√

k

By substitution of (19) in above inequality we get

∥h∥ ≤ Cu,kϵ+Du,kγ + Eu,ke0(T,∆0)

where

Eu,k = (
θk,2k

1− δ2k − θk,2k
(2+

(
√
2 + 1)θu,k
1− δu

)+2(1+
θu,k

1− δu
))

8.2. Proof of Theorem 2

First, recall that ut := |Tt| and kt := |∆t|. The proof follows
using induction. Using condition 5 of the theorem, the claim
holds for t = 0. This proves the base case. For the induc-
tion step, assume that the claim holds at t − 1, i.e. |Tt−1| ≤
S0,|∆t−1| ≤ S1 and ∥xt−1 − x̂t−1∥ ≤ CS0,S1ϵ + DS0,S1γ.
Using these assumptions we prove that the claim holds at t.
First, notice that condition 2 of theorem states that γ =
CS0,S1ϵ + DS0,S1γ +

√
2dSar. We claim that under con-

ditions 1 and 2 of theorem we have ∥xt − x̂t−1∥ ≤ γ. This
is true since by Proposition 2 and the assumption of induc-
tion, we have ∥xt − x̂t−1∥ ≤ ∥xt−1 − x̂t−1∥ +

√
2dSar ≤

CS0,S1ϵ + DS0,S1γ +
√
2dSar = γ. Note that DS0,S1 < 1

is necessary for having condition 2. It can be shown that
DS0,S1 < 1 is equivalent to 1 − δ2S1 − θS1,2S1 − 2(2 +
(
√

2+1)θS0,S1
1−δS0

)θS0,2S1 > 0. This holds since condition 1
holds.
Now for the rest of proof if we show that ut ≤ S0 and
kt ≤ S1, then Theorem 1 can be applied and we are done.
That is because by condition 1, we can show that δut < 1,
1 − δ2kt − θkt,2kt > 0 which are the first two requirements
for applying Theorem 1. Condition 2 and the above discussion
ensures that the third requirement of Theorem 1 holds.
First, notice that employing Proposition 1 and condition 3 and
4 of the theorem and by the assumption that ∥xt−1 − x̂t−1∥ ≤
CS0,S1ϵ + DS0,S1γ, we can conclude that at time t − 1, all
the elements greater or equal to d0r will be get detected n
the support update step, i.e. when computing T̃t−1. Thus,
the missed set, |∆̃t−1| ≤ (2d0 − 2)Sa. Also, notice that
by Proposition 2 and the assumption of induction we can
conclude that at time t − 1 no zero value element of xt−1

will be get detected as an element of T̃t−1, in other word

∆̃e,t−1 = 0. From Algorithm 1 we remember that Tt = T̃t−1

and ut = |T̃t−1|. Since T̃t−1 = Nt−1 ∪ ∆̃e,t−1 \ ∆̃t−1,
we have ut = |T̃t−1| ≤ |Nt−1| + |∆̃e,t−1|. We know that
|Nt−1| = S0 and |∆e,t| = 0 . Hence, it implies that ut ≤ S0.
Also, ∆t = Nt ∩ T̃ c

t−1 = (Nt−1 ∪ At) ∩ Rc
t ∩ T̃ c

t−1 ⊆
(∆̃t−1 ∪ At) ∩ Rc

t . Here we have used the facts that Nt =

(Nt−1 ∪ At) ∩ Rc
t and ∆̃t−1 = Nt−1 ∩ T̃ c

t−1. So we have
∆t ⊆ (∆̃t−1 ∪At)∩Rc

t ⊆ (St−1(d0)∪At)∩Rc
t . Therefore,

kt = |∆t| ≤ |St−1(d0)|+ |At| − |Rt| = (2d0 − 2)Sa = S1.
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