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Abstract—The performance and scalability issues of multithreaded Java programs on multicore systems are studied in this paper.

First, we examine the performance scaling of benchmarks with various numbers of processor cores and application threads. Second,

by correlating low-level hardware performance data to JVM threads and system components, the detail analyses of performance and

scalability are presented, such as the hardware stall events and memory system latencies. Third, the usages of memory resource are

detailed to observe the potential bottlenecks. Finally, the JVM tuning techniques are proposed to alleviate the bottlenecks, and improve

the performance and scalability. Several key findings are revealed through this study. First, the lock contentions usually lead to a

strong limitation of scalability. Second, in terms of memory access latencies, the most of memory stalls are produced by L2 cache

misses and cache-to-cache transfers. Finally, the overhead of minor garbage collections could be an important factor of throughput

reductions. Based on these findings, the appropriate Java Virtual Machine (JVM) tuning techniques are examined in this study. We

observe that the use of a parallel garbage collector and an appropriate ratio of young to old generation can alleviate the overhead of

minor collection and improve the efficiency of garbage collections. Moreover, the cache utilizations could be enhanced with the use of

thread-local allocation buffer, and then leads to the performance improvements significantly.

Index Terms—Garbage collection, Java, lock contention, multicore, performance counter, scalability, virtual machine.
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1 INTRODUCTION

IN recent years, Java language has become a popular choice
for development of multithreaded applications and long-

running servers [1]. Designed with many advanced features,
such as automatic memory management, cross-platform
portability, and enforced security check, Java is also an
excellent programming language used on various plat-
forms. The multithreading feature of Java is also employed
on platforms, largely on the server systems, to gain higher
throughput and faster response time.

Today, some of the most common multithreaded Java
applications in a server environment are: IBM WebSphere,
BEA WebLogic, JBoss, Oracle Application Server, and Sun
Java System Application Server. These applications are
highly threaded and memory-intensive and tend to be
operated on multiprocessor platforms, such as multicore
systems. Due to the advance of semiconductor technology,
multicore systems are becoming affordable, accordingly
driving the widespread deployment of these applications.
However, the performance and scalability of multithreaded
Java applications running on multicore systems remain a
major concern and were rarely reported.

Java employs sophisticated runtime environment, Java
Virtual Machine (JVM), to obtain productivity, portability,

and security. The versatility brought by this extra layer comes
with the high cost of performance degradation. Therefore,
the performance analysis becomes very important. However,
to characterize the performance of multithreaded Java
applications remains quite challenging. The challenge is
due to that performance of a system should be observed by
multiple levels, such as hardware, operating systems,
runtime environments, and applications. Moreover, the
complexity of a multithreaded application increases the
difficulty of characterization.

As the use of multicore processors is becoming a
common commodity, software developers are investing
heavily in developing multithreaded applications. How-
ever, ensuring acceptable performance of these applications
on the myriad of parallel platform is hard to reach. The
disparity between application’s demand and available
resources decreases the application performance. On one
side, if the application demand is represented by its degree
of parallelism and required resources exceed the available
processor capability, the system will exhibit low scalability.
On the other side, low application demand means that the
system might be under-utilized.

Due to the complexity, performance issues regarding
multithreading in Java is conspicuously hard to deal with.
Challenge is being faced in achieving higher performance as
multithreaded Java applications scale with multicore
systems. Intuitively, the resource contention and memory
system latencies are the major performance bottlenecks.
Therefore, the bottleneck analyses could be paramount for
the improvements of performance and scalability.

The goal of this paper is to study the performance and
scalability issues of multithreaded Java applications on
multicore systems. The potential bottlenecks of scalability
and performance are identified by the thorough study of
scaling of Java on multicore systems, and then appropriate
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JVM tuning techniques are examined. In order to accom-
plish this goal, the following steps of investigation are
performed in this paper.

. Performance measurements
Eight widely used multithreaded Java bench-

marks are used to execute with a state-of-the-art
JVM on an eight cores system. All benchmarks
execute with various numbers of cores and a portion
of benchmarks execute with various numbers of
application threads. Thus the detailed information of
the throughput could be observed for the further
performance analyses.

. Bottlenecks identification
In order to detect bottlenecks of performance and

scalability at multiple levels, the low-level hardware
performance data is correlated to the high-level
software behavior. Thus the CPU cycle usage could
be detailed, and then bottlenecks could be identified.

. JVM tuning techniques
Once the bottlenecks are identified, appropriate

JVM tuning techniques will be discussed for their
abilities to reduce the impacts of these bottlenecks.

Through performing these steps of investigation, this
paper makes the following contributions. First, the com-
prehensive characterization of eight widely used multi-
threaded Java benchmarks is provided. It evaluates the
benchmark performance and examines the scalability by
varying the number of cores and application threads.

Second, the thorough analyses by breaking down total
CPU cycles are provided. The analyses are based on the
memory system latency components, types of JVM threads
and stall cycles. Thus potential performance bottlenecks
could be identified.

Third, two major bottlenecks: the resource contention
and memory system latencies are studied. Specifically, we
suggest that more attentions should be paid to the lock
contentions and L2 cache performance when doing perfor-
mance improvements for memory-intensive applications in
a highly threaded environment.

Finally, the useful findings are revealed by examining
tuning techniques. The performance improvements by the
use of parallel garbage collector could be observed in a
memory-intensive application. The appropriate ratio of new
to old generation could reduce the overhand of minor
collection. Furthermore, the use of a thread-local heap could
improve the cache performance when a memory-intensive
Java application runs on multicore systems, although its
original intension is to reduce the heap contention [2]. The
use of allocation buffer with an appropriate size, between
16 KB and 256 KB, usually leads to performance improve-
ments in our study.

2 METHODOLOGY

In this section, the experimental environments, including
multithreaded benchmarks, and methodologies of imple-
mentation and measurement, are detailed as follows:

2.1 Experiment Setup

The experiments are based on a server with two Xeon X5355
processors, the Quad-Core Intel CPU, and 16 GB main

memory. Fedora core 8 with kernel version 2.6.24 is used as
an OS. In order to avoid miscellaneous influence skewing
the results, the single user mode of OS is used.

The experiments are performed with a state-of-the-art
JVM, the HotSpot of OpenJDK [3]. The newest version,
OpenJDK 1.7, is built for experiments. The HotSpot JVM
executes in server mode as server mode instructs the JVM to
perform more extensive runtime optimization.

2.2 Multithreaded Java Benchmarks

In this study, multithreaded benchmarks, Eclipse, Hsqldb,

Lusearch, and Xalan, are selected from DaCapo benchmarks

[7]. The numbers of threads are predefined and unchange-

able in DaCapo, they are nine in Eclipse, 20 in Hsqldb, 32 in

Lusearch and 8 in Xalan. The performance can be observed

with various numbers of cores, and then scalabilities could

be obtained.

In addition, the SPECjbb2005 [8] and JGF multithreaded

benchmarks are used to observe the correlation of scal-

ability and various numbers of application threads. The JGF

multithreaded benchmarks, MolDyn, MonteCarlo, and Ray-

Tracer, are developed by Java Grande Forum. The numbers

of application threads is configurable in SPECjbb2005 and

JGF multithreaded benchmarks. Thus the variations of

scalability could be observed by varying the numbers of

application threads.
In order to maintain the constant memory pressure upon

each benchmark, we fixed the heap sizes to the three times of
minimum heap size of each benchmark for all experiments
based on common practices in related studies [6], [11].

2.3 Implementation and Measurement

There are many factors, such as retired instructions,
memory access latency, access latency, processor utilization,
thread synchronization, that could affect the performance.
In order to identify the bottlenecks of performance and
scalability, it is necessary to obtain the performance data
during the execution for further analyses.

In order to obtain the performance data, the performance
counter is used as a monitor to record the hardware events.
In this study, the Intel’s VTune performance analyzer [4] is
used as a performance counter [9]. The performance data
can be recorded on a per-thread basis. Thus the unique
behavior of each type of JVM threads could be observed. In
order to observe the performance variations of benchmarks,
the benchmarks are executed with various configurations
as follows:

. Various number of processor cores
For each run of a benchmark, the different number

of cores from one to eight (one, two, four, six, and
eight) is assigned. The use of a single core, which is
not a multicore configuration, is included only for
comparison.

. Various number of application threads
For each run of SPECjbb2005 and JGF multi-

threaded benchmarks, the different number of
application threads is assigned from one to eight
(one, two, four, six, and eight). The use of single
application thread is for comparison purpose.
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. The use of JVM tuning techniques
In order to observe the performance variations of

JVM tuning techniques, three techniques are applied

to examine their performance. First, the various sizes

of a thread-local allocation buffer are applied to

examine the impact on memory systems. The results

would be detailed in Section 3.7.1. Second, the

parallel garbage collector, which is also referred to

as the throughput collector [14], is used to compared

with the use of default concurrent garbage collector.

The results would be detailed in Section 3.7.2.

Finally, a tuning technique, which is called NewRatio

in HotSpot, is examined its improvement of minor

garbage collections. The results will be detailed in

Section 3.7.3.

In order to perform the comparison of different JVMs, we

also apply tuning techniques on Jikes RVM. The compar-

isons are shown in Section 3.7.4.

3 EXPERIMENTAL RESULTS

The experimental results are summarized in this section.

The objective is to correlate low-level hardware events to

memory components and types of JVM threads. The

correlations could be used to identify bottlenecks at multi-

ple levels, and then the strategies for performance enhance-

ment could be derived.

3.1 The Types of JVM Threads

When a multithreaded Java benchmark runs with HotSpot,

a certain number of JVM threads will be created. In

particular, there are six types of JVM threads have been

implemented in HotSpot. They are vm_thread, cgc_thread,

pgc_thread, java_thread, compiler_thread, and watcher_thread.

The character of each JVM thread is shown as follows:

Only one vm_thread is created when a Java application
runs with HotSpot. The vm_thread waits the operations
which appear in the VMOperationQueue, and then executes
operations. Once a safepoint has been requested, the
vm_thread must wait until all threads are known to be in
a safepoint-safe state before executing any operation. A
thread lock is used to block all threads during a safepoint.
Thus the use of more safepoints could lead to more idle
cycles and performance reductions. Thus the number of
vm_thread cycles could be an important factor to identify
the performance bottlenecks.

In this study, all statistics of hardware event are divided
into different groups by the types of JVM threads. Thus the
correlation between JVM threads and bottlenecks of
performance and scalability could be identified.

3.2 The Throughput Analysis

In order to observe the interactive performance scales with
various numbers of cores and threads, the scales of
throughput speedup could be used to examine the
scalability of each benchmark. The throughput scaling of
DaCapo benchmarks is shown in Fig. 1a. The throughput of
each benchmark has a normalization value of 1.0 in a single
core configuration.

In Fig. 1a, the improvement of throughput of Eclipse,
Hsqldb and Xalan could be observed with the use of more
cores. It is worth noting the poor scalability of Hsqldb. It
seems that the lock contention problem which related to the
behavior of a database application limits the advantage of
using more cores. Thus the scalability of Hsqldb is lower
than Eclipse and Xalan. The limitation of scalability will be
verified in Section 3.3.2.

On the other hand, no any advantage of multicores is
observed in Lusearch. The potential performance and
scalability bottlenecks could offset the benefit of multicore
systems. It seems that the poor cache utilization leads to the
results, and it would be verified in Section 3.3.3.
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Moreover, there are not significant improvements of
Eclipse and Hsqldb, when the number of cores is greater
than four. However, Xalan has a good throughput
improvement after six cores. We hypothesize that the good
cache utilization might lead to good scalability in Xalan,
and this hypothesis will be verified in Section 3.3.3.

Due to the maximum number of cores is eight in our study,
the use of one to eight threads could present the application
behaviors for our analysis. As shown in Figs. 1b, 1c, 1d, and
1e, the use of 16 and 32 threads has slight differences with the
use of eight threads in JGF and SPECjbb2005.

The SPECjbb2005 throughput scaling with various
numbers of cores and threads is shown in Fig. 1b. The
throughput of single thread and a single core has normal-
ized to 1.0, then, for each different configuration, the
throughput is normalized to the configuration of single
thread and a single core. In Fig. 1b, the performance
improvements could be observed with the use of more cores
and threads. That shows SPECjbb2005 can have the
advantages from multithreading and multicore systems.

The throughput scaling of JGF multithreaded bench-
marks are shown in Figs. 1c, 1d, and 1e. The performance
peak could be observed when the number of threads equals
to the number of cores. It shows the competition among the
application threads for resource to execute is not intense.
On the other hand, when the number of cores is greater than
the number of threads, the possibility of a thread being
assigned to a different core after a context switch is much
higher. The core reassignment tends to generate the cache
misses and the cache-to-cache transfer, and then degrade
the cache utilizations.

The summary of throughput is as follows: First,
Lusearch can not have advantage with the use of two and
more cores. Second, the use of more cores and threads
could improve the throughput in SPECjbb2005 and JGF.
Finally, the performance peak could be observed when the
number of threads equals to the number of cores in JGF
multithreaded benchmarks.

3.3 Distributions of CPU Cycles

The analyses by breaking down the total unhalted CPU cycles
are shown in this section. The total unhalted CPU cycles are
the summary of all used cores in this study. Due to a single
core is used for comparisons, the indicated cycle numbers are
the averages of two, four, six, and eight cores in this section.

3.3.1 The Breakdown of CPU Cycles by JVM Threads

The total unhalted CPU cycles, also known as total cycles,
could be accounted by an architectural hardware event of
the performance counter. Total cycles could be used to
represent the consummation of CPU resource; thus it is an
important factor for performance analysis.

The total cycles breakdown of DaCapo benchmarks is
shown in Fig. 2. The single-core configuration has a
normalization value of 1.0, then, for each benchmark, the
total cycles are normalized to a single core.

First, total cycles increasing could be observed with the
use of more cores in DaCapo benchmarks, except for
Eclipse. It seems that there is a strong correlation between
the decreases of total cycles and good scalabilities in
Eclipse. This correlation will be further investigated via
the cycle breakdown in Section 3.3.2.

Second, the vm_thread contributes mostly in Hsqldb.
Moreover, the percentages of vm_thread cycles (51 percent)
are higher than the other benchmarks (4-15 percent). That
shows the high requirements of safepoints in Hsqldb. More
use of safepoints could lead to more lock contentions, and
reduce throughput.

Due to the largest live heap volume (72 MB) and largest
number of live objects (3,223,276) [6], there are four full GCs
occurred in one run of Hsqldb. The full GCs occupy
58 percent of total executing time in Hsqldb. That leads to a
frequent use of safepoints; thus significant cycles could be
observed by a vm_thread in Hsqldb.

Finally, the significant contributions of java_threads
could be observed in DaCapo benchmarks (18 percent in
Eclipse and Hsqldb, 53 percent in Lusearch and Xalan). The
cycles of java_thread increase significantly with the use of
more cores. It seems that java_threads contend with other
java_threads, and then reduce cache utilizations. The bad
cache utilization could be a bottleneck of performance, and
it will be further investigated in Section 3.3.2.

The total cycles breakdown of SPECjbb2005 and JGF
benchmarks is shown in Fig. 3. Due to the large number of
data which comes from various configurations of threads
and cores, the statistics of four and eight threads are
presented in following sections. The configuration of four
threads and a single core has a normalization value of 1.0,
then, for other configurations, the total cycles are normal-
ized to four threads and a single core.
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In Fig. 3, the vm_thread cycles of eight threads (15 percent)
are lower than four threads (31 percent) in JGF benchmarks.
That shows fewer requirements of safepoints and fewer lock
contentions with the use of more threads. Thus the config-
urations of eight threads could have better scalability than
four threads in JGF benchmarks.

Based on the analyses, it seems that a vm_thread plays
an important role in the issue of scalability. Moreover,
among all benchmarks except Hsqldb, java_threads con-
tribute total cycles mostly. Thus the further analyses of
vm_thread and java_thread are performed to observe the
potential bottlenecks in the next section.

3.3.2 The Breakdown of CPU Cycles by Stall Cycles

Total cycles could be divided into two groups, dispatch and
stall. After instructions are decoded into the executable
micro operations, the Reservation Station (RS) issues the
appropriate micro operations to Execution Units. The micro
operations would be dispatched when resources are
adequate. The CPU cycle of dispatched operations is
dispatch cycle. On the other hand, when micro operations
stall, the penalty cycle is stall cycle.

Based on this correlation, the summary of stall cycles and
dispatch cycles equals to total cycles, the total cycles could
be breakdown for more information. The total cycles
breakdown of DaCapo benchmarks is shown in Fig. 4,
and observations are listed as follows:

In Hsqldb and Lusearch, the stall ratio (stall cycles/
dispatch cycles) of java_threads increases with the use of
more cores. The large stall ratio of java_thread leads to the
lower utilization of the CPU resource and could be the
bottleneck of Hsqldb and Lusearch. However, the reasons
which lead to the high stall ratio are different. In Hsqldb,
the feature of database access leads to the high lock
contention. Thus, the stall ratio becomes high because each
thread waits for another.

The large values of dispatch and stall java_thread cycles
could be observed in Lusearch in Figs. 2 and 4. It seems that
the most of CPU cycles are spent on the workload of
Lusearch. Furthermore, the large values of java_thead stall
cycles indicate the workload cannot be done well. Thus we
may hypothesize that application threads of Lusearch cannot
finish the certainly job due to some reasons, such as lock
contentions. This hypothesis will be verified in Section 3.5.

Due to the shortest live time of Xalan’s objects in DaCapo
[6], the objects of Xalan die quickly. Thus the objects which
die young, do not need to be transferred from caches to
caches, and then the reductions of cache-to-cache transfers
could be observed. With the use of more cores, more
application threads work with the same amount of objects
at the same time. Thus the lower cache-to-cache transfers
could be observed in six and eight cores.

The total cycles breakdown of SPECjbb2005 and JGF
benchmarks by stall and dispatch cycles is shown in Fig. 5.
The variations of stall cycles, which are between four and
eight threads, are insignificant in JGF (lower than 2 percent).
On the other hand, the stall cycles of eight threads
(41 percent) are almost twice as large as stall cycles of four
threads (18 percent) in SPECjbb2005. We hypothesize that
the lock contention of eight threads leads the high stall
cycles in SPECjbb2005, and it will be verified in Section 3.5.

Based on the study of dispatch/stall cycles breakdown,
the stable dispatch cycles could be observed after the use of
two cores. That shows the workload of each run is similar.
However, the increases of stall cycles usually could be
observed with the use of more cores, and lead to the
reductions of throughputs. This observation shows that the
numbers of total cycles are not related to throughputs
directly, but the variations of stall cycles could be an
important factor to affect throughputs.

In order to detail the hardware events which lead the
stall cycles, the breakdown of stall cycles by hardware
events would be detailed in next section.

3.3.3 The Breakdown of Stall Cycles

Since the stall cycles could be an import factor to affect the
performance and scalability. Thus the analysis of hardware
stall events which lead to stall cycles could be used to
identify potential bottlenecks. Based on the research of cycle
accounting analysis [10], the most of stall events are related
to the memory latency. Therefore, the hardware stall events,
which are due to the memory latency, would be analyzed in
this section.

The first stall event is the L2 cache miss. It means the CPU
cycles stall is due to an L2 cache miss. The largest penalty
cycles leads to the L2 miss contributes mostly of stall cycles.
The second one is the cache-to-cache transfer. A cache-to-
cache transfer means the shared data, either the success
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Fig. 4. Total cycles of the DaCapo multithreaded benchmarks divided by
stall and dispatch cycles and JVM threads.

Fig. 5. Total cycles of SPECjbb2005 and JGF benchmarks divided into
stall and dispatch cycles and JVM threads.



sharing or false sharing, has to be copied to the main
memory or to the other cache before it can be used. In
addition, other stall events are included in our statistics,
such as L1 data cache miss, Pipeline flush, and DTLB Miss. The
stall cycles of above events are represented as SCL2, SCc2c,
SCL1, SCpf , and SCdtlb in this study.

The stall cycles of DaCapo benchmarks breakdown by
stall events are shown in Fig. 6. The SCL2 contributes mostly
of total stall cycles (77 percent in Eclipse, 69 percent in
Hsqldb, 58 percent in Lusearch and 53 percent in Xalan). It
seems that there is a strong correlation between the low stall
cycles of L2 cache misses and good scalabilities. Moreover,
the significant reduction of SCL2 after four cores could be
observed in Xalan. The reduction leads to the improvement
of six and eight cores in Xalan. Therefore, the reduction of
SCL2 could be an important key to improve scalabilities.

It is worth noting that the SCc2c increases with the use of
more cores in Lusearch significantly. That shows a large
number of true and false sharing of data among different
cores. Moreover, the lock contention which is between
threads might aggravate it, and then cancels out the benefit
of the use of more cores.

The stall cycles breakdown of SPECjbb2005 and JGF
benchmarks is shown in Fig. 7. Due to a large volume of
objects is allocated during executions, the large cycles
numbers of SCL2 and SCc2c could be observed in Mon-
teCarlo (31 percent) and SPECjbb2005 (342 percent). On the
other hand, the small memory footprint leads to the few
cycle numbers of SCL2 and SCc2c in MolDyn (22 percent)
and RayTracer (11 percent). That leads to the better
scalability of these benchmarks.

With the use of more cores or threads, the L2 cache
performance could be worse. Two factors might be related
with this issue. First, the default memory allocator of
HotSpot allocates objects in nursery heap space through a
bump pointer. The objects belonging to different threads
could be allocated close to each other. The access to one
object might lead to the other object to be loaded into the
same cache line. Obviously, this will worsen the spatial
cache locality for the current thread.

Second, the memory allocator could lead to high cache-
to-cache transfers. If two or more cores try to access data in
the same cache line but in different processor caches
simultaneously, writing data in one cache might lead to

the data to be invalidated in other processor caches.
Therefore, the use of more cores and more application
threads could lead to this situation even worse due to the
increasing contentions of memory accesses.

The further investigation shows that using a thread-local
heap or allocation buffer might improve cache system
performance on multicores systems potentially. In order to
observe this potential, the analyses of memory components
performance are performed in Section 3.4.

3.4 Memory System Performance

In order to detail the causes of bottlenecks, the memory
system performance would be studied in terms of JVM
thread types. Based on the analyses of stall cycles, two
important factors, L2 cache misses and cache-to-cache
transfers, would be studied in this section.

3.4.1 L2 Cache Misses

The L2 cache misses ratios are break down by JVM threads
in Figs. 8a and 8b. It seems that not only java_thread
contributes mostly of SCL2, but also gc_thread does.
Moreover, the benchmarks which have the large volume
of objects usually lead to high SCL2 of gc_threads. That
shows the possibility of garbage collector improvements.
We hypothesize that the default concurrent collector might
not take advantage of multicore systems and multithreaded
applications. This hypothesis will be verified in Section 3.6,
and JVM tuning techniques are proposed in Section 3.7.

The increases of L2 cache misses with the use of more
cores are observed in DaCapo benchmarks, especially in
Hsqldb and Lusearch. Due to the database access behavior
in Hsqldb, the data is reallocated frequently between each
core and waited to be processed. The reallocation leads to
an increase of L2 cache misses. On the other hand, the large
numbers of L2 cache misses are observed in Lusearch. The
bad cache utilization of Hsqldb and Lusearch could be
considered as the lock contention problem, and it will be
detailed in Section 3.5.

3.4.2 Cache-to-Cache Transfer

To simplify this analysis, cache-to-cache transfers are
correlated to the thread responsible for data modifications.
In Figs. 8c and 8d, the cache-to-cache transfer ratio would
be analyzed by contributions of JVM thread types
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divided by hardware stall events.

Fig. 7. The total stall cycles of the JGF and SPECjbb2005 multithreaded
benchmarks divided by stall events.



First, it seems that the most of cache-to-cache transfers are
dominated by java_threads. In addition, the use of more cores
or threads often leads to an increase of the cache-to-cache
transfer ratio. These observations show that cache-to-cache
transfers share the similar behavior as L2 cache misses.

However, the causes which lead to L2 cache misses and
cache-to-cache transfers are different. L2 cache misses are
due to poor cache localities which are resulted from
interleaved object allocations among threads mostly. On
the other hand, true/false sharing of data among each core
leads to cache-to-cache transfers mostly. It is worth noting
that false sharing can be avoided, but not true sharing.
Some related works study on this issue [15]. In order to
narrow down the research scope, the total effect of cache-to-
cache transfers is analyzed in this study.

Second, the low numbers of cache-to-cache transfers in
Xalan could be observed in Fig. 8c. The short life span of
Xalan’s objects [6] leads to less cache-to-cache transfers
since these objects tend to die young.

Finally, it seems that Lusearch has the large numbers of
cache-to-cache transfers than other DaCapo benchmarks.
This observation verifies the hypothesis in Section 3.3.3, the
large stall cycles are resulted from the cache-to-cache
transfer in Lusearch. Thus the cache-to-cache transfer could
be considered as a bottleneck of Lusearch.

It is worthy noting that cache-to-cache transfers could
be reduced significantly by scheduling threads into the
previously running core. The parameter, cpus_allowed, is
modified in data structures of a Linux thread to imple-
ment this approach, and experimental results are shown in

Fig. 9. The significant reductions of cache-to-cache
transfers could be observed in Lusearch (42 percent).
Moreover, the 28 percent throughput improvements could
be observed by this approach.

3.5 Lock Contention

In Java, the lock contention arises when multiple threads try
to access a shared object exclusively at the same time. In
general, synchronizations are used to guarantee a shared
object being accessed correctly. There are two typical types
of synchronizations, blocking and spinning. These two
types of synchronizations have been applied to various
synchronization mechanisms, such as mutual exclusion
locks, condition variables, semaphores, spin locks, etc.
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JGF. (c) The cache-to-cache transfer of DaCapo benchmarks. (d) The cache-to-cache transfer of SPECjbb2005 and JGF.



The synchronization mechanism in Java monitor, is
widely used in various JVMs. It will be inflated to a fat-
lock when threads try to get exclusive accesses to shared
objects simultaneously. In Java, a fat-lock could be
considered as a pair of monitors. Instead of a fat-lock, a
thin-lock could be considered as an implement of CAS
(Compare and Swap). The proposition of a thin-lock is based
on the observation that the locks are rarely contended in
Java applications. When the competitions between threads
are not contended, the use of a thin-lock is faster than the
use of a fat-lock.

When objects are required by threads simultaneously,
threads could be blocked and led to lock contentions. The lock
contention is a complicated problem [16]. The statistics of lock
numbers, including static locks and dynamic locks, are used
to analyze this problem. The lock numbers of each benchmark
has a normalization value of 1.0 in a single core configuration.

In Fig. 10, the significant increases of lock numbers could
be observed in Lusearch with the use of more cores. Due to
the text searching characteristic of Lusearch, multiple
application threads might share a part of the text objects
with the use of locks. This characteristic leads to threads
wait for others to obtain locks and do searching. Thus the
lock contention of Lusearch can be observed in Fig. 10. In
addition, the problem of lock contention leads to a long
waiting time for other threads. Thus performance degrada-
tions could be observed with the number of cores scales up
in Lusearch.

The lock numbers of SPECjbb2005 and JGF are shown in
Fig. 11. The slight increases of lock numbers are observed
with the use of more cores or threads in JGF. On the other
hand, the lock numbers of SPECjbb2005 are much higher
than JGF benchmarks. Due to the large volumes of objects in
SPECjbb2005, the overhead of minor garbage collections
might be the cause which leads to large numbers of locks.
The overhead could be a bottleneck of scalability in
SPECjbb2005, and it will be verified in Section 3.6.

The investigation shows that Eclipse, Xalan, and JGF
benchmarks could be classified as benchmarks with slight
lock contentions. In these benchmarks, most accesses to
shared objects could be done through thin locks. In very
infrequent cases that fat locks have to be acquired, the
average time of acquiring and holding a lock is shorter than
other benchmarks. As a result, the low values of numbers of

locks could be observed even if a large number of cores or
threads are used.

On the other hand, Hsqldb, Lusearch, and SPECjbb2005
could be classified as benchmarks with heavy lock
contentions. The tournament-based barriers contribute to
this effect. Threads have to wait for particular barriers
until all threads reach it. In order to relief the lock
contentions, the workload and time slice must be well
balanced among the application threads. Otherwise, a
large number of CPU cycles would be wasted for waiting
(actually spinning because yielding is used). However, in
a heavy threaded environment, the well balancing cannot
be guaranteed.

In conclusion, the lock contentions could degrade the
performance and limit the scalability. Particularly, a large
synchronization scope of a lock usually shows a strong
limitation on scalability. In order to improve the scalability
of multithreaded applications, the scopes of synchroniza-
tions should be minimized. Thus the time of acquiring or
holding a lock could be reduced, and then better scalabilities
could be reached through higher thread-level parallelism.

3.6 The Overhead of Minor Collections

The certain memory space is located as the heap when a Java
application initiates. This memory space is a repository for
live objects, dead objects, and free memory. The heap could
be divided into three parts. They are young, old, and
permanent generations. The young generation is optimized
for objects that have a short lifetime relative to the interval
between garbage collections. The objects, which are survived
after several garbage collections, would be moved from the
young generation to the old generation by minor collections.

When a multithreaded Java application executes with a
multiple cores system, multiple threads create objects at the
young generation simultaneously. Thus, the young genera-
tion could be filled up quickly. Moreover, the lock
contention could lead to that threads have to wait for other
threads. It could be the reason which leads to large numbers
of locks in SPECjbb2005 and Lusearch. It is worth noting
that objects could not be collected while the other living
threads still hold them. The contention reduces the
efficiency of garbage collection and leads to the significant
overhead of minor collections.

In order to identify the overhead of minor collections,
SPECjbb2005 is used to examine the variations of overhead.
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Fig. 10. The statistics of lock numbers of DaCapo multithreaded
benchmarks versus numbers of processor cores.

Fig. 11. The statistics of lock numbers of SPECjbb2005 and JGF
multithreaded benchmarks versus numbers of processor cores.



In Fig. 12, the significant overhead of eight threads could be
observed. The significant overhead of eight threads might
cancel the benefit of the use of more cores and threads, and
could be a bottleneck of scalability.

The increase of the heap size could reduce the overhead
directly. When the size of heap increases, the young
generation also increases to hold more objects. However,
the heap size cannot increase without a limit. Base on the
premise of a same heap size, finding an appropriate size of
young and old generation could be an important tuning
technique, and this issue would be examined in Section 3.7.3.

3.7 JVM Tuning Techniques

In this section, three JVM tuning techniques are proposed to
improve the scalability and performance for the observed
bottlenecks. These tuning techniques would be examined to
observe their improvements individually.

3.7.1 The Use of Thread Local Heap/Allocation Buffer

Based on the studies in Section 3.3.3, memory stalls could be
the important reason of performance degradations and
scalability limitations. It seems that the high-level software
behaviors could lead to the stresses on memory systems.
For example, the multiple java_threads allocate and access
objects simultaneously. The gc_threads scan objects and
copy live ones from a nursery space to a mature space
continuously. Thus the use of a technique, which improves
the performance of memory systems in software levels,
could be very important.

Thread-local heap (TLH) is a memory management
scheme. With the use of TLH, each thread receives a
partition of a heap for thread-local object allocations and
thread-local garbage collections without synchronizations
with other threads. The intention of TLH approach is to
reduce the heap contention for object allocations and
garbage collections [2]. However, the use of TLH scheme
could improve the memory performance significantly with
the use of multicores systems. Thus the study of thread
local heap could be important to improve the performance
of memory systems.

HotSpot JVM offers a similar approach, called thread-local
allocation buffer (TLAB). There are some differences between
a TLAB and a TLH. The TLH approach maintains the
invariant that objects within each TLH are local to a single
thread. All objects may be allocated into the TLH, as long as

they are evacuated before becoming nonlocal. It has the
advantage that thread-local objects could be collected
independently without stopping other threads. However,
TLH is complicated because it requires the support of
compilers, and its overhead such as a write barrier have to
be introduced.

In contrast, the TLAB approach allows any object to be
allocated locally in the allocation buffer belonging to the
thread which creates the objects. Moreover, the implemen-
tation of TLAB approach is simpler and often leads to the
similar performance as a TLH. Thus, we focus on the TLAB
instead of the TLH in this section.

The TLABs setting of Hotspot can be determined by
three JVM options, UseTLAB, ResizeTLAB, and TLABSize. In
this experiment, the adaptive TLAB allocations could be
enabled by ResizeTLAB option. The user-defined TLAB
sizes could be adjusted by TLABSize option. Furthermore,
the use of a TLAB could be disabled when the UseTLAB
option is set to false.

In order to evaluate the performance variations of the use
of TLAB, various sizes of a TLAB are applied with four
benchmarks to observe the throughput variations. The
throughput scaling is normalized to 1.0 of the execution
with adaptive TLAB sizing, default garbage collector, and
the use of eight cores. The experiment results are in Fig. 13.

Based on the observations in Fig. 13, it seems that either
large or small TLAB sizes cannot lead to significant
improvements of performance. With the use of small
TLAB sizes, a thread has to request a new buffer frequently
when the current allocation buffer is full. The frequent
memory allocations could lead to the contention on object
allocation and memory fragmentation. Moreover, a small
size of TLAB also leads the objects to be allocated into
separate allocation buffers, and leads to the poor spatial
locality. On the other hand, with a large size of TLAB, the
performance could be offset by the penalties such as TLB
misses. Based on experimental results, the TLAB sizes
which are between 16 KB and 256 KB might lead to
significant performance improvements.

In addition, the 22 percents of performance improve-
ments could be observed averagely with the use of
adaptive TLAB sizing in Fig. 13. However, comparing with
experimental results of the use of other TLAB sizes, the
adaptive TLAB sizing could be enhanced in the future for
particular applications.
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In order to detail the improvements of cache perfor-
mances, the bearkdown of stall cycles is shown in Fig. 14
by various stall events. As shown in Fig. 14, the
considerable reductions of stall cycles could be observed
with the use of various TLAB sizes. The fewer stall cycles
indicates better CPU resource utilizations, and then leads
to better throughputs.

Objects belong to different threads could be placed in the
same cache line but in different core. Thus writing to this
cache line in one core could cause the data to be invalidated
in caches of other cores. Therefore, the significant increases
of cache-to-cache transfers and L2 cache misses could be
observed with the use of more cores. However, the use of
TLAB alleviates this problem by allocating thread-local
objects together. Thus cache locality could be enhanced
significantly due to most cache lines would not be shared
among threads. The enhanced cache locality could be
observed by the reductions of cache-to-cache transfers and
L2 cache misses in Fig. 14.

The use of appropriate size of a TLAB could enhance the
performance of local objects accessing. Thus the lock
contention could be reduced by the better hit ratio of local
objects. It is worth noting that the appropriate size of a TLAB
could depend on the cache organization, the application
behavior, etc. Furthermore, the use of adaptive TLAB sizing
does not reach the lowest stall cycles among the other TLAB
configurations. This observation confirms the observations
in Fig. 13. Thus dynamically choosing the size of a TLAB has
the potential to further performance improvements.

3.7.2 The Use of Parallel Garbage Collector

In order to decrease the overhead of garbage collections and
increase the throughputs, The Parallel Garbage Collector
(PGC) is proposed in the HotSpot JVM. The operations of a
parallel collector could be executed by all available cores on
multicore systems. Thus the better performance of garbage
collections could be reached.

The SPECjbb2005 benchmark is used to examine the
effect of a PGC due to the large volume of objects. The
scaling of total cycles is proposed in Fig. 15 with the use of
various numbers of cores. In order to compare the
proportions of each JVM thread, the numbers of cycles are
normalized to 1.0

Due to the contention and synchronization issues among
gc_threads, the PGC consumes more CPU cycles than the

CGC slightly. However, the reductions of vm_thread cycles
could be observed with the use of a PGC in Fig. 15. As we
mentioned in Section 3.3.1, the increase of vm_thread cycles
usually indicates the degradation of performance due to the
safepoint using in a vm_thread. Therefore, the reduction of
vm_thread cycles s could be considered as the reductions of
idle cycles, and then leads to performance improvements
with the use of a PGC.

3.7.3 The Use of the Ratio of New to Old Generation

The significant overhead of minor collections is observed in
Section 3.6, and it could be a performance bottleneck for
multithreaded applications. In order to improve this
bottleneck, the JVM tuning technique, the adjustable ratio
of the new to old generation, to reduce the overhead.

Based on the studies in Section 3.6, the objects which are
preserved in the young generation cannot be collected due
to the threads still hold them. The young generation could
be filled with the living objects quickly. In order to keep the
living objects and spare space for more new objects, the
living objects must be swept from the young generation to
the old generation by minor collections frequently. Frequent
minor collections could lead to heavy overhead, and then
reduce the throughput.

In order to reduce the overhead, the size of young
generation and old generation should be configured well.
Comparing with the same size of a heap, a larger nursery
space could keep more living objects. Due to a larger nursery
defers collections, and then provides objects more time to
die. In addition, the overhead of minor collections is due to
copying objects in the heap, thus the use of TLAB does not
reduce the overhead of minor collections significantly.

The JVM tuning technique, the NewRatio, could be used
to configure the ratio of new to old generations in a
HotSpot JVM. The experiment is proposed to evaluate the
performance of the NewRatio tuning technique. The
SPECjbb2005 is selected for this experiment due to that
the bottleneck of SPECjbb2005 is the overhead of minor
collections. The default value of NewRatio in the server
mode is two. Thus the values of NewRatio are examined
from 2 to 26 in this experiment.

The throughput scaling of SPECjbb2005 is shown in
Fig. 16. The results are normalized to 1.0 with the use of a
single thread and the default value of NewRatio. The

1530 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 11, NOVEMBER 2011

Fig. 14. Stall cycles breakdown versus thread-local allocation buffer.
Fig. 15. Total cycles of SPECjbb2005 versus parallel and default GC.



average 45 percents improvements of throughputs could
be observed when the NewRatio values are between 10
and 18. This observation shows the appropriate NewRatio
values could improve the throughput significantly. It is
worth noting that the throughput of six and eight threads
is better than four threads. That shows the appropriate
NewRatio values could improve the bad scalabilities of
the use of six and eight threads in SPECjbb2005.

3.7.4 Validation of JVM Tuning Techniques

In order to verify our findings in this paper, the validations
of JVM tuning techniques are proposed in this section.
Three JVM tuning techniques are applied on eight multi-
threaded benchmarks to evaluate the throughputs in this
experiment. The throughput scaling of benchmarks are
shown in Fig. 17. The throughput scaling is normalized to
1.0 of the execution with default JVM option, default
garbage collector and eight cores for DaCapo multithreaded
benchmarks. In addition, the number of cores is set to eight
to examine the scalability of different thread numbers in
SPECjbb2005 and JGF multithreaded benchmarks.

First, the performance improvements of the use of TLAB
could be observed among the most of benchmarks, such as
Eclipse, Lusearch, Xalan, MolDyn, and MonteCarlo. It is
worth noting that the four times improvements of perfor-
mance could be observed with the use of TLAB in Lusearch.
On the other hand, due to the lock contentions could
degrade the performance, only slight throughput improve-
ments could be observed in Hsqldb. The results verify the
findings in Sections 3.4.2, 3.5, and 3.7.1.

Second, the performance improvements of the use of a
PGC could be observed with the high threaded benchmarks
which allocate large volume of objects, such as MonteCarlo,
RayTracer, and SPECjbb2005. In general, the use of PGC
does not lead significant improvements with the use of
fewer cores or the slight requirement of garbage collections.

Third, the significant performance improvements could
be observed as the NewRatio tuning technique is used in
RayTracer and SPECjbb2005. In SPECjbb2005, the use of an
appropriate value of NewRatio leads to the twice improve-
ments of throughputs. That shows the use of NewRatio
could reduce the overhead of minor collections efficiently.
With the increase of object volumes, the improvements could
become significant. This observation verifies the findings
about the overhead of minor collections in Section 3.7.3.

In order to perform the comparison of different JVMs, the
JVM tuning techniques are applied on Jikes RVM to
evaluate the improvements. Due to the NewRatio option
is not available in Jikes RVM, for the repeatability of
experiments, the NewRatio technique is not used on Jikes
RVM in this study.

As the observation of Jikes RVM in Fig. 17, the
improvements of each tuning technique on Hotspot and
Jikes RVM are similar. The differences of improvements by
each optimization technique are less than five percent on
Hotspot and Jikes RVM. These results suggest that the
proposed tuning techniques are applicable to various JVMs.

Moreover, in order to clarify the scalability issue, the
variations of scalability with the use of JVM tuning
techniques are shown in Fig. 18. The single core or single
thread configurations have a normalization value of 1.0,
then, for each benchmark, the throughputs are normalized
to a single core or a single thread.

In Fig. 18, the significant improvements of scalability
could be observed in Lusearch, Xalan, and SPECjbb2005. The
use of TLAB improves the scalability near linear in Lusearch
and Xalan. That shows the appropriate TLAB sizing could
reduce the lock contentions significantly, and then leads to
the well utilizations of the use of multiple cores.

In SPECjbb2005, the scalability which is near linear could
be observed with the use of NewRatio options. That shows
the overhead of minor collections, which is the reason leads
to the poor scalability with the use of six and eight threads
in SPECjbb2005, could be reduced significantly by the
NewRatio tuning technique.

Overall, the validations show that JVM tuning techni-
ques, including an appropriate TLAB, NewRatio and a
parallel garbage collector could improve the performance
and the scalability. The significant performance improves
could be observed in Lusearch, Xalan, RayTracer, and
SPECjbb2005. It shows these JVM tuning techniques are
suitable for the highly threaded and memory-intensive Java
applications. In terms of the ranges of improvements, the
use of TLAB and NewRatio could lead to greater effects
than the use of a parallel collector. The result also implies
that the enhancement of cache performance would have the
potential for performance and scalability improvements.
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Fig. 16. The throughput of SPECjbb2005 versus various NewRatio.

Fig. 17. The improvements of JVM tuning techniques.



4 RELATED WORK

The behaviors of Java applications have been evaluated
since Java was first introduced in late 1995 [13]. Most
studies focused on single threaded Java programs, espe-
cially the SPECjvm98 benchmarks. However, studies of
multithreaded benchmarks are rare. In recent years, due to
the popularity of Java-based server applications, the
performance of Java multithreaded programs is becoming
an issue of great interest.

The performance counters are used to evaluate the
characterizations of Java server applications with the use of
the uniprocessor system. Yue et al. studied the impacts of
various numbers of Java threads on the microarchitecture [5].
Instead of running benchmarks on a uniprocessor system,
our work focuses on the performance characterizations of
multithreaded Java programs on multicore systems. Many
studied in our work, such as cache-to-cache transfer, are not
available on the uniprocessor systems.

Sweeney et al. [11] recently reported a performance
monitoring system in Jikes RVM, which was implemented
based on the hardware performance counters [13]. As a
demonstration, two performance issues (including general

performance trends and the memory latency issues) were
investigated with the use of this system. The result shows
that their tool is able to attribute the observed program
behaviors to the specific components of a JVM. However,
the profiling system has some limitations. The performance
could be examined heavily rely on the capability, which is
provided by the performance counters of processors.

Hauswirth et al. [12] introduce an infrastructure to
further examine applications of their profiling systems. This
research introduces a technique, vertical profiling, to
correlate the performance characterizations across the
layers of modern object-oriented systems. Different from
our work, their research did not particularly focus the
scalability issues on multicore systems.

It is worth noting that a biased lock is used to prevent
executing expensive atomic calls by letting a lock being
biased towards a particular thread [14]. When the thread
acquires or releases the lock, no atomic operations are
required. Only when another thread acquires the lock, an
atomic call is made. Thus the use of biased locking could
reduce the synchronization overheads.

Based on the studies in this paper, we observe that most
objects are locked by at least one thread during their
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Fig. 18. The throughput scaling of Java multithreaded benchmarks versus optimization techniques. (a) Eclipse, (b) Hsqldb, (c) Lusearch, (d) Xalan,
(e) MolDyn, (f) MonteCarlo, (g) RayTracer, (h) SPECjbb2005.



lifetime. Therefore, the sensible case could be optimized. A
biased lock allows that a thread to bias an object toward
itself. Once an object is biased, threads could lock and
unlock this object subsequently without resorting to ex-
pensive atomic instructions. Thus the use of biased locking
could reduce the synchronization overheads in Java sig-
nificantly, and it is enabled by default in Hotspot JVM 1.7.

5 CONCLUSIONS

In this paper, the performance and scalability issues of

multithreaded Java applications on multicores systems are

studied. The detailed analyses by total cycles provide the

information to evaluate the performance scaling of multi-

threaded benchmarks with the use of different number of

cores and threads. The unique approach of analyses,

correlating the low-level hardware performance event data

to system software components, could be use to identify the

performance and scalability bottlenecks at multiple levels.

The summary of this paper is as follows:
First, the lock contentions could limit the performance

and scalability potentially. The inappropriate use of
synchronizations in a multithreaded Java application could
lead to large numbers of stall cycles. Particularly, in a highly
threaded environment, the heavy lock contentions usually
lead to a strong limitation on the scalability.

Second, among memory access latency components, the

most of memory stall cycles are produced by L2 cache misses

and cache-to-cache transfers. Moreover, the use of more

cores or threads, independently of each other, often leads to

increases in L2 cache misses and cache-to-cache transfers.

The low performance of memory systems could reduce the

utilizations of multiple cores and threads applying.

Finally, in order to improve the problems of lock

contentions and memory systems, the JVM tuning techni-

ques are used to reduce the bottlenecks. With the validations

of JVM tuning techniques, we observe that the use of an

appropriate TLAB sizing could reduce L2 cache misses and

cache-to-cache transfer significantly. The appropriate TLAB

sizes, which are between 16 KB and 256 KB, usually lead to

performance improvements. In addition, the dynamically

choosing the TLAB size has the potential to further improve

the performance. On the other hand, the use of the

NewRatio, the ratio of new to old generations, could reduce

the overhead of minor collections. The application of the

NewRatio tuning technique could reduce the overhead and

improve the throughputs and scalabilities significantly.
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