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ABSTRACT

We develop a practically implementable particle filtering (PF)
method called “PF-EIS-MT” for tracking on large dimensional
state spaces. Its application to tracking the shape change of a
large number of “landmark” (feature) points from image se-
quences is shown. Two issues common to most large dimen-
sional problems are (a) observation likelihood is often multi-
modal and the state transition prior is often broad in at least
some dimensions and (b) direct application of PF requires an
impractically large number of particles. PF-EIS-MT com-
bines the advantages of two recently proposed ideas which
address both of these issues. Improved performance of PF-
EIS and PF-EIS-MT over existing PF algorithms is demon-
strated for landmark shape tracking.

1. INTRODUCTION

Tracking is the problem of causally estimating a hidden state
sequence from a sequence of observations that satisfy the Hid-
den Markov Model (HMM) assumption. A tracking algo-
rithm recursively computes the “posterior” at timet (prob-
ability density function of the current state conditioned on
all observations until the current time) using the posterior at
t− 1 and the current observation. For most nonlinear or non-
Gaussian state space models, the posterior cannot be com-
puted analytically. But, it can be efficiently approximatedus-
ing the particle filter (PF) [1, 2] which is a sequential Monte
Carlo technique. A PF outputs at each timet, a cloud of
N “particles” (Monte Carlo samples), along with their corre-
sponding weights, whose empirical measure closely approxi-
mates the true posterior for largeN .

An important issue in PF design is the choice of an impor-
tance sampling density that reduces the variance of the parti-
cle weights and thus improves “effective particle size” [3].
The first PF algorithm [1] used the state transition prior as the
importance density. This assumes nothing and is easiest to
implement. But since it does not use knowledge of the current
observation, the weights’ variance can be large, particularly
when the observations are more reliable than the prior model.
The “optimal” importance density [3] is the posterior condi-
tioned on the previous state (denote it byp∗). But in most

problems,p∗ cannot be computed analytically. When it is
unimodal, PF-Doucet [3] approximates it by a Gaussian about
its mode (Laplace’s approximation [4]) and samples from the
Gaussian. Other work that also implicitly assumes thatp∗

is unimodal includes [2, 5, 6]. But very often, the observa-
tion likelihood (OL) is multimodal or heavy-tailed, e.g. due
to clutter, occlusions or low contrast/blur in image tracking
problems or due to failed or nonlinear sensors in other prob-
lems. If the state transition prior (STP) is broad compared to
the distance between OL modes (in case of multimodal OL) or
compared to the distance between OL and STP mode (in case
of heavy-tailed OL),p∗ will be multimodal [7]. See Fig. 1 for
an example. The STP is broad when either the state sequence
is changing fast compared to the observation arrival rate or
when the system model is unreliable. For such problems, we
proposed the PF-EIS algorithm in [7] which combines the ad-
vantages of PF-Gordon [1] and PF-Doucet [3].

When in addition to multimodality, the state space dimen-
sion is large (typically more than 10 or 12), the effective par-
ticle size reduces [1, 8], thus making any regular PF impracti-
cal. If the state space model is conditionally linear-Gaussian,
or if some states can be vector quantized into a few discrete
centers, Rao Blackwellization (RB-PF) [9, 8] can be used.
In general, neither assumption may hold. But in most large
dimensional problems, the state change variance is large in
only a few dimensions i.e. the “LDSS property” [7] holds.
We exploited this in [7] to introduce a mode tracking (MT)
approximation of importance sampling (IS) along the “resid-
ual” directions, which greatly reduced the IS dimension.

In this work, we combine the EIS and MT ideas to ob-
tain the PF-EIS-MT algorithm and develop its application to
landmark shape tracking. Landmark shape tracking is the
problem of tracking the shape change of a set of 2D “land-
marks” (feature points of interest) from an image sequence.
Shape of a group of discrete points (landmarks) is the geo-
metric information that remains when location, scale and ro-
tational effects are filtered out [10]. An important example
of landmark shape change is the shape change of the set of
centroid locations of different body parts of the human body.
Modeling shape change separately from global motion is use-
ful here because the global motion is usually due to random
camera zoom or motion (random forward/backward motion



or in-plane rotation due to the camera lying on an unstable
platform or due to it being hand-held). By separating shape
and motion dynamics, it is possible to learn the motion prior
based on the type of camera and platform, while learning the
shape dynamics for the particular action separately.

Another example is shape change of a group of persons or
vehicles viewed from a distance, so that each person/vehicle
forms a landmark. The camera may be a surveillance cam-
era placed on the roof of a room or a camera placed in an
unmanned air vehicle in a military application. In both of
the above examples, we assume a scaled orthographic cam-
era model which is valid either when the camera is looking
down at the scene (its principal axis is perpendicular to the
shape plane and intersects the center of the shape), or when
the scene is far from the camera. A third application domain is
medical image analysis where landmarks correspond to points
of interest to the medical practitioner. For example, brain
landmarks imaged during surgery (the brain shape deforms
since the skull is opened) using an optical camera that may
have some random motion, either due to zooming or due to
forward/backward random motion w.r.t. the patient.

In [12], we introduced models for nonstationary shape
change and used PF-Gordon [1] to track the shape and mo-
tion change. In the current work, we revisit and modify the
model introduced in [12] and derive the PF-EIS and PF-EIS-
MT algorithms for it. Tracking performance is compared with
PF-Gordon and PF-Doucet. Our observation model is more
realistic than that of [12], because it also models the occur-
rence of false landmarks due to clutter and missed landmarks
due to occlusions/blur. Because of this, the OL is often multi-
modal or is heavy-tailed at the outlier mode (far from the STP
mode). The state vector consists of the shape parameters and
the global motion parameters (scale, rotation and translation).
Usually, the STP of scale and rotation is broad to allow for
occasional large camera motion. This combined with multi-
modal or heavy tailed OL often results in a multimodalp∗.

We give the problem formulation and develop the PF-EIS-
MT algorithm in Sec. 2. In Sec. 3, the system and observa-
tion model for landmark shape change is given followed by
deriving PF-EIS and PF-EIS-MT for that model. Tracking
comparisons are given in Sec. 4.

2. PF WITH EFFICIENT IMPORTANCE SAMPLING
(EIS) AND MODE TRACKING (MT)

2.1. General Problem Formulation

The goal is to sequentially estimate (track) a hidden sequence
of states,Xt, from a sequence of observations,Yt, which sat-
isfy the Hidden Markov Model (HMM) property, i.e.

1. For eacht, the dependenceXt → Yt is Markovian,
with observation likelihood (OL) represented asp(Yt|Xt).

2. For eacht, the dependenceXt−1 → Xt is Markovian,
with state transition pdf (STP),p(Xt|Xt−1).
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Fig. 1. Consider a scalar problem with OL,p(Yt|Xt) =

0.8N (Yt; Xt, σ
2
o) + 0.2N (Yt; 0, 100σ2

o) and STPp(Xt|X
i
t−1) =

N (Xt; 0.5Xi
t−1, σ

2
s). The OL is a raised Gaussian, i.e. it is heavy

tailed with mode atYt. WheneverYt is generated by the outlier com-
ponent, the OL mode is far from the STP mode. If the STP is broad,
this results in a bimodalp∗. We plot the− log of the OL, STP and
p∗ for Yt = 1, σ2

o = 1, and0.5Xi
t−1 = 10, σ2

s = 0.25 (narrow
STP) and0.5Xi

t−1 = 20, σ2
s = 64 (broad STP).

The posterior,πt(Xt) , p(Xt|Y1:t), needs to be recursively
computed at eacht, usingπt−1 and the current observationYt.
Once the posterior is available, any “optimal” state estimate,
e.g. MAP or MMSE, can be computed. The tracking problem
is complicated by the following two issues.

1. For a given observation,Yt, the OL (as a function of
the state,Xt) is often multimodal or heavy-tailed at the
outlier mode. If the STP is broad even in some dimen-
sions, it will result in the posterior given previous state,

p∗(Xt) , p(Xt|Xt−1, Yt) (1)

being multimodal. For e.g., see Fig. 1. In such prob-
lems, PF-Doucet [3] as well as [2, 5, 6] that implicitly
assume thatp∗ is unimodal cannot be used.

2. A second issue is applying the PF when the state space
dimension is large. The effective particle size reduces
with dimension, thus requiring a larger number of par-
ticles for a given accuracy as dimension increases.

2.2. The PF-EIS-MT Algorithm

We first explain the PF-EIS algorithm [7]. PF-EIS splitsXt

into [Xt,s,Xt,r], in such a way thatp∗ is unimodal condi-
tioned onXi

t,s (ith particle ofXt,s), i.e.

p∗∗,i(Xt,r) , p∗(Xt|Xi
t,s) = p(Xt,r|Xi

t−1,X
i
t,s, Yt) (2)

is unimodal. We sampleXi
t,s from its STP but approximate

p∗∗,i by a Gaussian about its mode [4, 3] and sampleXt,r

from it, i.e. we sampleXi
t,r fromN (mi

t,Σ
i
IS) where

mi
t = arg min

Xt,r

[− log p∗∗,i(Xt,r)] = arg min
Xt,r

Li(Xt,r) (3)

Li , [− log p(Yt|Xi
t,s,Xt,r)] + [− log p(Xt,r|Xi

t−1,X
i
t,s)]

Σi
IS = [∇2Li(mi

t)]
−1 (4)



Algorithm 1 PF-EIS-MT. Going from πN
t−1 to πN

t (Xt) =
∑N

i=1 w
(i)
t δ(Xt − Xi

t), Xi
t = [Xi

t,s, X
i
t,r], Xi

t,r = [Xi
t,r,s, X

i
t,r,r]

1. Importance SampleXt,s: ∀i, sampleXi
t,s ∼ p(Xi

t,s|Xi
t−1).

2. Efficient Importance SampleXt,r,s: ∀i,

(a) Computemi
t andΣi

IS using (3), (4). Letmi
t =

[

mi
t,s

mi
t,r

]

andΣi
IS =

[

ΣIS,s ΣIS,s,r

ΣIS,r ΣIS,r,s

]

.

(b) SampleXi
t,r,s ∼ N (mi

t,s, Σi
IS,s).

3. Mode TrackXt,r,r: ∀i, setXi
t,r,r = mi

t,r + Σi
IS,r,s(Σ

i
IS,s)

−1(Xi
t,r,s −mi

t,s)

4. Weight: ∀i, computewi
t =

w̃i
t

∑

N
j=1

w̃j
t

wherew̃i
t = wi

t−1
p(Yt|X

i
t)p(Xi

t,r|X
i
t−1

,Xi
t,s)

N (Xi
t,r; mi

t, Σi
IS

)
whereXi

t,r = [Xi
t,r,s,X

i
t,r,r].

5. Resample using any standard algorithm [2].Sett← t + 1 & go to step 1.

As shown in [7], unimodality ofp∗∗,i is ensured if the vari-
ance of the STP ofXt,r is small enough compared to distance
between the modes of OL givenXi

t,s in any direction. Even
if Xt,s is chosen so that this holds for most particles, at most
times, the proposed algorithm will work [7].

Now, because of the LDSS property (at any given time,
“most of the state change” occurs in a small number of di-
mensions, while the change in the rest of the state space is
small), Xt,r can further be split into[Xt,r,s;Xt,r,r] so that
the covariance of the STP ofXt,r,r is small enough to ensure
that there is little error in approximating the conditionalpos-
terior of Xt,r,r, p∗∗,i(Xt,r,r), by a Dirac delta function at its
mode. We call this the Mode Tracking (MT) approximation of
importance sampling (IS), or IS-MT.When MT is combined
with PF-EIS, the resulting algorithm is called PF-EIS-MT. It
is summarized in Algorithm 1.

The IS-MT approximation introduces some error in the
estimate ofXt,r,r (error decreases with decreasing spread of
p∗∗,i(Xt,r,r)). But it also reduces the importance sampling
dimension fromdim(Xt) to dim([Xt,s;Xt,r,s]) (a significant
reduction for large dimensional problems), thus improving
the effective particle size. For carefully chosen dimension of
Xt,r,r, this results in smaller total error, especially when the
available number of particles,N , is small.

3. LANDMARK SHAPE TRACKING

A “configuration” is an ordered set ofK landmark locations.
In the 2D case, it is the x and y coordinates of the landmarks
arranged as aK dimensional complex vector (x location+ j

y location) [13]. In the current work, we assume that the con-
figuration is centered and there is zero translation over time.
In this case the configuration is completely described by its
shape,z, the global scale,es, and the global in-plane rotation,
θ. It is computed aszes+jθ wherej =

√
−1. The shape

space is aK − 2 dimensional manifold inCK (complexK-

dimensional space)[13]. A tangent space to any point in shape
space is thus aK − 2 dimensional hyperplane inCK [13].

3.1. System Model

The system model involves a first order model on the loga-
rithm of global scale,st, and on global 2D rotation angle,θt,
and a second order model on shape,zt (which is equivalent to
a first order model on “shape velocity” coefficients,ct). We
describe the details below.

Motion in shape space requires moving by small amounts
in the tangent space to the current shape. Denote the tangent
space tozt by Tzt

. Thenzt+1 is obtained by movingzt by an
amount̃vt ∈ Tzt

as follows:zt+1 = (1−ṽ∗
t ṽt)

1/2zt+ṽt [13].
We refer toṽt as the “shape velocity”. Let(Ut+1)K×(K−2)

denote the matrix of basis directions that spanTzt
. Then

ṽt ∈ CK is ṽt = Ut+1c̃t where c̃t ∈ CK−2 contains the
coefficients alongUt+1. Let ct ∈ R

2K−4 denote the real vec-
tor obtained by arranging the real and imaginary components
of c̃t as a vector, i.e.̃ct = Sct, whereS = [IK−2 jIK−2] and
Iq is theq × q identity matrix.

To maintain correspondence between elements ofct over
time, we obtainUt by starting withUt−1 and obtaining an or-
thogonal matrix that is perpendicular tozt−1 by using a Gram
Schmidt procedure applied to the columns ofUt−1 i.e.

Ut,m = [IK − zt−1z
∗
t−1 −

m−1
∑

m̃=1

Ut,m̃U∗
t,m̃]Ut−1,m,

∀ m = 1, . . . (K − 2) whereUt,m denotes themth column
of Ut. Denote this transformation byUt = g(Ut−1, zt−1).
Note that eachUt is also perpendicular to the vector of 1s,1K

(shape is translation normalized). This is enforced by making
U1 perpendicular to1K .

We assume a first order autoregressive (AR) model onct.
We also assume an AR model on log-scale,st, and on rotation



angle,θt. Thus the state consists ofXt = [st, θt, ct, zt, Ut]
and the dynamical model forXt is

st = αsst−1 + νs,t, νs,t ∼ n(0, σs)

θt = αθθt−1 + νθ,t, νθ,t ∼ n(0, σθ)

ct = Acct−1 + νc,t, νc,t ∼ N (0,Σc)

Ut = g(Ut−1, zt−1)

zt = f(zt−1, Ut, ct),

f(zt−1, Ut, ct) , (1− cT
t ct)

1/2zt−1 + Ut[I jI]ct (5)

The resulting state transition prior (STP) is

p(Xt|Xt−1) = N (αsst−1, σ
2
s)N (αθθt−1, σ

2
θ)×

N (Acct−1,Σc)×
δ(Ut − g(Ut−1, zt−1))δ(zt − f(zt−1, Ut, ct))

whereδ denotes the Dirac delta function. The STP ofst, θt is
usually broad to allow for occasional large camera motion or
zoom.

3.2. Observation Model

The landmarks’ configuration is obtained from the shape, scale
and rotation by the transformationh(st, θt, zt) = zte

st+jθt .
There are various ways to extract landmarks from image se-
quences - e.g. edge detection followed by extracting theK

strongest edges or the edges closest to predicted landmark lo-
cations or using block optical flow estimation (KLT) [14].

The simplest observation model is of the form
Yt = h(st, θt, zt)+wt, wt ∼ CN (0, σ2

oI) wherewt is a com-
plex Gaussian noise vector [12]. This assumes that there is no
background clutter: each of theK strongest edges or theK
KLT-feature points are always generated by the true landmark
location plus some error modeled as Gaussian noise. But this
is often a simplistic model. It may happen that out of theK

observed landmark locations, some landmark at some time is
actually generated by clutter (e.g. if a true landmark is blurred
or occluded, while a nearby clutter point has a stronger edge).
We model this as follows: with a small probabilityp, thekth

landmark,Yt,k, is generated by a clutter point and with prob-
ability (1 − p) it is generated by a Gaussian noise-corrupted
actual landmark, i.e. for allk = 1, . . . K,

Yt,k ∼ (1− p)CN ([h(st, θt, zt)]k, σ2
o) + pCN (0, 100σ2

o) (6)

independent of other landmarks. We denote the resulting OL
byp(Yt|Xt) = p(Yt|h(st, θt, zt)). The above is a valid model
whenever the equivalent STP of[h]k is broad (allows land-
marks to be far from their predicted location). The resulting
OL is heavy-tailed as a function of[h]k with mode atYt,k. If
the equivalent STP of[h]k is broad (e.g. this will happen if
the STP of scale,st, is broad), wheneverYt,k is generated by
clutter (i.e. is far from the STP mode), the resultingp∗ will
be multimodal. See Fig. 1 for a simple 1D example.

3.3. PF-EIS-MT for Landmark Shape Tracking

We first derive the PF-EIS algorithm and then develop PF-
EIS-MT. Since the STP ofst, θt is usually broad (to allow
for occasional large camera motion or zoom), we useXt,s =
[st, θt] and Xt,r = [ct, zt, Ut]. Note that for the purpose
of importance sampling onlyst, θt, ct are the “states” since
zt, Ut are deterministically computed fromct andXt−1. The
particles ofXt,s are sampled from its STP, i.e. using the first
two equations of (5). Conditioned on the sampled scale and
rotation,Xi

t,s = [si
t, θ

i
t], it is much more likely thatp∗ is uni-

modal, i.e.p∗∗,i(ct, Ut, zt) defined below is unimodal

p∗∗,i(ct, zt, Ut) = ζ p(Yt | h(si
t, θ

i
t, zt)) N (Acc

i
t−1,Σc)×

δ(Ut − g(U i
t−1, z

i
t−1))δ(zt − f(zi

t−1, Ut, ct))

Since the pdfs ofUt, zt, conditioned onct, Xt−1, are Dirac
delta functions, the above simplifies to:

p∗∗,i = ζ p( Yt | h(si
t, θ

i
t, f(zi

t−1, g
i, ct)) ) N (Acc

i
t−1,Σc)×

δ(Ut − gi) δ(zt − f(zi
t−1, g

i, ct))

, p∗∗,i(ct) δ(Ut − gi) δ(zt − f(zi
t−1, g

i, ct)) (7)

The importance sampling part ofXt,r is onlyct. We compute
the importance density forct by approximatingp∗∗,i(ct) by
a Gaussian at its unique mode. The mode is computed by
minimizingLi(ct) = − log p∗∗,i(ct) defined below

Li(ct) = [− log p( Yt | h(si
t, θ

i
t, f(zi

t−1, g
i, ct)) )] +

[− logN ( ct;Acc
i
t−1,Σc )] (8)

Thus the PF-EIS algorithm for landmark shape tracking
becomes

1. Imp. samplesi
t ∼ N (αss

i
t−1, σ

2
s), θi

t ∼ N (αθθ
i
t−1, σ

2
θ)

2. Computemi
t = arg minct

Li(ct), Σi
IS = [∇2Li(mi

t)]
−1

whereLi is defined in (8).

3. Imp. sampleci
t ∼ N (mi

t,Σ
i
IS).

4. ComputeU i
t = g(U i

t−1, z
i
t−1) andzi

t = f(zi
t−1, U

i
t , c

i
t).

5. Weight and Resample. Computewi
t =

w̃i
t

∑

N
j=1

w̃j
t

where

w̃i
t = wi

t−1
p(Yt|h(si

t,θ
i
t,zi

t))N (ci
t;Acci

t−1
,Σc)

N (ci
t;m

i
t,Σ

i
IS

)
.

PF-EIS-MT will have improved performance over PF-EIS when
some directions ofct have small enough variance to satisfy
the IS-MT approximation (the total error due to replacing IS
by MT for these directions is smaller than otherwise). Let

ct =

[

ct,s

ct,r

]

wherect,r satisfies IS-MT. Similarly splitmi
t

andΣi
IS as shown in Algorithm 1. We setXt,r,s = [ct,s]

andXt,r,r = [ct,r, Ut, zt]. The PF-EIS-MT algorithm is the
PF-EIS algorithm listed above, with step 3 replaced by

3’. Imp. sampleci
t,s ∼ N (mi

t,s,Σ
i
IS,s) and setci

t,r =

mi
t,r+Σi

IS,r,s(Σ
i
IS,s)

−1(ci
t,s−mi

t,s). Setci
t = [ci

t,s, c
i
t,r].
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Fig. 2. Landmark Shape Tracking results. Figs. 2(a), 2(b): MSE plots comparing PF-EIS, PF-EIS-MT with PF-Doucet and PF-Gordon.
Figs. 2(c), 2(d): Examples where PF-Doucet, PF-Gordon lose trackbut PF-EIS does not.

4. SIMULATION RESULTS

We simulated landmark shape change of a set ofK = 5 land-
marks (a deforming pentagon) and tracked it using PF-EIS,
PF-Gordon [1] and PF-Doucet [3] withN = 50 particles. The
mean squared error (MSE) plot averaged over 80 Monte Carlo
runs is shown in Fig. 2(a). The initial shape,z0, was a regular
pentagon. The shape and global motion change of the con-
figuration followed (5) withΣc = 0.0025I6, σ2

s = 0.0001,
σ2

θ = 0.25, Ac = 0.6I6, αs = 0.9, αθ = 0.9. The observa-
tions followed (6) withσ2

o = 0.04 andp = 0.2.
Note that the STP of scale (est ) is a log-normal distribu-

tion and hence evenσ2
s = 0.0001 results in a fairly broad STP

of est . The STP ofθt is also broad. Whenever one or more
landmarks are generated by clutter, the OL of log-scale (st) is
either heavy-tailed with the wrong (outlier) mode or is mul-
timodal. When many landmarks are generated by clutter, the
same happens for the OL ofθt. This combined with a broad
STP ofst, θt, results in multimodalp∗(st, θt). Whenever this
happens, most particles of PF-Doucet end up sampling from
a Gaussian about the wrong mode ofp∗(st, θt) or of p∗(st),
resulting in loss of track. See Fig. 2(c) for an example. But
PF-EIS does not suffer from this problem since it samples
from the STP ofst, θt. Also, since the STP ofct is narrow
compared to the OL,p∗∗,i(ct) is usually unimodal and thus
sampling from its Laplace approximation is valid. On the
other hand, PF-Gordon often loses track because it samples
all states from its STP, thus resulting in small effective parti-
cle size, especially when total particlesN = 50 itself is small.

In Fig. 2(b), we compare PF-EIS and PF-Gordon with
PF-EIS-MT for a landmark shape sequence withK = 8 land-
marks. Only the first 2 dimensions ofct had large variance,
i.e. Σc = diag(0.0004I2, 0.000025I10). So we used the IS-
MT approximation for the last 10 dimensions. Thus, for this
16-dimensional problem, the importance sampling dimension
was only 6, which resulted in improved effective particle size
when compared with PF-EIS (and greatly improved effec-
tive particle size compared to PF-Gordon). The tracking used
N = 20 particles and thus effective particle size is very crit-
ical here. Other model parameters wereσ2

s = 0.0001, σ2
θ =

0.16, Ac = 0.6I12, αs = 0.9, αθ = 0.9, σ2
o = 0.01, p = 0.2.
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