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Abstract

Dynamic memory management can make up to 60% of total program execution time. Object oriented languages such as C++ can use
20 times more memory than procedural languages like C. Bad memory management causes severe waste of memory, several times that
actually needed, in programs. It can also cause degradation in performance. Many widely used allocators waste memory and/or CPU
time. Since computer memory is an expensive and limited resource its efficient utilization is necessary. There cannot exist a memory allo-
cator that will deliver best performance and least memory consumption for all programs and therefore easily tunable allocators are
required. General purpose allocators that come with operating systems give less than optimal performance or memory consumption.
An allocator with a few tunable parameters can be tailored to a program’s needs for optimal performance and memory consumption.
Our tunable hybrid allocator design shows 11-54% better performance and nearly equal memory consumption when compared to the

well known Doug Lea allocator in seven benchmark programs.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Computer programs usually cannot foresee the amount
of memory they will need to perform their tasks which of-
ten depend on the inputs provided to them. Moreover, ob-
ject oriented programming languages such as C++ use
dynamic memory transparent to the programmer (Calder
et al., 1994; Chang et al., 2001). C++ programs can use
20 times more memory than C programs (Haggander and
Lundberg, 1998). Operating systems usually provide sys-
tem library routines and space to allocate and free dynamic
memory for the program. Dynamic memory allocation and
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deallocation can constitute up to 60% of total program exe-
cution time (Berger et al., 2001; Zorn and Grunwald,
1992a). The increasing program demand for dynamic mem-
ory has led to the search for more efficient allocation algo-
rithms that minimize time and memory costs (Chang and
Daugherty, 2000; Nilsen and Gao, 1995). The memory
allocation issue arises in permanent storage also and simi-
lar algorithms as used for dynamic memory allocation are
utilized for optimal performance (Iyengar et al., 2001).

In C++ programs, dynamic memory (also called heap
memory) is allocated and freed by invoking operators
new and delete and in C by calls to library routines mal-
loc(), realloc(), and free(). Usually, the C++ new and de-
lete operators rely on the C library routines for dynamic
memory. These library routines can be implemented using
different algorithms. A dynamic memory management
algorithm is often referred to simply as an allocator or allo-
cation algorithm. An allocator’s memory consumption for
a particular program is the high-water mark of memory it
takes from the operating system to satisfy the program’s
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Fig. 1. Program memory space.

requests for dynamic memory (Berger et al., 2001). An allo-
cators’s performance is the amount of time it consumes to
perform all its task. In Unix systems, an allocator could use
the shrk library routine or the memory mapping system
call, mmap, to obtain dynamic memory from the operating
system. In the program’s memory space the stack grows
downwards from the top and the heap upwards towards
the stack as shown in Fig. 1.

The allocator’s job is to provide memory to the program
when requested and take it back when the program returns
it. It has to obtain memory from the operating system
when it has no more memory left, as in the beginning of
program execution, keep track of the memory bytes re-
turned by the program so they can be used again to service
future program requests. Furthermore, the allocator
should try to do all these tasks in the least possible amount
of time using the least possible amount of heap memory
space taken from the OS. In other words the allocator
should try to maximize performance, and minimize
memory consumption (Wilson et al., 1995).

There appears to be a trade-off between performance
and memory consumption, however (Hasan and Chang,
2003). In the course of memory allocation and deallocation
by the program, the contiguous heap memory space gets
fragmented because the deallocations are isolated and usu-
ally not in the same sequence as the allocations. Fragmen-
tation, which is proliferation of small disjoint free memory
blocks in the contiguous heap space leads to memory waste
and increase in allocator’s memory consumption. Fig. 2
shows linked fragmented free memory blocks between allo-
cated (shaded) blocks. A program request for six words of
memory in this fragmented heap cannot be satisfied even
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Fig. 2. Free list.

though 10 words of memory are free. More memory will
have to be obtained from the OS increasing allocator’s
memory consumption due to fragmentation.

If memory consumption is to be minimized more time
will be needed to better manage the limited heap to mini-
mize the chances of fragmentation. Thus heap fragmenta-
tion is the chief problem (Beck, 1982; Denning, 1970;
Wilson et al., 1995) that has to be solved to minimize mem-
ory consumption. If there were unlimited heap memory
available allocation algorithms would be very fast but
unfortunately memory is expensive and limited. The goal
of minimizing memory consumption conflicts with the goal
of high performance and a good allocator has to be able to
balance the two interests (Wilson et al., 1995).

For any given allocation algorithm it is possible to find a
program with memory allocation and free sequence that
will ‘beat’ the allocator’s policy i.e. cause it to increase
memory consumption or/and degrade performance (Garey
et al., 1972; Wilson et al., 1995). For example, a program
specially designed to deallocate heap memory blocks that
are not contiguous to any existing free block will cause very
high fragmentation. An allocator whose policy is to fight
fragmentation by immediately coalescing contiguous free
blocks will be rendered ineffective by such a program. In
practice programs are written to solve specific problems
and therefore this problem does not arise (Stephenson,
1983). Fortunately, real application programs show regular
patterns in their memory allocation and deallocation
behavior that can be exploited to create high-performance
allocation algorithms (Wilson et al., 1995; Zorn and Grun-
wald, 1992a). Programs tend to allocate a large number of
small sized heap memory objects, a very small number of
objects of size greater than 1 KB, and most of the alloca-
tions are for a small number of sizes (Barrett and Zorn,
1993). These properties of programs suggest that an alloca-
tor that handles small and large objects differently might be
more efficient.

Given that programs vary widely in their dynamic mem-
ory usage and different allocation policies work better for
different programs, a single allocator or allocation policy
that works best for all programs is not possible. Memory
allocators provided with operating systems show less than
optimal memory consumption or performance and can in
fact be very inefficient in some programs. The most power-
ful allocator, therefore, must be flexible and tunable to the
peculiar needs of each program. To be of practical use it
must also be easily and quickly tunable. This is the ratio-
nale behind the tunable allocator proposed in this paper.

The rest of this paper discusses some related dynamic
memory allocation algorithms in Section 2, describes the
design of our tunable allocator in Section 3, describes the
test programs, allocators, and inputs in Section 4, and fi-
nally, reports, compares and analyzes the results in Section
5. We show with results from seven well known programs
that our allocator performs better than one of the fastest
known allocators, the Doug Lea allocator. Section 6
summarizes the papers’s conclusion.



Y. Hasan, J. M. Chang | The Journal of Systems and Software 79 (2006) 1051-1063 1053

2. Related allocation algorithms

The basic allocator data structure is a linked list of free
memory blocks in the heap space as shown Fig. 2 (John-
stone and Wilson, 1998). The linked list is called the free
list as it contains available memory blocks. The available
blocks comprise blocks that were allocated and later freed
by the program, preallocated blocks, and split or coalesced
blocks. In some allocators, other structures like cartesian
trees, bitmaps, and multiple free lists are also used. A pro-
gram request to the allocator for dynamic memory is ser-
viced by searching the free list for a memory block equal
to or larger than the requested number of bytes. Different
allocation policies can be used in the selection of a block
from the blocks in the free list. More details on all these
algorithms and other variants are available in literature
(Knuth, 1973; Lee et al., 2000; Wilson et al., 1995).

2.1. Sequential fits

Sequential fits refers to a class of allocators including
first fit, next fit, and best fit. The first-fit policy starts the
search from the beginning of the free list and selects the
first block large enough for the request. Splitting of
the block into two parts, one of the requested size given
to the program, and the other the remainder that is put
back in the free list, is performed when the selected block
happens to be larger than requested. First fit suffers from
poor locality of reference and fragmentation at the begin-
ning of the free-list (Johnstone and Wilson, 1998; Knuth,
1973). The next-fit policy is similar to first fit but hoping
to reduce fragmentation at the beginning of the free list,
the search of the free list begins from where it left off in
the last allocation. However, fragmentation in next fit
appears to be worse (Johnstone and Wilson, 1998). The
best-fit policy requires selecting the smallest block in the
free list that will satisfy the request. This policy is slow
because it may lead to exhaustive searches of a long free list
but it tends to reduce fragmentation and memory con-
sumption (Johnstone and Wilson, 1998).

2.2. Segregated fits

Instead of a single free list, the segregated fit policy re-
moves the time cost of searching by keeping multiple segre-
gated free lists one for each memory block size (Fig. 4).
Block sizes and therefore the number of free lists are usu-
ally limited by rounding up the program’s requested mem-
ory size to a multiple of eight such as 16, 24, 32, etc. This
results in some internal fragmentation, meaning the allo-
cated size is slightly greater than that requested. Most mod-
ern computer systems usually require address alignment on
an eight byte boundary so some padding bytes are included
in an allocated memory block whenever necessary for ad-
dress alignment. Some internal fragmentation is therefore
common to all allocation policies including the sequential
fits: first fit, next fit, and best fit. Internal fragmentation

like external fragmentation, the proliferation of small dis-
joint memory blocks in the heap, also increases memory
consumption.

2.3. Coalescing

Some of the memory blocks in the free list could be con-
tiguous and others separated by allocated blocks. The con-
tiguous free blocks can be coalesced to yield fewer larger
blocks. Coalescing of blocks can be performed immediately
when they are freed or deferred until needed. When a
search of the free list for the requested memory block size
fails to find a block of a size equal or larger, then coalescing
of free contiguous blocks in the free list can be performed
to create bigger blocks. If the coalescing is stopped as soon
as a block large enough for the requested number of bytes
emerges it is called incremental coalescing. Alternatively,
all the contiguous blocks in the free list are coalesced. Coa-
lescing is a process that is slow, especially when the free list
is long, but quite evidently reduces fragmentation and
keeps memory consumption low (Johnstone and Wilson,
1998; Larson and Krishnan, 1998). It can also be wasteful
if not used sparingly and at the right time as coalesced
blocks might be split up again for program requests for
smaller blocks.

2.4. Simple segregated storage

A simplified version of segregated fit policy is simple or
pure segregated storage (Wilson et al., 1995). In this alloca-
tion policy multiple free lists are kept one list for each allo-
cated size but no splitting or coalescing is performed. Each
requested size is rounded up to a multiple of eight (or some
other number such as a power of two) and allocated from
the heap memory taken from the OS. When freed the allo-
cated block is kept in the free list for its size. Each free list
can store blocks of only one fixed size. Memory consump-
tion is very high because a memory block’s size becomes
fixed and cannot be used for a request for any other size.
Memory consumption is therefore the sum of maximum
amount of memory requested for each block size. In some
programs it could be the same as the maximum amount of
memory used by the program but usually it is much higher.
However, the simple segregated storage allocator is very
fast for exactly the same reason it uses so much memory
which is no searching, splitting, or coalescing is performed
by it. It shows the trade-off involved in the allocator’s two
goals of reducing time and memory costs (Zorn and Grun-
wald, 1992b). The Chris Kingsley allocator used in this
study is an example of this type of allocators.

2.5. LIFO and FIFO

Many variants of the algorithms mentioned above are
possible. When an allocated memory block is freed by
the program it can be inserted at the beginning, end, or
other positions of the free list. The blocks in a free list
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can be ordered by address or size. When allocating the
block could therefore be selected using the LIFO (last in
first out) or FIFO (first in first out) policy. These two
policies will result in differences in selection of blocks to
allocate from and impact on locality of reference and
fragmentation.

2.6. Bitmaps

Bitmaps are also used to keep track of free memory
words in the heap (Wilson et al., 1995). Finding a suitable
size block of memory to service a program request requires
a search of the bitmap. These algorithms are thought to be
slow but memory consumption is expected to be good be-
cause no block headers are needed to store the size of the
block reducing internal fragmentation. However, bitmaps
are useful in keeping track of non-empty free lists and
reducing the search time to find one. The bitmap aided bin-
ary search time to find a non-empty free list reduces to
O(logn) from O(n) taken by a sequential search of n free
lists.

2.7. Buddy system

Buddy system and their several variants are well known
algorithms that allocate memory in fixed block sizes that
are always split into two parts of a fixed ratio, repeatedly,
until a block closest to the requested size arises (Chang and
Gehringer, 1996). Coalescing is fast because the address of
the buddy, the other half of a block being coalesced can be
found quickly with a simple mathematical calculation.
Buddy system allocators, however, suffer from significant
internal fragmentation and faster and more space efficient
algorithms have been found (Stephenson, 1983).

Binary buddy system, for example, rounds up the re-
quested size to the next power of 2. Thus a request for
513 bytes will result in allocation of a block of 1024 bytes,
which is the next power of 2. The internal fragmentation in
this case will be 511 bytes. Variants of the binary buddy
system have attempted to reduce internal fragmentation
by using buddy blocks of different ratios such as fibonacci
series but internal fragmentation remains a problem. In a
recent study best-fit and next-fit allocators showed much
less fragmentation than variants of the buddy system
(Johnstone and Wilson, 1998).

3. Design and implementation of allocator

We aim for an allocator that gives high performance
with low memory consumption. Since no allocation algo-
rithm can be optimal for all programs we have made our
allocator’s algorithm flexible and easily tunable so that it
can be used in any program to deliver good performance
and memory consumption. This will make the program-
mer’s job much easier than having to write a new custom
allocator for every program that needs dynamic memory
optimization. By providing a small set of tunable parame-

ters that have direct effect on performance and memory
consumption the allocator can be tailored to the desired
needs of the program (Lea, 2002). No code change is re-
quired but only turning on or off a handful of flags and
parameters in the allocator. Generic parameter settings
that will work well for most programs are also specified.
The contribution of this paper is to describe the design
and performance and memory consumption results of such
a tunable allocator.

3.1. Memory block structure

Memory requests by the program for any number of by-
tes is rounded up to a multiple of eight number including
the additional four header bytes for storing the block’s size
and allocation status (free or allocated) and padding bytes
for alignment on an eight-byte address boundary if needed.
The address returned to the program is the address of the
fifth byte of the memory block. Since the size of the block
is a multiple of eight number, and the smallest block size is
16 bytes, the three least significant bits in the block’s 4-byte
header are free to be used for storing other information.
The least significant bit, called the inuse bit, is set to 1 when
the block is allocated and to 0 when it is freed. The second
least significant bit is set to 1 if the previous contiguous
block is allocated and to 0 when it is free. The third least
significant bit is currently unused. When freed the size of
the block in the header is copied into the last four bytes
of the block, the trailer, as it is needed in backward coalesc-
ing of freed contiguous blocks. Fig. 3 shows the structure
of an allocated block on the left and a free block on the
right side.

3.2. Memory mapping

For rarely requested memory chunks of sizes greater
than 100 KB, the memory mapping facility if supported
by the operating system, is utilized. These huge chunks
are returned to the OS, or unmapped, as soon as they are
freed by the program. Memory mapped regions of the pro-
gram space are usually separated from the heap space and
thus the chances of fragmentation and increased memory

Allocated Free
size 1|11 | size 110
8-byte g
aligned
address payload

Fig. 3. Allocated and free memory blocks.
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consumption are reduced by using memory maps. How-
ever, memory mapping is an operation that takes up a
lot of CPU cycles and hurts allocator performance; there-
fore, it is used only for rarely requested sizes. If the mem-
ory mapping facility is not available in the OS, these sizes
are allocated like the other sizes greater than 1 KB
described below.

3.3. Best fit for large blocks

We keep a single common doubly linked free list, big
free_list in Fig. 4, for tracking free memory blocks of sizes
greater than 1 KB and use the best-fit policy with deferred
coalescing. The best-fit policy incurs very low fragmenta-
tion, especially when size distribution is spiked and domi-
nated by smaller sizes (Bays, 1977; Fenton and Payne,
1974; Shore, 1975). Coalesced and uncoalesced blocks in
the free list are separated and kept in two sub-lists. When
freed the large memory blocks are inserted at the beginning
of the list of uncoalesced blocks in the free list. Incremental
coalescing is performed when needed for allocation and
when the memory consumption becomes greater than a
configured threshold (say, 106% of the maximum number
of bytes allocated by the program). Complete coalescing
of all free blocks in the heap space can also be performed
to keep memory consumption in check. Since program re-
quests for sizes greater than 1 KB are relatively very few
this strategy is expected to reduce fragmentation among
large blocks and not incur too heavy a performance cost.

3.4. Segregated fit for medium sized blocks

For memory blocks smaller than 1 KB, 127 separate free
lists, one for each multiple-of-eight size, are kept in an ar-
ray of free lists as shown in Fig. 4. This technique known as
segregated fit is similar to best fit in the choice of blocks to
allocate from and is thought to improve locality of refer-
ence. The segregated fit approximates the best-fit policy
which has been shown to be among the best in minimizing
fragmentation and allocation policies that are best in terms
of fragmentation are found to be also the best in terms of
locality of reference (Johnstone and Wilson, 1998).

V%%

16 24 free-lists 1024
big_free_list

Fig. 4. Free lists.

The 127 sizes are further divided into small and medium
sizes. The tunable parameter QL. HIGH can be set to any
multiple of eight number greater than § and less than 1024.
Block sizes less than or equal to QL._HIGH are considered
small and managed using a modified memory efficient var-
iant of the simple segregated storage policy described ear-
lier. Sizes above QL_HIGH and less than or equal to
1024 are considered medium and managed using the best-
fit policy with incremental coalescing. Table 4 shows that
the vast majority of requests is for sizes that are less than
1 KB in all programs except ghostscript.

The block size divided by eight (right shifted three places
for speed) gives the index of the array cell that starts the
corresponding free list. Thus, the free list for block size
16 is found in cell 2 of the array, and for block size 1016
in cell 127. Most of the allocated objects are released
quickly (Zorn and Grunwald, 1992a) after allocation and
then reused (Lee et al., 2000) making segregated fit a natu-
ral strategy for managing them efficiently.

Coalesced and uncoalesced blocks in each free list are
separated. Thus, when coalescing only the uncoalesced free
blocks in a free list are processed avoiding redundant at-
tempts to coalesce already merged blocks. Freed blocks
have their inuse bit cleared, the previous inuse bit in the fol-
lowing contiguous block cleared and then are inserted at
the beginning of the list of uncoalesced blocks in their
own free lists. The LIFO policy which is thought to reduce
fragmentation is used for allocation (Johnstone and
Wilson, 1998).

3.5. Bitmap for quick search

An array of four 32-bit words monitors the empty or
non-empty status of the 128 free lists. Finding a non-empty
free list requires a binary search of the bitmap and in the
worst case only 7 operations (log 128) are needed. A linear
search which is still used in some modern allocators (Lar-
son and Krishnan, 1998) would take up to 128 operations
in our case. The cost of maintaining the bitmap is small and
the saving in search time great.

3.6. Splitting

Program memory request for medium sizes are satisfied
from the corresponding free list and if empty from the next
bigger free list. If both of them are empty and the param-
eter SPLIT is defined the bitmap is searched to locate the
next bigger non-empty free list. If a free list other than
the one for large blocks is found the first block in it is taken
out and split into two blocks of the requested size and
remainder. The requested size block is given to the pro-
gram and the remainder put in the free list for its own size.
If the non-empty free list found by the bitmap search is the
free list for block sizes greater than 1 KB then the smallest
block in it, as required in the best-fit policy, is taken out
and split for allocation. Requests for large blocks can also
result in splitting of a larger block.
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3.7. Incremental coalescing

If the bitmap search fails to find a non-empty free list
and the parameter COALESCE is defined the bitmap is
searched, repeatedly if needed, to find non-empty free lists
of smaller sizes and any uncoalesced blocks in them are
coalesced until a block greater than or equal to the re-
quested size emerges or no more non-empty free lists with
uncoalesced blocks remain.

3.8. Complete coalescing

If incremental coalescing fails to provide the requested
number of bytes and parameter COALESCE QL is de-
fined and the amount of memory taken by the allocator
from the OS is more than a configured ratio (e.g. 106%)
of the maximum number of bytes used by the program till
then, all the blocks in all the quick lists for small sizes
managed by the simple segregated storage policy are also
coalesced. In other words, all free blocks in the heap space
are coalesced in an attempt to produce a chunk large
enough for the requested size. If the coalescing produces
one or more blocks large enough the smallest such block
is used for allocation. This block is split if needed as de-
scribed earlier. Blocks that are of the same size as, or only
eight bytes more than, the requested size are not split but
allocated in their entirety to save splitting time cost and
also because the smallest allocation block size is 16 bytes.

3.9. Wilderness allocation

If coalescing of all free blocks in the heap space does not
yield a large enough chunk either then the wilderness,
which is the name used for the uppermost contiguous vir-
gin part of the heap space, is used for allocation (Wilson
et al., 1995). If the wilderness is not large enough it is ex-
panded upwards towards the program stack by obtaining
more memory from the operating system via the sbrk li-
brary routine. It is also expanded backwards by coalescing
with any free preceding memory blocks contiguous to it.
Expanding the wilderness upwards, however, leads to more
of system memory being assigned to the program which is
increased program memory consumption. For this reason,
the wilderness is preserved and allocated from only when
there are no other free memory blocks of adequate length
to satisfy the program’s requested size of memory. Memory
is obtained from the operating system into the wilderness in
units of multiples of system page size. Our allocator allo-
cates in multiples of 8 KB but the value is configurable.

3.10. Small blocks in quick lists

For program requests for small blocks the allocation
process is similar to that for medium blocks but with a
few important differences. Free small blocks are kept in
segregated free lists called quick lists using the simple seg-
regated storage allocation policy (Wilson et al., 1995). They

are called quick lists because insertion and removal of a
quick list block is very fast as it is singly linked. The inuse
bit in both allocated and freed small blocks is left set unlike
medium and large size blocks. The rationale is that small
blocks are the most frequently allocated and deallocated
sizes and significant performance gains can be achieved
using quick lists. According to a study allocators should ex-
ploit the fact that on average 90% of all objects allocated
are of less than seven sizes (Johnstone and Wilson, 1998).
Another study found that the most common size class is
32-bytes or smaller and 95% of requested blocks are
260 bytes or smaller in size (Zorn and Grunwald, 1992a).
The small blocks are not coalesced or split until a complete
coalescing of the whole heap, determined by the
COALESCE_QL parameter, is carried out.

When a quick list is found empty the next bigger quick
list may be used for allocation. If that is empty too then the
allocation procedure proceeds as in the case of medium
sizes with one difference. After splitting a bigger block
the remainder is preallocated into the quick list. The
remainder is split repeatedly into blocks of the requested
size and inserted into the beginning of the quicklist in antic-
ipation of future program requests for this size. A maxi-
mum of hundred blocks are preallocated and if a
remainder still remains it is put in the free list for its size.
Preallocating a large number of small blocks tends to help
performance (Lea, 2002), and keeps the small blocks,
which are governed by simple segregated policy, from caus-
ing excess fragmentation in the heap space occupied by
medium and larger blocks (Seidl and Zorn, 1997).

3.11. Other tuning parameters

Another parameter COALESCE_IN_FREE controls a
complete coalescing of all contiguous free memory blocks
in the heap space when the number of allocated blocks falls
below a specified value. A counter is kept for number of cur-
rently allocated memory blocks. When the counter value
falls below 10 blocks and memory obtained from the OS
is more than 100 KB all contiguous free blocks are coalesced
to reduce fragmentation. This option is helpful in programs
that allocate a large number of blocks and then free most of
them, repeatedly, in the course of program execution.

The allocator also monitors the number of current allo-
cations, the maximum number of allocations, the total
number of allocations, the current number of allocated by-
tes, the maximum number of allocated bytes, the total
number of allocated bytes, the total number of dealloca-
tions, and the amount of heap memory, and mapped
memory obtained from the operating system. The para-
meter MONITOR controls some of these while other
needed statistics are always kept by the allocator.

3.12. Memory reallocation

Reallocating an already allocated block is done through
the realloc() library function call. The request is usually for
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enlarging the size of the block but preserving its contents.
We extend the existing block with free contiguous blocks
preceding or following it if found. If a large enough block
is obtained the data is copied to the beginning of the block
if not already there and returned to the program. If merg-
ing does not yield the required size of memory, the normal
allocation method for the requested size block is per-
formed, the data copied from the old block to the new,
the old block released, and the new one returned to the
program.

4. Test programs and allocators

We tested our allocator with seven different C/C++ pro-
grams shown in Table 2 that allocate large numbers of
heap objects. The memory allocation and deallocation
behavior of these applications was captured in a trace file
with our tracing allocator and simulated with a driver;
thus, most or all of the program execution time was de-
voted to allocating and freeing heap objects. The driver
for each simulated application program is a C language
source file automatically generated by a shell script calling
a C program that reads the trace file.

The workload of the seven programs (Table 2) is shown
in Table 1 where we see the different object sizes allocated
by the programs. The second column in Table 1, #sizes,
shows the total number of different object sizes allocated
by one of our other allocators used only for finding the
sizes of objects allocated by a program. Each allocation re-
quest size is rounded up to a multiple of eight size including
additional eight bytes for a header and a trailer. The #small
column shows the number of allocated objects whose sizes
were 1 KB or less and the #large column the number of
allocated objects with sizes greater than 1 KB. The %SS
overhead column shows the percentage of extra memory
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consumption of a pure segregated storage allocator allocat-
ing in multiple of eight sizes, over the maximum number of
bytes allocated by the program.

4.1. Program inputs

The source codes for programs cfrac, espresso, gawk,
and p2c¢ were taken from Benjamin Zorn’s web site as
shown in Table 2. Most of these programs have been used
in previous studies and serve as good benchmarks (Zorn
and Grunwald, 1992a,b; Nilsen and Gao, 1995; Seidl and
Zorn, 1997; Johnstone and Wilson, 1998; Berger et al.,
2001; Hasan and Chang, 2003). The inputs to the programs
came with the program source code except for electric
which was run without any input and cfrac which takes a
large number as input for factoring.

4.2. Lea and Kingsley allocators

The well known allocation algorithms used for compar-
ison with our allocator are Doug Lea’s version 2.7.0 alloca-
tor (DL270), Doug Lea’s version 2.7.2 allocator (DL272),
and Chris Kingsley’s allocator (CK). Lea’s allocator is quite
fast, memory efficient and a good general purpose allocator
(Berger et al., 2001; Lea, 2002). The GNUC library alloca-
tor is derived from the Lea allocator. The following
description of this allocator is taken from the comments
in the source code by Lea himself.

The Lea allocator is said to be among the fastest, most
space-conserving, tunable, and portable general purpose
allocators. The main properties of the algorithms are: for
large (=512 bytes) requests, it is a pure best-fit allocator,
with ties normally decided via FIFO (i.e. least recently
used), for small (<64 bytes by default) requests, it is a cach-
ing allocator, that maintains pools of quickly recycled
blocks, in between, and for combinations of large and
small requests, it does the best it can trying to meet both

Table 1
Allocated sizes goals at once, and, for very large requests (=128 KB by de-
Program P — Hlarge 7SS fault), it relies on system memory mapping facilities, if sup-
ported. The DL272 allocator also reduces memory
ghostscript 68 34 34 139.53 ionb . he OS 1
espresso 17 1o s 3844 consumption by returning excess memory to the OS severa
p2e 1 19 5 117.69 times during program execution, when possible. It is an
gawk 23 19 4 121.49 enhanced version of DL270.
efiac 16 10 6 100.73 Chris Kingsley’s allocator (Wilson et al., 1995), used in
groff 42 26 16 107.09 BSD 4.2, is a very fast simple segregated storage allocator
electric 339 127 212 126.47 . . .
but suffers from severe internal fragmentation as it rounds
Table 2
Programs measured
Program Program language Lines of code Program description ftp site
cfrac C 6K Large number factoring ftp://ftp.cs.colorado.edu/pub/misc
groff 1.10 C++ 70+ K GNU format tool ftp://ftp.cis.ohio-state.edu/pub/gnu
gawk C 8.5K GNU awk ftp://ftp.cs.colorado.edu/pub/misc
ghostscript-6.53 C 37K PostScript interpreter ftp://mirror.cs.wisc.edu/pub/mirrors/ghost/gnu/gs653
electric C 205K VLSI design system www.electriceditor.com
espresso C 155K PLA optimizer ftp://ftp.cs.colorado.edu/pub/misc
plc C 95K Pascal-to-C translator ftp://ftp.cs.colorado.edu/pub/misc
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up every requested size to the next power of two. Like most
simple segregated storage allocators it is among the fastest
with high memory consumption. It is included to give an
idea of the relative performance and memory consumption
of the other allocators.

4.3. Program statistics

Table 3 gives some idea of the basic statistics of the test
programs. The second and third columns show the total
number of bytes requested and actually allocated, respec-
tively. The bytes allocated are usually more than requested
because of padding, header, and trailer bytes included in
each allocated block by the allocator used to generate the
statistics. The number of bytes actually allocated will there-
fore vary for different allocators. Here we see the figures
from one of our other allocators with the over head of pad-
ding bytes plus eight book-keeping bytes in each allocated
block. The fourth and fifth columns show the numbers of
allocated bytes from small sized allocated blocks (1 KB
or smaller) and larger allocated blocks. The sixth column,
Max bytes, stands for the maximum number of allocated
bytes at any time during program execution. This following
two columns again show the maximum numbers of bytes
from small and larger blocks.

Table 4 shows more statistics of the test programs. The
second column is for the total number of allocations, the
third for the total number of allocations of small and med-
ium sizes (i.e. 1 KB or less), and the fourth for the total
number of allocations for sizes greater than 1 KB. The fifth
column represents the maximum number of allocated ob-
ject at any time during program’s run, the sixth is for the
number of small sized objects among them, and the seventh
for the number of large size objects. The following columns
are for the total number of reallocations and frees.

Table 3
Basic program statistics I
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4.4. Test setup and execution

The driver C source files and the malloc.c allocator file
were compiled and linked using the gcc compiler. The
main() function of the driver called the malloc, realloc,
and free functions in a way identical to the program being
simulated. In function main() the clock() function was
called to record the times at the beginning and end of the
test run and the difference between the two divided by
the CLOCK_PER_SEC system constant, taken as the total
execution time for the program/allocator being tested. The
output of each execution gave the program execution time
(both in clock ticks and milliseconds) and the amount of
dynamic memory used by the allocator. Each program
was run at least once with each allocator. Thus with seven
programs and three allocators 21 readings of execution
time and memory consumption were taken. Several more
readings were taken for the tunable allocator for tuning
it to either maximize performance or minimize memory
consumption.

The drivers that simulated the programs allocation, real-
location, and deallocation behavior repeated the programs
several times in a loop. All the unfreed blocks of a program
were deallocated before repeating the loop of allocations,
reallocations and deallocations. The number of repetitions
ensured that over one millions allocations and dealloca-
tions each were performed for every program. The results
can be considered more reliable with this large number of
operations by the allocator. Table 5 shows the number of
repetitions, allocations, frees, and reallocations for each
program. The number of allocations and frees are equal
in all programs that do not call realloc as all unfreed blocks
are released before repeating the loop but may be slightly
different in those that call realloc because realloc can call
both malloc and/or free different number of times.

Program Bytes requested Bytes allocated Small bytes Large bytes Max bytes Max small bytes Max large bytes
ghostscript 490,439,032 490,852,368 3,952,680 486,899,688 1,834,736 25,088 1,816,096
espresso 15,250,706 17,191,960 11,622,608 5,569,352 192,392 111,640 168,376

p2c 4,804,760 7,040,904 7,037,864 3040 527,624 524,584 3040

gawk 25,753,395 30,401,232 30,362,112 39,120 45,696 14,784 30,912

¢frac 2,162,877 2,884,624 2,858,696 25,928 2,863,488 2,858,424 5344
electric 9,678,834 10,786,432 3,371,960 7,414,472 5,602,904 1,208,560 4,396,464

groff 1,306,413 1,703,944 1,573,208 130,736 382,232 304,056 78,176
Table 4

Basic program statistics II

Program Total allocs ~ Small allocs  Large allocs  Max allocs ~ Max small allocs ~ Max large allocs  Total reallocs  Total frees
ghostscript 51,405 31,132 20,273 501 439 76 1 51,263
espresso 190,109 188,624 1485 2916 2914 2 2223 190,137
p2c 199,145 199,143 2 12,653 12,651 2 3 187,932
gawk 471,005 470,993 12 597 586 11 81,486 470,447
¢frac 67,639 67,633 6 67,629 67,627 2 0 67,093
electric 76,965 76,228 737 22,133 22,084 52 0 66,983
groff 43,340 43,303 37 13,062 13,046 16 0 30,333
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Table 5

Program execution

Program Repeats Allocs = frees Reallocs
ghostscript 20 1,028,001 0
espresso 6 1,140,048 13,338
p2c 6 1,194,834 0
gawk 3 1,412,967 244,458
cfrac 15 1,014,585 0
groff 24 1,040,041 0
electric 14 1,077,441 0

5. Performance and memory consumption

Performance was measured on a Pentium Il 400 MHz
machine with 128 MB of memory, running RedHat Linux
6.1. The paging or swapping activity was found to be al-
most negligible in the test runs but not studied separately.
We measured the number of clock cycles converted to mil-
liseconds to compare execution times of allocators. Lower
execution time meant higher performance. Memory con-
sumption was recorded by each allocator and was output
after the completion of execution and recording of execu-
tion time intervals. Several readings were taken for each
program until the timing values became stable.

5.1. Memory and performance tuning
We tested our allocator with a generic setting of the tun-

ing parameters. The parameters are configured in the allo-
cator source file, malloc.c. The tests were repeated only a

Table 6
Generic parameter settings

few times by tuning the allocator for each program before
optimal parameter setting for the desired performance and/
or memory consumption was achieved. The performance
and memory consumption with the generic settings were
also good. Better performance and memory consumption
results were obtained by tuning thus validating the idea
of a quickly tunable allocator. The following tables provide
the results of our tests.

The generic parameter settings are shown in Table 6. As
mentioned before, these parameters control allocation pol-
icies and directly impact performance and memory con-
sumption. The meaning of each tuning parameter should
be evident from its name but the section describing our
allocator’s algorithm provides details. In the table, 1 repre-
sent true and 0 false. Table 7 shows the parameter settings,
two rows for each program, one for least memory (mem)
and one for maximum performance (perf).

5.2. Tuning the allocator

The parameter MONITOR, as shown in Table 7, is usu-
ally turned off unless statistics are to be collected. The
parameter settings shown in Table 7 are just one amongst
the many possibilities. Usually for least memory consump-
tion the COALESCE and COALESCE_QL should be
turned on. SPLIT should also be on for splitting larger
blocks to service request for smaller blocks. COA-
LESCE_IN_FREE should be on in programs that allocate
a large number of blocks and then free most of them,
repeatedly; the allocation graph of such programs will
show several tall peaks and low valleys. The QL_HIGH
parameter determines the number of quick lists and the size
of the largest quick list block. For less memory consump-
tion this value should be kept low as larger number of

Parameter Value . . ’ )

MONITOR ) quick lists, which are managed by simple segregated stor-
COALESCE 1 age policy, will tend to increas.e memory cqnsumption.
COALESCE_QL 1 For best performance a policy approaching pure segre-
COALESCE_IN_FREE 0 gated storage should be adopted. The QL_HIGH value
SPLIT G 12 should therefore be increased and the coalescing and split-
QL _HIGH ! ting parameters turned off. However, in some programs
Table 7

Tuned parameter settings

Program MONITOR COALESCE COALESCE_QL COALESCE_IN_FREE SPLIT QL_HIGH
ghostscript(mem) 0 1 1 1 1 72
ghostscript(perf) 0 1 1 1 1 72
espresso(mem) 0 1 1 1 1 72
espresso(perf) 0 0 0 0 1 72

p2c(mem) 0 1 1 0 1 264

p2c(perf) 0 0 0 0 0 72
gawk(mem) 0 1 0 1 1 264
gawk(perf) 0 1 0 0 1 264
cfrac(mem) 0 0 0 0 1 72

cfrac(perf) 0 0 0 0 1 72
electric(mem) 0 0 0 1 1 72
electric(perf) 0 0 0 0 1 72
groffimem) 0 0 0 1 1 72

groffiperf) 0 0 0 0 1 72
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coalescing and splitting has been found to increase perfor-
mance by reducing system calls to sbrk or mmap and by
improving cache performance by keeping the heap space
size small. It is well near impossible to predict the exact
parameter settings for every program but general guide-
lines mentioned above combined with a few trial runs will
lead to them quickly.

Any information about the program allocation behavior
will also be of immense value. For example, the allocation
graph of the program cfrac in Fig. 5 tells us that no coalesc-
ing or splitting is needed and pure segregated storage will
deliver both optimal performance and memory consump-
tion. This program does not release any significant number
of memory blocks until near its end and therefore has al-
most nil fragmentation. In such programs simple segre-
gated storage policy works best both for performance
and memory consumption, as shown in Table 7.

One strategy for finding the optimal parameter setting
would be to turn off SPLIT and all coalescing parameters
and start with a high value for QL_HIGH such as 512 or
higher but less than 1024. This will approximate pure seg-
regated storage and might (or might not) incur high mem-
ory consumption. Performance will be maximized. To
reduce memory consumption, SPLIT and other coalescing
parameters can be turned on one by one until the desired
memory consumption is achieved. The minimum amount
of memory required by the program will also be output
by the allocator and memory consumption cannot be re-
duced below this level. Further reduction in memory con-
sumption can be attempted by decreasing the value of
QL_HIGH. Thus a range of configurations exists in order
to tune space and time costs of the allocator to the desired
levels.

5.3. Memory consumption
Table 8 compares heap memory consumption of the

allocators for the tested applications. DL272 column is
for Lea’s, CK for Chris Kingsley’s allocator, and HC for

Cfrac total and current
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Fig. 5. cfrac allocation graph.

Table 8

Memory consumption (KB)

Program DL272 CK HCgen HCmem HCperf
ghostscript 1850 (1.0) 3489 (1.89) 2146 (1.16) 1900 (1.03) 1900 (1.03)
espresso 177 (1.0) 361 (2.04) 229 (1.29) 188 (1.06) 385 (2.18)
p2c 476 (1.0) 706 (1.48) 516 (1.08) 507 (1.07) 557 (1.17)
gawk 47 (1.0) 129 (2.74) 49 (1.04) 49 (1.04) 57 (1.21)
cfrac 2632 (1.0) 3750 (1.42) 2637 (1.00) 2637 (1.00) 2637 (1.00)
groff 380 (1.0) 540 (1.42) 417 (1.10) 385 (1.01) 417 (1.10)
electric 5492 (1.0) 7434 (1.35) 6054 (1.10) 5456 (0.99) 6127 (1.12)

our allocator. The HC allocator was run first with all pro-
grams using the generic settings shown in Table 6. It was
then tuned individually for each program for least memory
consumption and finally for maximum performance. In Ta-
ble 8 is shown the actual memory consumption as well as
normalized comparison, in parentheses, taking DL272
which uses the least amount of heap memory as the base-
line. Table 9 is similar to Table 8 but shows the execution
time.

Looking at memory consumption in Table 8 and perfor-
mance in Table 9, as expected, CK, the pure segregated
storage allocator, shows the worst memory consumption
and best performance in all programs. Comparing HCgen
(HC with generic settings) to DL272, its memory consump-
tion is only 0—10% more in five of the seven programs, 16%
more in ghostscript, and 29% more in espresso. In the case
of espresso, however, the total consumption is only a
couple of hundred kilobytes. Compared to DL272, HCgen
performance is better by 25% in ghostscript, 27% in espres-
so, 41% in gawk, 29% in cfrac, 18% in groff, and 10% in
electric. In one program DL72 takes 9% less time than
HCgen. Overall, HCgen memory consumption is slightly
worse than Lea’s but the trade off is significant gains in
performance.

When tuned for minimizing program memory consump-
tion HCmem uses 1% less memory than DL272 in electric
the program that uses the maximum amount of memory
at about 5.5 MB. HCmem memory consumption is equal
in cfrac, 1% more in groff, 3% more in ghostscript, 4% more
in gawk, 6% more in espresso, and 7%, or 31 KB, more in
p2c. In return HCmem beats DL272 in performance by
34% in ghostscript, 20% in espresso, 53% in gawk, 33% in
cfrac, 2% in groff, and 6% in electric. In p2¢ only, it take
6% more time than DL272. Thus, with almost equal mem-
ory consumption HCmem continues to show significantly
better performance in most programs.

Table 9

Performance (ms)

Program DL272 CK HCgen HCmem HCperf
ghostscript 870 (1.0) 300 (0.34) 650 (0.75) 570 (0.66) 570 (0.66)
espresso 790 (1.0) 380 (0.48) 580 (0.73) 630 (0.80) 470 (0.59)
p2c 530 (1.0) 410 (0.77) 580 (1.09) 560 (1.06) 470 (0.89)
gawk 1080 (1.0) 500 (0.46) 640 (0.59) 510 (0.47) 500 (0.46)
cfrac 1320 (1.0) 790 (0.60) 940 (0.71) 880 (0.67) 880 (0.67)
groff 600 (1.0) 420 (0.70) 490 (0.82) 590 (0.98) 440 (0.73)
electric 790 (1.0) 490 (0.62) 710 (0.90) 740 (0.94) 620 (0.78)
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5.4. Performance

HCperf, the HC allocator tuned for maximum perfor-
mance at the cost of more memory, uses 3-21% more
memory than DL272 in six programs but over twice more
than DL272 in espresso; however, in espresso the extra
memory gains a 41% reduction in time cost over DL272.
HCperf in espresso, performs no coalescing, except for
large objects, and therefore is expected to use more mem-
ory like simple segregated storage allocators. HCperf per-
forms better than DL272 in all seven programs and even
equals CK’s performance in gawk using less than half the
amount of memory used by CK. It is also very close to
CK’s performance in groff while using 23% less memory.
HCperf is 11-54% faster than DL272 in the seven pro-
grams tested, a significant improvement over an already
fast allocation algorithm.

5.5. Best fit is best choice for large blocks

In Fig. 6, %large allocs represents the percentage of allo-
cation requests for memory blocks of sizes greater than
1 KB and %large bytes represents the percentage of allo-
cated bytes coming from memory blocks of sizes greater
than 1 KB. In most programs the number of allocated by-
tes from large blocks is negligible. The best-fit policy used
for large blocks in our allocator reduces memory consump-
tion by minimizing fragmentation among large blocks but
saves time since the number of such allocations is usually
small in proportion to the number of allocations of small
sizes as seen in all programs except ghostscript.

Fig. 6 shows that in ghostscript about 40% of allocations
are for sizes greater than 1 KB and these large sizes account
for over 99% of all allocated bytes. Espresso has less than
1% large size allocations responsible for 32% of allocated
bytes while groff has less than 1% large allocations allocat-
ing 7.67% of allocated bytes. All other programs have less
than 1% large size allocations and same percentage of bytes
from large allocations.
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Fig. 6. Allocation of large blocks.

5.6. Segregated storage memory consumption

In general, segregated storage allocator memory con-
sumption is likely to go up when a larger number of differ-
ent size objects are allocated as in the case of espresso
which allocates 237 different sizes (Table 1). Allocated
blocks once assigned to a size cannot be used for any other
size in segregated storage. Our allocator solves this prob-
lem by coalescing medium and large free blocks, and from
time to time reclaiming small size free blocks for coalescing
as well.

5.7. DL270 comparison

Table 10 compares the performance of the DL270 and
HCgen allocators in terms of number of CPU clock cycles.
Memory consumption comparisons are not shown because
they are similar to the comparison between HCgen and
DIL272. HCgen is the fastest in all seven programs. The val-
ues in parentheses show the Lea allocator taken as the base
of 1 and the ratio of our allocator to it. In six programs
DIL270 is slower by 44% in ghostscript, 30% in espresso,
5% in p2c, 3% in gawk, 9% in cfrac, and 10% in groff.
The two programs in which the DL270 is the slowest allo-
cate a large number of objects greater than 1 KB in size.
This indicates (and has been verified) that DL270 is slower
in servicing larger blocks than smaller ones.

5.8. High performance design

The reason for the high performance of our algorithm is
allocating from quick-lists which as their name suggests is
very fast. Since no searching, splitting, or coalescing is re-
quired allocations from quick-lists are the fastest. In our
allocator for five of the seven programs over 90% of the
allocations come from quick-lists. The relatively low 60%
for ghostscript is due to 40% large size allocations which
are allocated from the common free-list for sizes greater
than 1 K.

The quick-lists are faster because they are singly linked
compared to the doubly linked segregated free-lists of coa-
lesced and uncoalesced blocks. They also have the inuse
bit, a bit in the block header indicating the block is allo-
cated or free, already set. Allocation requiring call to sbrk
was the slowest at around 5000 instructions/call. As the
instruction count increased the CPI (cycles per instruction)

Table 10

Performance in clock ticks (millions)

Program DL270 Our allocator
ghostscript 27.36 (1.00) 15.34 (0.56)
espresso 95.17 (1.00) 67.03 (0.70)
p2c 68.61 (1.00) 65.41 (0.95)
gawk 142.80 (1.00) 138.07 (0.97)
cfrac 53.36 (1.00) 48.79 (0.91)
groff 13.74 (1.00) 12.38 (0.90)
electric 39.66 (1.00) 39.37 (1.00)
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also tended to go up probably because more instructions
meant more chances of CPU stalls, branch mispredictions,
etc.

6. Conclusion and future work

Given that no allocator or allocation policy can be per-
fect for all programs, easily tunable allocators that can be
tailored to individual program requirements are needed.
In this paper, we have described the design and implemen-
tation of a tunable allocator (HC allocator) that can be used
with generic settings, or tuned for least memory consump-
tion or maximum performance. The small set of tunable
parameters enables the allocator to utilize a range of alloca-
tion policies from simple segregated storage for maximizing
performance to best fit with frequent coalescing of the
whole heap space for minimizing memory consumption.

Using seven well known memory intensive benchmark
programs (Berger et al., 2001) to compare HC with the
CK simple segregated storage allocator and the well known
Doug Lea allocator (versions 2.7.2 and 2.7.0) we show that
HC performs up to 54% higher than the Lea allocators
with nearly equal memory consumption. HCs memory
consumption is much less than CK. The general purpose
HCgen can be used with generic settings, HCmem can be
optimized for memory consumption, and HCperf for max-
imum performance. Tuning the allocator is easy requiring
only a few trial runs with different settings of a handful
of parameters to arrive at the most desired values. If the
allocation graph of the program to be tuned is available
the tuning process becomes even easier. Thus optimal val-
ues for the tuning parameters will readily be found and de-
liver the desired performance and memory consumption.

We have derived several variants of the allocator and
ways to find improvement in performance and space costs
are being attempted. The design of the allocator has been
described in this paper from which it can be implemented.
We can also provide the source code to interested members
of the research community for further research and exper-
iment. In the near future, we plan to release a production
version of the tunable allocator for programmers.
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