
Active Memory Processor: A Hardware
Garbage Collector for Real-Time Java

Embedded Devices
Witawas Srisa-an, Member, IEEE, Chia-Tien Dan Lo, Member, IEEE, and

J. Morris Chang, Member, IEEE

Abstract—Java possesses many advantages for embedded system development, including fast product deployment, portability,

security, and a small memory footprint. As Java makes inroads into the market for embedded systems, much effort is being invested in

designing real-time garbage collectors. The proposed garbage-collected memory module, a bitmap-based processor with standard

DRAM cells is introduced to improve the performance and predictability of dynamic memory management functions that include

allocation, reference counting, and garbage collection. As a result, memory allocation can be done in constant time and sweeping can

be performed in parallel by multiple modules. Thus, constant time sweeping is also achieved regardless of heap size. This is a major

departure from the software counterparts where sweeping time depends largely on the size of the heap. In addition, the proposed

design also supports limited-field reference counting, which has the advantage of distributing the processing cost throughout the

execution. However, this cost can be quite large and results in higher power consumption due to frequent memory accesses and the

complexity of the main processor. By doing reference counting operation in a coprocessor, the processing is done outside of the main

processor. Moreover, the hardware cost of the proposed design is very modest (about 8,000 gates). Our study has shown that 3-bit

reference counting can eliminate the need to invoke the garbage collector in all tested applications. Moreover, it also reduces the

amount of memory usage by 77 percent.

Index Terms—Garbage collection, embedded systems, real-time systems, Java virtual machine, active memory.

�

1 INTRODUCTION

THE increasing popularity of Java in embedded system
environments has created the need for a high-perfor-

mance Garbage Collection (GC) system for embedded
devices. Often times, embedded systems have real-time
constraints; therefore, nondeterministic allocation and gar-
bage collection pause times can severely degrade runtime
performances and may even result in system failures.

Java possesses many advantages for embedded system

development, including fast product deployment, portabil-

ity, security, and small memory footprint. As Java makes

inroads into themarket for embedded systems,much effort is

being invested indesigning real-timegarbagecollectors. Such

efforts include Sun’s Java Embedded Server [15], Esmertec’s

JBED (Java real-time operating system) [8], and Newmonic’s

PERC products [10]. Embedded systems are experiencing

explosivegrowthdueto the increasingpervasivenessofsmart

devices, suchasInternetappliances,PersonalDigitalAssistance

(PDA), and portable phones. For example, Allied Business

Intelligence (www.alliedworld.com) reported that the Inter-
net appliance market is expected to grow dramatically over
the next few years with shipments rising from 21.4 million
units in 2000 to 174.4 million units by 2006, when it will
represent a $39 billion market [13]. Industry observers also
predict that there will be 10 times more embedded system
developers than general-purpose software developers by the
year 2010 [1].

Additionally, the introduction of network-centric com-
puting platforms such as Jini emphasizes the importance of
garbage collection in small-embedded devices. In Jini,
devices or services are part of a confederated computing
network. Any component connected to this network
possesses a truly plug and play characteristic. The Jini
architecture was developed entirely in Java and all devices
that are Jini-ready operate on code written in Java. Remote
Method Invocation is used to pass along serializable objects
from one device to the next. In this environment, Jini-ready
devices can be anything from household appliances to thin
client devices [7]. These devices will operate on a limited
amount of physical memory. Thus, a fast and efficient
garbage collector will determine the overall performance
and success of such devices.

In this paper, we introduce the design of the Active
Memory Processor, which supports dynamic memory
allocation, limited-field reference counting, and mark-
sweep garbage collection in the hardware. The proposed
design utilizes a set of bitmaps to maintain heap informa-
tion and reference counting information. Typically, one-bit
in a bitmap represents a fixed size memory (e.g., 16 bytes).

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2003 1

. W. Srisa-an is with the University of Nebraska-Lincoln, Computer Science
and Engineering, Ferguson Hall, Lincoln, NE 68588.
E-mail: witty@cse.unl.edu.

. C.-T. Dan Lo is with the University of Texas-San Antonio, Department of
Computer Science, 6900 N. Loop 1604 West San Antonio, TX 78249.
E-mail: danlo@cs.utsa.edu.

. J. Morris Chang is with Iowa State University, Electrical and Computer
Engineering, 3231 Coover Hall, Ames, IA 50011.
E-mail: morris@iastate.edu.

Manuscript received 8 Feb. 2002; revised 25 Oct. 2002; accepted 16 Dec. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number 4-022002.

1536-1233/03/$17.00 � 2003 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

There are bitmaps for allocation status, size information,
reference count information, and marking information.
These bitmaps are manipulated by combinational compo-
nents. We use limited-field reference counting to efficiently
reclaim no-longer-used memory. Our study finds that, in
Java applications for embedded devices, the majority of
reference counts are less than seven. Therefore, we adopt
three-bit reference counting in the study to analyze the
effectiveness of limited-field reference counting. Our study
finds that the majority of objects can be reclaimed through
reference counting. Thus, the need to invoke the garbage
collector is postponed.

In addition, the design also capitalizes on the locality of
bitmaps to reduce the hardware cost. Our study shows that
there is a good locality in accessing the bitmaps. Therefore,
only a portion of bitmaps is manipulated at one time. Based
on this finding, a caching mechanism is adopted so that the
hardware cost to construct the combinational components
would be very modest.

The remainder of this paper is organized as follows:
Section 2 discusses previous work in this area. Section 3
provides an overview of the proposed Active Memory
Processor. Section 4 reports our finding on a reference
counting study on various Java applications. Section 5
analyzes the performance of the proposed caching mechan-
ism (referred to as Allocation Look-aside Buffer). The last
section concludes this paper.

2 PREVIOUS WORK

One of the main goals in garbage collection research is to
make real-time garbage collectors. Some researchers in-
vestigate hardware-assisted schemes while others concen-
trate on garbage collection scheduling and algorithms. In
this section, we will concentrate on hardware approaches to
improve the performance of automatic heap management.

Heap allocation is required for data structures that may
survive the procedures that created them. In such cases, it is
very difficult for the compiler or the programmers to
determine the exact time to explicitly reclaim these objects.
In such situations, the automatic garbage collection is
necessary to properly maintain the heap [11]. In the Java
programming language, the automatic garbage collection is
a language requirement. The Java virtual machine deter-
mines when objects are no longer needed and reclaims
them. The Java garbage collector runs as a low priority
thread and operates during idle time or when the memory
has exhausted. Much effort has been spent on improving
the performance of garbage collection. In most case, the
researchers attempt to make enhancement through the
software approaches. There are also several approaches to
implement garbage collection function in the hardware.

Over the years, there have been several attempts to
incorporate hardware support as a way to reduce runtime
overhead, increase throughput of the system, and limit the
worst-case latencies. The first use of hardware to support
garbage collection was found in Lisp machines. In these
machines, special microcode accompanies the implementa-
tion of each memory fetch or store operation. The result was
the improvement in worst-case latencies. However, the
runtime overhead and the throughput were not improved.

As a matter of fact, the throughput got worst by 30 percent.
Since the target audience for this architecture was very
small, the improvement that should have been made to the
design (i.e., pipeline, superpipeline, or superscalar) was not
made [16]. This project became an economic failure.

While Lisp machines fail economically, its limited success
inspired many researchers to develop hardware support for
object-oriented programming. Two of such projects are
Smalltalk on a RISC (SOAR) [25] and Mushroom [27]. Both
systemsare targetedat improving the throughput, but not the
worst-case latencies of garbage collection. The underlying
rationale for their research is the observation that Smalltalk
programs run up to 20 times slower than comparable
C programs. Unfortunately, their designs are not suitable
for low-level languages such as C and C++. For example, the
hardware support in the Mushroom system assumes that all
pointers are represented by a combination of two values: the
object base address and the offset within that object. More-
over, the object in Mushroom system cannot be larger than
1K bytes and the header space for every word (4 bytes) is
1 byte. This translates to 20 percent overhead for the header
alone. Apparently, their garbage collection schemes are very
specialized and have limited functionality. These reasons
make it difficult to justify for their costs.

One of the approaches is Chang and Gehringer’s second-
level cache [3]. In their design, a coprocessor used to
allocate objects in its cache is introduced. Once objects are
created in the cache, reference counting is used to manage
those objects. Their simulation shows that the coprocessor
can remove up to 70 percent of dead objects in the cache
and, thus, great amounts of bus traffic can be reduced [3].

Another interesting hardware-assisted approach was
done by Nilsen and Schmidt [18]. Their proposed scheme
utilized Baker’s real-time copying algorithm [2] and is
targeted for real-time systems. Baker’s copying collector
algorithm is adopted where the entire heap is split into two
semispaces, only one region can be active during runtime.
Copying also rearranges the allocation order. This can be
important in some applications where spatial locality
should be preserved. In order to reserve the proper space
for live objects, the Object Space Manager (OSM) is used to
perform constant-time lookup of the object size. The size is
encoded on every object and only available to the collector.
OSM calculates the actual memory needed for all live
objects, and the local processor would reserve the needed
memory at the bottom of the heap. In doing so, flipping of
semispaces can be done instantly and the new to-space is
ready to be accessed by the mutator immediately. The
copying routine is done in the background using the
hardware routine. A pacing threshold that limits the
allocation rate is used to balance the allocation and copying
throughput. It is worth noting that pacing is an issue unique
to this algorithm. Pacing is not a part of tracing overhead
(tracing is done in a traditional fashion to locate live
objects). It acts as a threshold for allocation rate.

In [26], a hardware self-managing heap memory,
Reference Counting Memory (RCM) is presented. It includes
data memory (ordinary RAM) and reference count memory
inside an 8 MB memory bank. Each back of memory
maintains a set of free lists, which is used to locate free
memory chunk during a memory allocation request. In the
tested system, there are a maximum of one million objects

2 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2003

per 8-MB of memory. It also supports Deutsch-Schorr-Waite
(pointer reversal) mark-phase for constant space operation
[20], [12]. The initial testing suggests that it is potentially
effective [11]. Reference Counting is performed at no cost to
the mutator program. The RCM mark-sweep can collect at
twice the speed of a software copying collector. Moreover,
the sweeping can be done concurrently with the mutator.
After the collection, the free list is reconstructed to reflect
the current availability of each memory bank. When the
work was published, it was claimed to be the only device
that provides hardware support for both reference counting
and garbage collection.

Recently, reference counting has made its way into real-
time systems. In [19], the author uses reference counting to
achieve hard real-time for Java systems. The author did not
explore the possibility of using limited-field reference count
and, therefore, the overhead for each object is quite high
(16 bytes/object). In addition, there are 24 million reference
counting operations added on to the processing cost. We
believe that a dedicated hardware with modest cost can be
more efficient in performing reference counting operation
and garbage collection for two reasons. First, the processing
of reference count is off loaded to a coprocessor. Therefore,
the main processor can operate in parallel the coprocessor
such as the proposed Active Memory Processor (AMP).
Second, to perform reference counting and garbage collec-
tion using the main CPU, the main processor can consume a
large amount of power due to frequent memory accesses
and complexity of the main CPU. A coprocessor is a more
effective choice. Therefore, the proposed design represents
a cost effective and power efficient solution for dynamic
memory management in real-time Java embedded devices.

3 INTRODUCING THE ACTIVE MEMORY PROCESSOR

At the heart of the proposed system, there are three or more
bitmaps used to record objects information. If one bit-
reference counting is used, then there will be four bitmaps.

For each bit added to the reference count field, one bitmap
is added to the system. The Fig. 1 illustrates the internal
components of the Active Memory Processor. It is worth
noting that three-bit reference counting is used in the
illustration.

The function of each bitmap is explained as follows:

. The Allocation bitmap (A-map) represents the alloca-
tion status of the entire heap memory.

. The Boundary Bitmap (B-map) records the size
information (record by boundaries) of all objects in
the heap.

. The Marking/Reference Counting bitmaps (M-maps)
update reference count field based on the starting
address. For example, if an object at address A is
created, address A is sent to the reference counting
unit, which places a mark on the first bit in the
reference counting field (001). If another reference is
made to the object, the starting address is then given
to the reference counting unit and the corresponding
reference count would be (010). To decrement a
reference count, the starting address and the decre-
ment signal are sent.

Each bit in a bit-vector represents the smallest block of
memory that can be allocated. According to the results of
our simulations [22], [4], 16-byte per block is the most
suitable. Allocation is performed using a pair of complete
binary trees built “on top of” the A map.

. One binary tree—the or-gate tree—determines if
there is a large enough chunk to satisfy the allocation
request (step (a) in Fig. 2).

. The other binary tree—the and-gate tree—finds the
beginning address of such a chunk (step (b) in Fig. 2).

Each node in the or-gate tree is simply a two-input or
gate. The leafs of the tree are connected to the bitmaps
which represent the memory space. The output of the or
gate shows the allocation status of the subtree (either free

SRISA-AN ET AL.: ACTIVE MEMORY PROCESSOR: A HARDWARE GARBAGE COLLECTOR FOR REAL-TIME JAVA EMBEDDED DEVICES 3

Fig. 1. The top-level design of the active memory processor.

[0] or not completely free [1]). For a memory with 2N blocks,
this requires 2N�1 or-gates. The levels of the or-gate tree will
be numbered 0 through N, with the root being level 0. To
calculate the starting address of the block, the level-l
outputs of the or-gate tree are fed into a second binary
tree, constructed from and gates. This and-gate tree
propagates availability information upward toward the
root, in such a way that the location of the first zero at level l
can be found by a nonbacktracking search. Suppose the
and-gate tree determines the address of the first zero (at
level l of the or-gate tree) to be n. Then, the beginning
address of the free memory block in the bit-vector is
n � 2N�l. Fig. 2 provides a simple example of allocating two
blocks of memory. It is worth noting that the initial value of
the A map is “0.” When an object is allocated, all the
corresponding bits (bits at address 4 and 5 in Fig. 2) are set
to “1.”

To complete step (c) in Fig. 2, a combinational hardware
component called the bit-flipper is used to invert certain bits
in the bit-vector, from 0 to 1 for allocation. The inputs to the
bit-flipper are the starting address of the bits that need be
flipped, and the number of bits to flip. Unlike the or-gate
tree and the and-gate tree, the bit-flipper propagates signals
from the root of the tree to the leaves. This is reasonable,
since the bit-vector is made up of the leaves of the tree.
Building a sophisticated node that can intelligently propa-
gate information has the advantages of limiting the hard-
ware complexity to OðnÞ and the potential propagation
delay to OðlognÞ, where n is the total number of bits in the
bit-vector.

The size information is recorded on the B-map using
object boundary. It uses logic 0 in the B-vector to record the
boundary between an allocated block and a free region, or
between two allocated blocks. Initially, the entire B-vector is
set to logic high, which represents a contiguous free-
memory chunk. During the allocation process, bits are set to

0 to represent boundaries of objects that are allocated. In
Fig. 3, an A-vector and a B-vector are used to show the
allocation status and size encoding for eight consecutive
blocks.

A boundary (represented by a 0 in the B-vector) can be
the interface between an allocated memory chunk and a free
memory chunk (e.g., bit 1 in step (b)) or between two
allocated memory chunks (e.g., bit 1 in step (c)). These
boundaries are used as sentinels in the deallocation process.
Suppose that after step (d), a deallocation instruction was
passed to the parameter 4, which means to free the object
beginning at bit 4. This is the object that was allocated
between step (c) and step (d). By searching for the first logic
0 (i.e., the boundary) from bit 4 of the B-map, we would find
that the object size is three blocks. It is worth noting that the
B-unit, a combinational hardware component, is used to
perform boundary encoding.

Initially when an object is created, it automatically has
one reference. Thus, the corresponding bits in the M-Maps
are set to “01.” These bits are set using the reference
counting unit. If there are more references made to this
object, the reference counting unit would increment the
reference count by updating the corresponding bits in the
M-maps. For example, in a system that supports 2-bit
reference counting, when an object is created, the corre-
sponding bit in the first M-map is set to “1” and the one in
the second M-map is set to “0.” If an additional reference is
made, the reference counting unit would update the
corresponding bit in the second M-map to “1” and the first
M-map to “0.” It is worth noting that the bit-flipper is used to
set the write enable of the corresponding bits in the M-
maps. Fig. 4 illustrates reference counting in the proposed
system. Once the count reaches the capacity of the reference
count field (e.g., three references in a 2-bit count field), the
object is referred to as “sticky.”

Once an object becomes “sticky,” it would remain in
this status even if the actual reference count has been

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2003

Fig. 2. A simple example in allocating two blocks memory from an 8-bit bit-vector.

Fig. 3. Example of using the B bit-vector and A bit-vector to allocate from an 8-block region.

decremented to “0.” The only way to collect this object is
through a full mark-sweep collection. When mark-sweep
is invoked, tracing of live objects is done through
software. First, all entries in the M-maps are set to “0.”
For each live object found, a signal is sent to the AMP so
that the reference count is updated. Any object with a
positive reference count is considered live. Once the
marking is done, the sweeping phase would begin. The
bit-sweeper is a combinational hardware that can work
in two ways. First as a deallocator, where it simply resets
the allocation status bits in the A-map starting from the
beginning address until the first boundary in the B-map
is reached. This approach is used to immediately reclaim
memory through reference counting. Second, as a
sweeper where it will propagate signals through the
entire bitmaps so that all the dead objects are reset. An
example of mark-sweep garbage collection in the pro-
posed scheme is given in Fig. 5.

From the M bit-vector, we can see that there are two live
objects (at address 0 and 10); however, there are also two
dead objects at address 3 and 7. By looking at the M bit-
vector, it is apparent that there is no pointer pointing to the
objects at address the 3 and 7. These two objects are, in
effect, garbage and should be collected. Again, if multiple
M-maps are used for reference counting, any object with
positive reference count is considered live. Fig. 6 depicts a
snapshot of all four bitmaps.

According to Fig. 6, object X has the size of four blocks
(as indicated by the first “0” in the B-map). Initially, all bits
in the B-map are set to “1.” When an object is allocated, the
corresponding bit that represents the object’s boundary
would be set to “0.” Therefore, the first “0” in the above B-
map indicates the boundary between object X and un-
allocated space. The first “1” in the M-map_1 (address 10)

also indicates that object X is alive. At the same time, since
the bit at address 10 in the M-map_2 is also “1,” object X is a
“sticky” object. On the other hand, object Y and object Z are
not “sticky” since the reference count are “1” and “2,”
respectively. Object W is also a “sticky” object. Let’s assume
that all the references to it have been deleted. This object is
now garbage, but it cannot be reclaimed through reference
counting due to its “sticky” status. When the next marking
phase is completed, the bits on the two M-maps for object W
will be set to “0” to indicate that there is no reference made
to this object and it will be collected by the bit-sweeper.

Let us assume that eventually, the heap space will be full
and marking is necessary. The first step required before
marking would be to reset both M-maps to “0.” The first
reference to a live object will then be mark on the M-map_1.
The subsequent references will be counted until the limit (in
this case, 3) is reached. The marking process continues until
all objects are accounted for. After the completion of the
marking phase, the correct reference behavior of all objects
will be restored. It is worth noting that reference counting
can be invoked 1) by the compilers or interpreters or 2) in
the hardware [26]. For example, in a Java Virtual Machine
(JVM) running in interpreter mode, reference counting can
be incorporated by modifying the interpretation of byte-
codes that perform object references. A bytecode such as
PUTFIELD, which stores a value from the stack of a method
into a field inside an object, would require one more step in
addition to the common PUTFIELD operation—it needs to
check the content of the destination field prior to writing the
new reference. If the destination field contains a reference,
then the reference count for that object needs to be
decremented. Then, the new reference is incremented. If it
is to be done in the hardware, a small processor can be used
to trap all the reference writes to the heap (write barrier). By

SRISA-AN ET AL.: ACTIVE MEMORY PROCESSOR: A HARDWARE GARBAGE COLLECTOR FOR REAL-TIME JAVA EMBEDDED DEVICES 5

Fig. 4. Two-bit reference counting.

Fig. 5. An example of a garbage collection cycle. (a) Prior to garbage collection and (b) after garbage collection.

doing so, there is no need to modify the code of the mutator.
At the same time, the reference count can be manipulated
concurrently with the running application [26].

3.1 System Architecture of the Active Memory
Processor

Since garbage collection is only done in the heap, we can
separate the traditional DRAM Memory Module from the
Active Memory System. Thus, the Active Memory will only
be used to allocate dynamic objects through the allocation
function (e.g., new operator). It is worth noting that the
approach to separate the heap memory from the main
memory is similar to Nilson and Schmidt’s Garbage
Collected Memory Module design [18] and Wise et al.’s
RCM design [26]. This means that the operating system
must allow allocation and garbage collection requests to be
sent directly to the Active Memory Processor. The basic
system integration of the proposed system is given in Fig. 7.

Inside each memory module, there are two major
components, the Active Memory Processor and the DRAM
itself. For example, a 4 MB module would consist of 4 MB
DRAM and an AMP. The AMP is used to maintain the heap

status, to manipulate reference count, and to perform the

garbage collection [21]. Since most embedded system works

in the physical memory domain and not the virtual memory

domain, we do not have to consider the issue of page

translation. However, the allocation and garbage collection

functions must be designed to provide information such as

requested sizes and object references directly to the AMP. It

is worth noting that a larger system can be constructed by

using multiple Active Memory Modules. For example, a

16 MB system can be constructed out of 4x4-MB modules.

As stated earlier, bitmaps (A-map, B-map, and M-map(s))

are used to record all necessary information. These bitmaps

reside as part of the Active Memory Processor.

4 A STUDY OF REFERENCE COUNT IN EMBEDDED

SYSTEM APPLICATION

Hardware support can provide an efficient way to reference

count an object. In the AMP, only one hardware instruction

is needed to perform reference counting. Additionally,

reference counting in the hardware can also improve the

6 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2003

Fig. 6. Maintaining object status with 2-bit reference counting.

Fig. 7. AMP system integration.

cache locality because the objects themselves are not
touched. On the other hand, if mark-sweep is invoked in
the proposed scheme, the complexity of tracing live objects
is unbounded. Studies have shown that tracing is by far the
most time consuming part in a nonincremental approach.
To achieve a truly bounded latency for garbage collection,
the issue of unbounded tracing time must be overcome.
This section studies the effect of using limited-field
reference counting to incrementally reclaim dead objects.
We organize this section as follows: Section 4.1 provides an
overview of tracing and reference counting. Section 4.2
reports the experimental results of the proposed scheme.
Section 4.3 presents the reduction of the number of garbage
collection invocations. The last section compares the
memory footprint of mark-sweep and limited field refer-
ence counting.

4.1 Tracing versus Reference Counting

The complexity of tracing largely depends on the number of
live objects in the heap. As the number becomes larger, the
tracing time would grow longer as well. In a typical tracing
scheme (variations of copying or mark-sweep), the number
of live objects is not known prior to the invocation of the
garbage collector. The marker processes or threads usually
suspend other applications and begin an exhaustive
scanning of the memory for references (from global, stack,
etc.). Once all the live objects are discovered, the sweeping
process would begin. In the proposed scheme, the sweeping
process is bounded; however, the determinism of the
marking phase depends on the tracing algorithm used.

Reference counting, on the contrary, distributes the cost
of memory management throughout the computation.
Management of active and garbage objects is interleaved
with the execution of the user program [11]. Additionally,
reference counting also reclaims garbage objects immedi-
ately. Thus, fewer page faults may be generated. On the
other hand, reference counting can suffer from problems
such as high processing cost, additional space to store
reference count, and cyclic structures. Moreover, the
coalescing cost when garbage objects are returned to the
free pool can also be expensive.

Many researchers have proposed using a small number
of bits as the reference count field [9], [24], [6] and these bits
can be tagged to each pointer [24] in the same way that
runtime tags are used for type-checking [23], [11], or
integrate to the hardware as part of the AMP. In the
proposed design, the marking bitmaps record an object as
“live” as soon as it is created. An object that is not “sticky”
can be reclaimed as soon as its sole reference is deleted. On
the other hand, “sticky” objects are reclaimed through
garbage collection. Because a JVM is stack-based, there can
be multiple references to an object inside a method
(multiple references from within the stack and local
variables). In the proposed scheme, reference count is
adjusted when there is a reference coming from outside the
method that created the object. It is preferable to monitor
reference write in the hardware because there is no
overhead on the running program. The write barrier is
done concurrently in the hardware. However, for this
experiment, we monitor reference write by monitoring a
number of bytecodes such as PUTFIELD, AASTORE,

AALOAD, GETFIELD, ARETURN, etc. If such bytecodes
write a reference to an object outside the method, the
corresponding value in the M-map would be set to update.

4.2 Performance Analysis of Limited-Field
Reference Counting

This section presents a study on the number of object
references. The information is obtained by trapping all the
bytecodes that create objects (NEW, ANEWARRAY, MULTI-
ANEWARRAY) and bytecodes that allows an object to
survive the method that creates it (e.g., PUTSTATIC,
PUTFIELD, AASTORE, etc.). The JVM used is Sun’s KVM
[14]. It is worth noting that KVM is used due to its
simplicity and popularity in Java embedded devices. In
addition, the garbage collection scheme is a simple mark
and sweep with occasional compaction. The applications
used in this study are mostly from Sun’s Connected Limited
Device Configuration (CLDC) 1.02 and they have been used in
previous study of virtual machine for embedded devices
[5]. The basic descriptions and characteristics of each
program are presented in Table 1. It is worth noting that
six out of seven applications are Graphical User Interface
(GUI) based. The exception is Scheduler, which only
simulates a GUI application. The allocation behaviors of
each application is then given in Table 2.

As reported in Table 3, more than 99 percent of objects
have reference counts of 6. Therefore, a three-bit reference
count field will be sufficient to maintain reference count
information. It is worth noting that in four out of seven
programs, at least 30 percent of objects allocated have a
reference count of one. Such objects, referred to as unique
references, require minimal bookkeeping in the proposed
scheme.

Table 3 also indicates that in most applications, about
50 percent of objects have reference counts of 2 or less. The
exception is Kvideo where only 42 percent of objects has
reference counts of less than or equal to 2. Thus, two-bit
reference counting may also be an alternate solution since it
can reclaim about half of the objects in most applications. In
this section, we want to compare the effectiveness of 2-bit

SRISA-AN ET AL.: ACTIVE MEMORY PROCESSOR: A HARDWARE GARBAGE COLLECTOR FOR REAL-TIME JAVA EMBEDDED DEVICES 7

TABLE 1
Description of the Test Programs

reference counting versus 3-bit. Obviously, the 2-bit scheme
requires smaller amounts of hardware. If the two schemes
can work efficiently, the frequency of full collection
invocations should be much lower. Table 4 describes the
distributions of “sticky” garbage for all applications.

It is clear that three-bit reference counting can reclaim
nearly 100 percent of all objects. However, the two-bit
approach can only reclaim about 56 percent of objects.
Table 5 reports the effectiveness of 2-bit reference counting
in terms of memory space. The results clearly indicate that
the amount of memory to be collected by full-collection can
be reduced by 53-93 percent. As stated earlier, reference
counting cannot collect any garbage objects that are
“sticky.” The amount of unclaimed memory is displayed
in column [B]. The last column depicted the percentage of
the amount of memory that can be collected by reference
counting. On average, the 2-bit reference counting can
reclaim more than 71 percent of unused memory. It is worth
noting that we decide not to report the effectiveness of 3-bit
reference counting in a table format. The 3-bit reference
counting is so effective that it reclaims over 99 percent of
space in all applications.

4.3 Reduction in the Garbage Collection
Invocations

In this section, we compare the number of full-collection
invocations between mark-sweep approach and the pro-
posed two-bit and three-bit reference counting schemes. As
a reminder, full collection is used to collect unreachable
sticky objects and cyclic structures in the proposed scheme.
A full collection cycle is exactly the same as a traditional
mark-sweep cycle. One of the goals for the proposed
scheme is to reduce the number of full collection invoca-
tions. This section reports our experimental results.

We simulate the conditions where garbage collection
would occur in the traditional mark-sweep and the
proposed scheme. In all applications, the number of full-
collection invocations is greatly reduced when reference
counting is applied. This is because reference counting can
efficiently keep the heap residency below the GC triggered
point. Table 6 summarizes the invocations of full collection
in mark-sweep, mark-sweep with 2-bit reference counting,
and mark-sweep with 3-bit reference counting.

With 2-bit reference counting, the reduction in garbage
collection invocation ranges from 75 percent to 98 percent.
This should allow the overall performance of garbage
collection to be greatly improved. Remarkably, 3-bit
reference counting can completely eliminate the need for
full-collection invocations and, therefore, proves to be a
very suitable approach for real-time applications.

4.4 Memory Usage Comparisons

The previous section has shown that 3-bit reference
counting is very effective in reclaiming unused memory.
Efficiently recycled memory can lead to lower memory
footprint and power consumption. Table 7 reports the
maximum amount of active memory (memory in used)
within the 128KB heap space. We can see that 3-bit
reference counting reduces the maximum amount of active
memory cells by an average of 77 percent. Thus, 3-bit
reference counting is a more energy efficient approach than
mark-sweep because lower heap footprint. Currently, there
are research efforts that attempt to minimize power
consumption by turning off memory area that is unused
[5]. By using 3-bit reference counting, only a small portion
of the memory needs to be turned on through out the
execution of a program.

5 ARCHITECTURAL SUPPORT FOR THE ACTIVE

MEMORY PROCESSOR

Since the bitmaps are usually much too large to be held in

dedicated hardware, small segments of each bitmap, called

bit-vectors, are held in the hardware of the AMP. Portions of

the bitmaps that are not in the AMP bit-vectors are instead

held in the bitmaps, which is a software structure. This is

very similar to how a hardware Translation Look-aside Buffer

(TLB) is used to cache software page-table information. Each

AMP entry holds one bit-vector from each of the bitmaps (A

bitmap, B bitmap, and M bitmap(s)). Associated with each

AMP entry is the largest_available_size of a block that could

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2003

TABLE 2
Allocation Behavior of Each Application

TABLE 3
Accumulated Percentage of Objects by Reference Count

be allocated from the memory for which it records allocation

information, and also the beginning of the address to which

it pertains. Together, the AMP entries and this additional

book-keeping information make up the Allocation Lookaside

Buffer (ALB). It is worth noting that the ALB was first

introduced in [4]; however, the performance studies did not

include the hit ratio of reference counting and marking

operations. Moreover, the applications tested were not a

very large set of Java programs. In this paper, the simulator

is reconstructed to include reference counting and marking.

Sweeping can be done incrementally as a bit-vector is

brought into the AMP. Fig. 8 presents the operation of the

proposed architectural support for the AMP.
When a memory allocation request is received (step 1),

the requested size is compared against the largest_availa-
ble_size of each bit-vector in a parallel fashion. This
operation is similar to the tag comparison in a fully
associated cache. However, it is not an equality comparison.

There is a hit in the AMP, as long as one of the

largest_available_size is greater or equal to the request size.

If there were a hit, the corresponding bit-vector is read out

(step 2) and sent to the Complete Binary Tree (CBT). The CBT

SRISA-AN ET AL.: ACTIVE MEMORY PROCESSOR: A HARDWARE GARBAGE COLLECTOR FOR REAL-TIME JAVA EMBEDDED DEVICES 9

TABLE 4
Distribution of Sticky Garbage Objects with Two-Bit and Three-Bit Reference Counting

TABLE 5
The Effectiveness of 2-bit Reference Counting in Reclaiming Memory

TABLE 6
Reduction in Full Collection Invocations

TABLE 7
Maximum Active Memory Cells when the Heap Size is 128KB

is a hardware unit that perform allocation/deallocation on
bit-vector.

After the CBT identified the free chuck memory from the
chosen bit-vector, CBT will update the bit-vector (step 3)
and the largest_available_size field (step 3*). The object
pointer of the newly created object is generated by CBT
(step 4). This bit-vector offset combines the bit-vector
number (from step 2*) into the resultant address.

For the deallocation, when the AMP receives a deal-
location request, the bit-vector number of the object pointer
is used to select a bit-vector (step A). This process is similar
to the tag comparison in cache operation. At the same time,
the bit-vector offset is sent to CBT as the starting address to
be freed (step A*). The corresponding bit-vector is read out
(step B) and sent to CBT. The CBT will free the designated
number of blocks (based on the information from B bit-
vector) starting at the address provided by the step A* and
update the bit-vector (step C) and the largest available size
field (step C*). The page number, bit-vectors, and the

largest_available_size are placed in a buffer, called Alloca-
tion Look-aside Buffer (ALB).

There are two important parameters that determine the
performance and the cost of the AMP. First, the Bit-Vector
Length (BVL), which is defined as the length of the bit-vector
that is directly managed by the AMP. Second, is the ALB
size which is the number of entries containing in the ALB.
This section studies the various configurations of these two
parameters so that the proposed system would yield high-
performance at a reasonable cost. It is worth noting that
parameters including the block size (block_size), which is
the number of bytes represented by each bit, is selected
based on the investigation reported in [22]. The study found
that 16 bytes/block yields a good balance of low fragmenta-
tion and smaller bitmap size.

The performance of the ALB (hit ratio) is also determined
by the locality of accesses by different memory operations
which include allocation, making, increment reference, and
decrement reference. We perform the ALB performance

10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2003

Fig. 8. The allocation and deallocation processes inside the AMP.

Fig. 9. Buffer size versus hit ratio (BVL = 256).

evaluation through trace driven approach. The trace files

are generated by running Java programs on a modified

KVM. The information obtained are allocation, marking,

reference update (increment and decrement), and freeing.

The simulator is written in C++ and takes command line

arguments that include the ALB size and the bit-vector-

length. The result is presented in the next section.

5.1 ALB Performance Evaluation

We investigate the performance of the ALB through two

approaches. First, we fix the size of the Bit-Vector Length

(BVL) and increase the number of entries (this also increases

the buffer size). In doing so, we can find a good saturation
point where the hit ratio of all or most of the programs
begin to stabilize. It is worth noting that we set the system
to have the heap size of 128 KB. The results are illustrated in
Figs. 9, 10, and 11.

In most applications, the good saturation point with the
fixed BVL approach is at four entries. It is alsoworth noticing
that with the BVL of 256 bits, the hit ratio of all applications
are more than 95 percent. This translates to the buffer size of
512 bytes (4 bitmaps � 256 bits � 4 entries / 8 bits per byte).
We also find that reasonable performance can be obtained
with 256 bits at two entries. It is worth noting that we do not

SRISA-AN ET AL.: ACTIVE MEMORY PROCESSOR: A HARDWARE GARBAGE COLLECTOR FOR REAL-TIME JAVA EMBEDDED DEVICES 11

Fig. 10, Buffer size versus hit ratio (BVL = 512).

Fig. 11. Buffer size versus hit ratio (BVL = 1,024).

Fig. 12. Fixed buffer size at 1 K bits and 2 K bits.

include missiles in the simulation. Missiles only allocate
small amounts of objects and, therefore, infrequently invoke
the garbage collector.

In the second approach, we set the buffer size to the
value provided by the first approach (in this case 256 bits �
8 entries and 256 bits � 4 entries). Then, we would
investigate the effect of buffer configuration (number of
entries � BVL) on the hit ratio. For the buffer size of 2K
blocks, we can have the following configuration, 4 � 512
bits, 8 � 256 bits, and 2 � 1,024 bits. For the buffer size of 1K
blocks, we can have the following configuration, 2 � 512
bits, 1 � 256 bits, and 1 � 1,024 bits. As indicated in Fig. 12,
the hit ratio decreases as the number of buffer entries
decreases. This indicates that the areas with frequent
accesses are scattered over the entire bitmaps and locality
may be temporal. Therefore, more buffer entries would
outperform longer buffer line.

5.2 Estimating Hardware Cost and Propagation
Delay

By utilizing the Active Memory Processor to manage a heap
space, the additional hardware cost to construct this
processor is one of the factors that can determine the
feasibility of this design. Our earlier study also indicates
that the suitable block size for most applications is 16-byte/
block [22]. Thus, for a 2-bit reference counting configuration
that includes 256 bit BVL and 8 ALB entries, the amount of
memory needed to construct the ALB is:

memALB ¼ 3 � BVL � ALBentry

8 bit
byte

� � ¼ 4 � 256 � 8
8

¼ 1KB: ð1Þ

This translates to 1KB of SRAM. For a 128 KB module, an
additional DRAM storage of 4KB is also needed for the
entire bitmap.

For the propagation delay, we will provide the
number of gate delays instead of estimated time in
seconds. This is because the time delay is determined by

the semiconductor used to build the AMP. Table 8
describes the propagation delay for each unit of the
component. The BVL is set as 256 bits. The allocator
requires two stages. First, the allocation of a memory
block is done through the Complete Binary Tree (CBT,
please refer to the previous work section for more
information). In each node of the CBT, the propagation
delay is two gates. If the BVL is 256 bits, there would be
eight levels of the binary tree.

The hardware cost to construct the combinational

components is illustrated in Table 9. For a 3-bit reference

counting configuration and a BVL of 256 bits with eight

entries, we will need 8,000 gates and 1.3K bytes of SRAM.

The hit ratio of the configuration would be about 98 percent

on average. It is worth noting that in all applications, the hit

ratio is above 95 percent. It is also worth noting that the

current memory buses can provide very high peak

bandwidths (GB/sec). For example, Intel Pentium III has

the bus bandwidth of 800 MB/sec, Sun UltraSPARC II

offers 1.9 GB/sec, and Compaq Alpha 21256 has 2.6GB/sec

bandwidth [17]. If the BVL is 256 bits, the miss penalty

would be less than 100 seconds in a 0.8GB/sec bandwidth.

6 CONCLUSIONS

The Active Memory Processor provides a cost effective
solution for real-time Java embedded devices. Presently,
real-time embedded system developers avoid using Java
because of its nondeterminism. Since other aspects of Java
(e.g., small memory footprint, portability, security, and
quick product deployment) are already suitable for em-
bedded systems, the use of the proposed Active Memory
Processor would allow dynamic memory management to be
performed in a deterministic and bounded fashion.

Our study also finds that by adopting three-bit reference
counting, we can eliminate the need for garbage collection
invocation. In addition, three-bit reference counting can also
reduce the amount of memory usage by as much as
77 percent. Therefore, the proposed design is also power
efficient due to a smaller number of garbage collection and
smaller memory usage.

ACKNOWLEDGMENTS

Stephen Hines developed the simulations of the Active
Memory Processor. Paul Griffin generated traces of Java
embedded systems. The authors would like to thank the
referees for the valuable comments, which greatly im-

12 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2003

TABLE 8
Propagation Delays for the Proposed System

TABLE 9
Number of Gates Needed to Construct the AMP

proved the presentation of this work. This work has been
partially supported by the US National Science Foundation
under grants CCR-0219870, CCR-0296131, and CCR-
0113335.

REFERENCES

[1] R.W. Atherton, “Moving Java to the Factory,” IEEE Spectrum,
pp. 18-23, 1998.

[2] H. Baker, “List Processing in Real Time on a Serial Computer,”
Comm. ACM, vol. 21, pp. 280-294, 1978.

[3] J.M. Chang and E.F. Gehringer, “Evaluation of an Object-Caching
Coprocessor Design for Object-Oriented Systems,” Proc. IEEE Int’l
Conf. Computer Design, pp. 132-139, 1993.

[4] J.M. Chang, W. Srisa-an, and C.D. Lo, “Architectural Support for
Dynamic Memory Management,” Proc. IEEE Int’l Conf. Computer
Design, pp. 99-104, 2000.

[5] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M.J. Irwin,
and M. Wolczko, “Tuning Garbage Collection in an Embedded
Java Environment,” Proc. Eighth Int’l Symp. High-Performance
Computer Architecture (HPCA’02), 2002.

[6] T. Chikayama and Y. Kimura, “Multiple Reference Management
in Flat GHC,” Proc. Fourth Int’l Conf. Logic Programming, pp. 296-
293, 1987.

[7] K. Edwards, Core Jini. Prentice Hall, 1998.
[8] Esmertec, Jbed, http://www.esmertec.com, 2001.
[9] D.P. Friedman and D.S. Wise, “The One-Bit Reference Count,”

BIT, vol. 17, pp. 351-359, 1977.
[10] Newmonics Inc., Perc available from Newmonics Inc., http://

www.newmonics.com, 2003?
[11] R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic

Dynamic Memory Management. John Wiley and Sons, 1998.
[12] D.E. Knuth, The Art of Computer Programming III: Sorting and

Searching. Reading, Mass.: Addison-Wesley, 1973.
[13] Sun Microsystems, http://java.sun.com/products/consumer-em

bedded, 2003.
[14] Sun Microsystems, Java CLDC and K Virtual Machine, http://

java.sun.com/products/cldc/, 2003.
[15] Sun Microsystems, Java Embedded Server available from Sun

Microsystems, http://www.sun.com/software/embeddedserver,
2003.

[16] D.A. Moon, “Architecture of the Symbolics 3600,” Proc. 12th Ann.
Int’l Symp. Computer Architecture, pp. 76-83, 1985.

[17] S.S. Mukherjee and M.D. Hill, “Making Network Interfaces Less
Peripheral,” Computer, Oct. 1998.

[18] K. Nilsen and W. Schmidt, “A High-Performance Hardware-
Assisted Real-Time Garbage Collection System,” J. Programming
Languages, pp. 1-40, 1994.

[19] I.T. Ritzu, “Hard Real-Time Reference Counting without External
Fragmentation,” Proc. Java Optimization Strategies for Embedded
Systems Workshop, 2001.

[20] H. Schorr and W.M. Waite, “An Efficient Machine-Independent
Procedure for Garbage Collections in Various List Structures,”
ACM Comm., vol. 10, pp. 501-506, 1967.

[21] W. Srisa-an, C.D. Lo, and J.M. Chang, “Active Memory: Garbage-
Collected Memory for Embedded Systems,” Proc. Second Ann.
Workshop on Hardware Support for Objects and Microarchitectures for
Java, pp. 11-15, 2000.

[22] W. Srisa-an, C.D. Lo, and J.M. Chang, “A Performance Analysis of
the Active Memory Module (AMM),” Proc. IEEE Int’l Conf.
Computer Design, pp. 493-496, 2001.

[23] P. Steenkiste and J. Hennessy, “Tags and Type Checking in Lisp:
Hardware and Software Approaches,” Proc. Second Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS II), Mar. 1987.

[24] W. Stoye, T. Clarke, and A. Norman, “Some Practical Methods for
Rapid Combinator Reduction,” Proc. Symp. LISP and Functional
Languages, Aug. 1984.

[25] D. Ungar, “The Design and Evaluation of a High Performance
Smalltalk System,” ACM Distinguished Dissertations, 1987.

[26] D.S. Wise, B. Heck, C. Hess, W. Hunt, and E. Ost, “Research
Demonstration of a Hardware Reference-Counting Heap,” Lisp
Symbolic Computing, vol. 10, pp. 159-181, 1987.

[27] M. Wolczko and I. Williams, “The Influence of the Object-
Oriented Language Model on a Supporting Architecture,” Proc.
26th Hawaii Int’l Conf. System Sciences, 1993.

Witawas Srisa-an (M’98) received the BS
degree in science and technology in context,
and the MS degree in computer science from the
Illinois Institute of Technology (IIT). In 1999, he
received the Dean’s Scholarship to pursue his
PhD degree and joined the Computer Systems
Laboratory at IIT under the advisory of Dr. Morris
Chang. He received the PhD degree in computer
science from the Illinois Institute of Technology
in 2002. He is currently an assistant professor in

the Department of Computer Science and Engineering at the University
of Nebraska-Lincoln. He has taught courses on such subjects as
operating system kernels, computer architecture, and performance
analysis of object-oriented systems. His research interests include
computer architecture, object-oriented programming, dynamic memory
management and garbage collection, dynamic instrumentation, hard-
ware support for garbage collection, Java, and C++ programming
languages. He is a member of the IEEE and the IEEE Computer
Society.

Chia-Tien Dan Lo (M’98) received the the BS
degree in applied mathematics from the National
Chung-Hsing University, Taiwan, the MS degree
in electrical engineering from the National
Taiwan University, Taiwan, and the PhD degree
in computer science from the Illinois Institute of
Technology (IIT), Chicago, in 1990, 1992, and
2001. In 2002, he joined the Department of
Computer Science at the University of Texas at
San Antonio, San Antonio, Texas, as an

assistant professor. From 1992 to 1994, he served as a second
lieutenant for the military and joined the Data Automation Project Group
for the Army. After 1994, he spent two years as a research assistant at
the Institute of Information Science, Academia Sinica, Taipei, Taiwan.
His work there was implemented to a verifier that can be used in real-
time concurrent systems. In 1995, he founded a computer company
specializing in embedded system design, small business networking
services, and database applications. At the beginning of 1998, he
received the Dean’s scholarship and joined the computer system group
at IIT. He started his teaching career in 1999 and has taught courses
that include the Unix systems programming and the computer network.
His research interests include VLSI design, operating systems, neural
networks, concurrent algorithms, computer communication networks,
artificial intelligence, computer architecture, and computing theory. His
current research thrusts are dynamic memory management in Java, C
and C++, hardware support for java virtual machine, reconfigurable
computing, low-power embedded systems, process migration, and
multithreaded systems. He is a member of the IEEE and the IEEE
Computer Society.

Ji-en Morris Chang (M’85) received the BS
degree in electrical engineering from Tatung
Institute of Technology, Taiwan, the MS degree
in electrical engineering, and the PhD degree in
computer engineering from North Carolina State
University in 1983, 1986, and 1993, respectively.
In 2001, Dr. Chang joined the Department of
Electrical and Computer Engineering at Iowa
State University where he is currently an
associate professor. His industrial experience

includes positions at Texas Instruments, Microelectronics Center of
North Carolina, and AT&T Bell Laboratories. He was on the faculty of the
Department of Electrical Engineering at the Rochester Institute of
Technology, and the Department of Computer Science at the Illinois
Institute of Technology (IIT). In 1999, he received the IIT University
Excellence in Teaching Award. Dr. Chang’s research interests include:
wireless networks, object-oriented systems, computer architecture, and
VLSI design and testing. Dr. Chang has been serving on the technical
committee of the IEEE International ASIC Conference since 1994. He
also served as the secretary and treasurer in 1995 and Vendor Liaison
Chair in 1996 for the International ASIC Conference. He was the
conference chair for the 17th International Conference on Advanced
Science and Technology (ICAST 2001), Chicago, Illinois. He is a
member of the IEEE and the IEEE Computer Society.

SRISA-AN ET AL.: ACTIVE MEMORY PROCESSOR: A HARDWARE GARBAGE COLLECTOR FOR REAL-TIME JAVA EMBEDDED DEVICES 13

