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ABSTRACT problems,p* cannot be computed analytically. When it is
unimodal, PF-Doucet [3] approximates it by a Gaussian about

We develop a practically implementable particle filterifgr{ its mode (Laplace’s approximation [4]) and samples from the

method called "PF-EIS-MT" for tracking onlarge dimensibna o \sjan Other work that also implicitly assumes fitat
state spaces. Its application to tracking the shape chérage o

| ber of “landmark’ (feat ints f . is unimodal includes [2, 5, 6]. But very often, the observa-
arge number of *landmark” (feature) points from image Se-;.,\ jialinood (OL) is multimodal or heavy-tailed, e.g. eu

guences Is shown. Two issues cpmmon_to mO_St large _d|me|{|6 clutter, occlusions or low contrast/blur in image tranki
sional problems are (a) ob_;ervau_on !|ke||hood IS oﬁentmul roblems or due to failed or nonlinear sensors in other prob-
modal and the state transition prior is often broad in attlea%ms_ If the state transition prior (STP) is broad compaced t

some dimensions and (b) direct application of PF requires 3fhe distance between OL modes (in case of multimodal OL) or

impractically large number of particles. PF-EIS-MT com- ompared to the distance between OL and STP mode (in case
bines the advantages of two recently proposed ideas Whlcé\( heavy-tailed OL)p* will be multimodal [7]. See Fig. 1 for

address both of these issues. Improved performance of PE- : .
- ; . n example. The STP is broad when either the state sequence
EIS and PF-EIS-MT over existing PF algorithms is demon P d

. is changing fast compared to the observation arrival rate or
strated for landmark shape tracking. when the system model is unreliable. For such problems, we
proposed the PF-EIS algorithm in [7] which combines the ad-

1. INTRODUCTION vantages of PF-Gordon [1] and PF-Doucet [3].
When in addition to multimodality, the state space dimen-

Tracking is the problem of causally estimating a hidderestatsion is large (typically more than 10 or 12), the effective-pa
sequence from a sequence of observations that satisfy the Hiticle size reduces [1, 8], thus making any regular PF impract
den Markov Model (HMM) assumption. A tracking algo- cal. If the state space model is conditionally linear-Garss
rithm recursively computes the “posterior” at timgprob-  or if some states can be vector quantized into a few discrete
ability density function of the current state conditionedl o centers, Rao Blackwellization (RB-PF) [9, 8] can be used.
all observations until the current time) using the postesio In general, neither assumption may hold. But in most large
t — 1 and the current observation. For most nonlinear or nondimensional problems, the state change variance is large in
Gaussian state space models, the posterior cannot be coonly a few dimensions i.e. the “LDSS property” [7] holds.
puted analytically. But, it can be efficiently approximatesd ~ We exploited this in [7] to introduce a mode tracking (MT)
ing the particle filter (PF) [1, 2] which is a sequential Monte approximation of importance sampling (IS) along the “resid
Carlo technique. A PF outputs at each timea cloud of ual” directions, which greatly reduced the IS dimension.
N “particles” (Monte Carlo samples), along with their corre-  In this work, we combine the EIS and MT ideas to ob-
sponding weights, whose empirical measure closely approxtain the PF-EIS-MT algorithm and develop its application to
mates the true posterior for largé. landmark shape tracking. Landmark shape tracking is the

An important issue in PF design is the choice of an imporproblem of tracking the shape change of a set of 2D “land-
tance sampling density that reduces the variance of the parmarks” (feature points of interest) from an image sequence.
cle weights and thus improves “effective particle size”.[3] Shape of a group of discrete points (landmarks) is the geo-
The first PF algorithm [1] used the state transition priot&s t metric information that remains when location, scale and ro
importance density. This assumes nothing and is easiest tational effects are filtered out [10]. An important example
implement. But since it does not use knowledge of the currentf landmark shape change is the shape change of the set of
observation, the weights’ variance can be large, partityula centroid locations of different body parts of the human body
when the observations are more reliable than the prior modeModeling shape change separately from global motion is use-
The “optimal” importance density [3] is the posterior condi ful here because the global motion is usually due to random
tioned on the previous state (denote it#3%). But in most camera zoom or motion (random forward/backward motion
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platform or due to it being hand-held). By separating shape | |-

and motion dynamics, it is possible to learn the motion prior :

based on the type of camera and platform, while learning the vc

shape dynamics for the particular action separately. . \Vanr:
Another example is shape change of a group of personsor  °

vehicles viewed from a distance, so that each person/sehicl W s 075 o1 L,

forms a landmark. The camera may be a surveillance cam-  gygiery;, narrow STP Outliel;, broad STP

era placed on the roof of a room or a camera placed in an

unmanned air vehicle in a military application. In both of Fig. 1. Consider a scalar problem with Olp(Y;|X;) =

the above examples, we assume a scaled orthographic capBN (Y;; X, 02) 4+ 0.2N(Y;;0,10002) and STPp(X,|X{_ ;) =

era model which is valid either when the camera is lookingv/(X;;0.5X;_,,02). The OL is a raised Gaussian, i.e. it is heavy

down at the scene (its principal axis is perpendicular to theailed with mode ak;. Wheneved; is generated by the outlier com-

shape plane and intersects the center of the shape), or whgshent, the OL mode is far from the STP mode. If the STP is broad,

the scene is far from the camera. A third application domsin ithis results in a bimodal*. We plot the— log of the OL, STP and

medical image analysis where landmarks correspond togoinp* for v; = 1, 02 = 1, and0.5X}_; = 10, 02 = 0.25 (narrow

of interest to the medical practitioner. For example, brair6TP) and).5X}_, = 20, o2 = 64 (broad STP).

landmarks imaged during surgery (the brain shape deforms

since the skull is opened) using an optical camera that ma

have some random motion, either due to zooming or due t _ ;
forward/backward random motion w.r.t. the patient. computed at each usingr,_, and the current observatiah.

In [12], we introduced models for nonstationary shape"c€ the posterior is available, any “optimal” state esténa
change and used PF-Gordon [1] to track the shape and m§:9: MAI_D or MMSE, can be pomputgd. The tracking problem
tion change. In the current work, we revisit and modify the'S complicated by the following two issues.
model introduced in [12] and derive the PF-EIS and PF-EIS- 1. For a given observatiory;, the OL (as a function of

or in-plane rotation due to the camera lying on an unstable U

he posteriory;(X;) = p(X¢|Y1.¢), needs to be recursively

MT algorithms for it. Tracking performance is compared with the stateX,) is often multimodal or heavy-tailed at the
PF-Gordon and PF-Doucet. Our observation model is more outlier mode. If the STP is broad even in some dimen-
realistic than that of [12], because it also models the eccur sions, it will result in the posterior given previous state,
rence of false landmarks due to clutter and missed landmarks i} N

due to occlusions/blur. Because of this, the OL is often imult p*(Xe) = p(Xe| Xi—1,Y2) 1)

modal or is heavy-tailed at the outlier mode (far from the STP
mode). The state vector consists of the shape parameters and
the global motion parameters (scale, rotation and translat
Usually, the STP of scale and rotation is broad to allow for
occasional large camera motion. This combined with multi- 2. A second issue is applying the PF when the state space

being multimodal. For e.g., see Fig. 1. In such prob-
lems, PF-Doucet [3] as well as [2, 5, 6] that implicitly
assume that* is unimodal cannot be used.

modal or heavy tailed OL often results in a multimogal dimension is large. The effective particle size reduces
We give the problem formulation and develop the PF-EIS- with dimension, thus requiring a larger number of par-
MT algorithm in Sec. 2. In Sec. 3, the system and observa- ticles for a given accuracy as dimension increases.

tion model for landmark shape change is given followed by
deriving PF-EIS and PF-EIS-MT for that model. Tracking22. ThePF-EISMT Algorithm

comparisons are given in Sec. 4.
We first explain the PF-EIS algorithm [7]. PF-EIS splXs

into X, s, X¢], in such a way thap* is unimodal condi-

2. PEWITH EFFICIENT IMPORTANCE SAMPLING tioned OnXZ’,s (i"" particle of X ,), i.e.

(E1S) AND MODE TRACKING (MT)
2.1. General Problem Formulation P (Xp) £ 9" (XIXE) = p(Xe (X Xi Y (@)
The goal is to sequentially estimate (track) a hidden sezgien is*:Jinimodal. We samplé; , from its STP but approximate
of states,X;, from a sequence of observations, which sat- P by & Gaussian about its mode [4, 3] and sampe.
isfy the Hidden Markov Model (HMM) property, i.e. fromit, i.e. we sampleX; . from V' (my, X7 ) where

1. For eachr, the dependenc&’; — Y; is Markovian,  m! = argmin[—logp***(X;,,)] = argmin L'(X;,) (3)
with observation likelihood (OL) representedid$; | X, ). Xtr Xer
i A 4 7 7
2. For each, the dependenc¥,_,; — X, is Markovian, L =[- 1ng(}?|Xtvstt=T>] + [ log p(Xer | X1, Xi )]
with state transition pdf (STPY(X¢|X;_1). L= [V2Li(mi) ! (4)



Algorithm 1 PF-EISMT. Going from =¥, to i (X;) = N wiV8(X, — X7), Xi = [Xi o, Xin), Xin = [Xi o) Xino]

1. Importance Samplé; .: Vi, sampleX; , ~ p(X} |X} ;).

2. Efficient Importance Samplg, , ,: Vi,

(a) Computeni andX using (3), (4). Letn! = [ Mts } andXig = [ ZiSs XS }

¢
mi,r EIS,T EI,S,r,s
(b) SampIeXti,r,s ~ N(mi,sﬂ Z?S,s)‘

3. Mode TrackX; ,,: Vi, setX; . =m;, +¥ig, (3is ) (X{,,—mi,)
i . . ~i . . Y, | X Xt |Xx? ,Xi . . .
4. Weight: Vi, computew; = 7215‘? = whered; = wi_, % "‘Ngf; ’mlt ST f2s) whereX; = [X} . X}, ]
J= Nl ’

5. Resample using any standard algorithm [2pett < ¢ + 1 & go to step 1.

As shown in [7], unimodality op*** is ensured if the vari- dimensional space)[13]. A tangent space to any point ineshap
ance of the STP ok .. is small enough compared to distance space is thus & — 2 dimensional hyperplane i@* [13].
between the modes of OL giveXi; , in any direction. Even
if X; s is chosen so that this holds for most particles, at mo
times, the proposed algorithm will work [7].

Now, because of the LDSS property (at any given timeThe system model involves a first order model on the loga-
“most of the state change” occurs in a small number of dirithm of global scales;, and on global 2D rotation anglé,,
mensions, while the change in the rest of the state space &hd a second order model on shapdwhich is equivalent to
small), X; - can further be split intdX; .. s; X; -] SO that  a first order model on “shape velocity” coefficients). We
the covariance of the STP of; .. . is small enough to ensure describe the details below.
that there is little error in approximating the conditiopals- Motion in shape space requires moving by small amounts
terior of Xy ., p***(X4,,r), Dy @ Dirac delta function atits i the tangent space to the current shape. Denote the tangent
mode. We call this the Mode Tracking (MT) approximation of space toz, by T.,. Thenz,, is obtained by moving, by an
importance sampling (IS), or IS-MWhen MT is combined amounts, € T, as follows:z, 11 = (1—5; ;)2 2+, [13].
with PF-EIS, the reSUlting algorithm is called PF-EIS-MT. | We refer tod; as the “Shape Ve|ocity”_ thUt+1)K><(K—2)
is summarized in Algorithm 1. denote the matrix of basis directions that sgan. Then

The IS-MT approximation introduces some error in they, ¢ CX is o, = U,,1é whereé, € CX~2 contains the
estimate ofX; ., (error decreases with decreasing spread otoefficients alond/; . ;. Letc; € R*,—* denote the real vec-
p***(Xt,rr)). Butit also reduces the importance samplingtor obtained by arranging the real and imaginary components
dimension fromdim(X;) to dim([X; s; X;.s]) (@ significant  of ¢, as a vector, i.e¢; = Sc;, whereS = [Ix_» jIx_»] and
reduction for large dimensional problems), thus improvingy, is theq x ¢ identity matrix.

S5 1. system Model

the effective particle size. For Carefully chosen dimengib To maintain Correspondence between elements ofer
Xt,r.ﬂw this results in Sm{:lller tOFal error, eSpeCia"y when thenme' we ObtairUt by Starting \Ni'[hUt_1 and Obtaining an or-
available number of particlesy, is small. thogonal matrix that is perpendicular4p_; by using a Gram
Schmidt procedure applied to the columndief ; i.e.
3. LANDMARK SHAPE TRACKING m—1
S , Uim = Ik — 21251 — Y UroUp ) Us—1.m,
A “configuration” is an ordered set df landmark locations. 1

In the 2D case, it is the x and y coordinates of the landmarks

arranged as & dimensional complex vector (x locationj ¥V m = 1,...(K — 2) whereU, ,,, denotes then" column
y location) [13]. In the current work, we assume that the conof U;. Denote this transformation by, = ¢g(Ui—1, z¢t—1).
figuration is centered and there is zero translation ovee.tim Note that eaclt/; is also perpendicular to the vector of 1g
In this case the configuration is completely described by it¢shape is translation normalized). This is enforced by mgki
shapey, the global scale;®, and the global in-plane rotation, U; perpendicular td k.

6. It is computed ase*t7? wherej = /—1. The shape We assume a first order autoregressive (AR) modeil,on
space is & — 2 dimensional manifold irC* (complex/k-  We also assume an AR model on log-scajeand on rotation



angle,d;. Thus the state consists &f; = [sq, 0y, ¢, 2, U]
and the dynamical model fox, is

St = QsSt—1 + Vs, Vst ~ n(0,05)
0y = g1 + a1, voe ~ n(0,00)
¢t = Accr—1 + Ve, Veyr ~N(0,3,)
Uy = Q(Ut—172t—1)

Zt = f(Zt—la Ut,Ct)7

F(z-1,Usyee) 2 (1= cle) V221 + U j1e; 5)

The resulting state transition prior (STP) is

p(X¢| Xi—1) = N(assi—1,02)N (apbi—1,03) x
N(Acct—h Zc) X
5(Ut - Q(Utfly thl))(s(zt - f(thla Ut7ct))

whered denotes the Dirac delta function. The STRaf9; is

usually broad to allow for occasional large camera motion o

Zzoom.

3.2. Observation Model

3.3. PF-EISMT for Landmark Shape Tracking

We first derive the PF-EIS algorithm and then develop PF-
EIS-MT. Since the STP of,, 6, is usually broad (to allow
for occasional large camera motion or zoom), we Ksg =
[st,6:] and X;, = [c, 2, Us]. Note that for the purpose
of importance sampling only,, 6, c; are the “states” since
z, Uy are deterministically computed fromand X, . The
particles ofX, ; are sampled from its STP, i.e. using the first
two equations of (5). Conditioned on the sampled scale and
rotation, X} ; = [s}, 6}], it is much more likely thap* is uni-
modal, i.e.p***(c;, Uy, 2, ) defined below is unimodal

p**’i(Cm 2, Up) = (Cp(Yy ‘ h(S%, 9; %)) N(Acciﬂ» Ye) x
§(Ur — g(Uf_1,211))8(2 — f(21_1,Ur, ct))

Since the pdfs ot/;, z;, conditioned on:;, X;_1, are Dirac
delta functions, the above simplifies to:

P**’i =(p(Y: ]| h(si,@i, f(ZZf_l,gﬂct)) )N(Acci—l’ Xe) X
6(Ut — g') (2 — (211, 9", 1))
2 p™er) (U — 9') (2 — f(zi-1, 9", ct)) (7)
The importance sampling part &f; ,. is only ¢;. We compute

The landmarks’ configuration is obtained from the shapdescahe importance density far; by approximating>**#(c;) by

and rotation by the transformatidr(s;, 6;, z;) = ze5 7%,

a Gaussian at its unique mode. The mode is computed by

There are various ways to extract landmarks from image seminimizing L’(c;) = — log p**(c;) defined below

quences - e.g. edge detection followed by extractingihe

strongest edges or the edges closest to predicted landoiark

cations or using block optical flow estimation (KLT) [14].
The simplest observation model is of the form

Y; = h(s, 0, 2¢)+wg, wy ~ CN(0,021) wherew, is acom-

| L) = [~ logp( Yi | h(si, 03, f(2i_1,9" ) )] +
[—log N (e Acci—la )] 8

Thus the PF-EIS algorithm for landmark shape tracking
becomes

plex Gaussian noise vector [12]. This assumes that there is n

background clutter: each of th€ strongest edges or th€

KLT-feature points are always generated by the true lankmar
location plus some error modeled as Gaussian noise. But this

is often a simplistic model. It may happen that out of #ie
observed landmark locations, some landmark at some time
actually generated by clutter (e.g. if a true landmark isrield

or occluded, while a nearby clutter point has a stronger)}dge

We model this as follows: with a small probability the k"
landmark,Y; 1, is generated by a clutter point and with prob-

ability (1 — p) it is generated by a Gaussian noise-corrupted

actual landmark, i.e. forat =1, ... K,

Yk ~ (1= p)CN([h(st, 0t, 2]k, o) + pCN(0,10057) (6)

1. Imp. samplei ~ N (assi_i,02),0; ~ N(agbi_y,03)

2. Computen! = argmin,., L'(ct), ¥5g = [V2L (m})] !

whereL! is defined in (8).
is 3. Imp. sample:; ~ N (mj, X%g).

4. Computd); = g(U{_y,2{_;) andz{ = f(z_, U}, cp).
A S
P(Vilh(si 03 5N (chiAcci_y Se)

N(ciymi,Sig) :

5. Weight and Resample. Computé = where

~i
Wy = Wy

-1

PF-EIS-MT will have improved performance over PF-EIS when
some directions of; have small enough variance to satisfy
the IS-MT approximation (the total error due to replacing IS

independent of other landmarks. We denote the resulting Oby MT for these directions is smaller than otherwise). Let

by p(Yi|X:) = p(Yi|h(se, 0, 2¢)). The above is a valid model
whenever the equivalent STP @], is broad (allows land-
marks to be far from their predicted location). The resgltin
OL is heavy-tailed as a function ¢f];, with mode at; ;. If
the equivalent STP df); is broad (e.g. this will happen if
the STP of scales, is broad), whenevey, , is generated by
clutter (i.e. is far from the STP mode), the resultpigwill
be multimodal. See Fig. 1 for a simple 1D example.

Ct,s
= |:Ct,'r
and Z}S as shown in Algorithm 1. We seX,, s = [ct ]
andX; ., = [cr, Ur, 2). The PF-EIS-MT algorithm is the
PF-EIS algorithm listed above, with step 3 replaced by

} wherec, , satisfies IS-MT. Similarly splitn}

3. Imp. samplec; , ~ N(mj ,,¥7g,) and setc; .
. . ! 1/ ) ) . )
m%,r—"_ElIS,T,S(ZZIS,s) (C%,s_m;,s)' Setcé [0%757 Ci,r]'
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Fig. 2. Landmark Shape Tracking results. Figs. 2(a), 2(b): MSE plots cdmp®&F-EIS, PF-EIS-MT with PF-Doucet and PF-Gordon.
Figs. 2(c), 2(d): Examples where PF-Doucet, PF-Gordon lose maicRF-EIS does not.
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