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Abstract—In this paper, we study the upper bounds of memory storage for two different allocators. In the first case, we consider a

general allocator that can allocate memory blocks anywhere in the available heap space. In the second case, a more economical

allocator constrained by the address-ordered first-fit allocation policy is considered. We derive the upper bound of memory usage for all

allocators and present a systematic approach to search for allocation/deallocation patterns that might lead to the largest fragmentation.

These results are beneficial in embedded systems where memory usage must be reduced and predictable because of lack of

swapping facility. They are also useful in other types of computing systems.

Index Terms—Dynamic memory allocation, memory storage, storage allocation/deallocation policies, first-fit allocator, garbage

collection.

Ç

1 INTRODUCTION

DYNAMIC memory allocation is an active area of research in
computer science for decades. There are many algo-

rithms proposed to reduce memory storage or improve
performance [11], [22]. In this paper, we concentrate on the
upper bound of the dynamic memory storage for all
allocators and the allocation pattern that leads to the
maximum of memory usage. The derived upper bounds are
beneficial in embedded systems where memory usage must
be predictable because of lack of swapping facility.

1.1 Background

A computer program may need varying amounts of
memory to perform its tasks depending on changes in its
input or interactions with other external programs. A
memory allocator, or just allocator in short, is a collection
of subroutines (mainly malloc and free in C/C++)
contained in a system library (libc.a in Unix) that is linked
in with each program executable. An allocator can be
implemented using one of several known algorithms. The
allocator obtains memory from the operating system and
provides it to its program in blocks of the specified sizes
when requested by the program by means of calls to
malloc. While a heap memory block is in use by a
program, the block cannot be relocated to a different
address in the heap space. The allocator takes a memory
block back when the program calls the free subroutine and
keeps it for future requests for memory by the same
program. It may merge the freed block with any adjacent
free blocks to create a larger block of free memory space and
it might split a large free block to allocate part of it when

requested by the program via malloc. Thus, allocators
support program need for unforeseen amounts of memory
or dynamic memory. Dynamic memory is also called by
terms such as heap memory, heap space, heap memory
space, store, storage, or just heap for historical reasons.

For the same input and to perform the same tasks on that
input, a program will usually require the same amount of
heap memory. The amount of heap memory, i.e., the
number of bytes of heap memory, a program uses during
the course of its execution can rise and fall as the program
allocates and frees blocks of memory. The maximum
amount of heap memory a program uses during a single
run is called its “high water mark.” We will also refer to it
as program memory requirement. The amount of memory
the program’s allocator obtains from the operating system
during a single run of the program is often referred to as its
memory usage. Initially, when a program starts, its heap
space consists of one contiguous block of free linear
memory space. Due to the program’s repeated and random
allocation (via malloc) and release of memory (via free),
the program’s heap can become fragmented with noncon-
tiguous and interspersed blocks of allocated and free
memory. This harmful but mostly unavoidable phenomen-
on called fragmentation causes memory usage to overshoot
the program’s high water mark by a lesser or higher degree
depending mainly on the severity of fragmentation. This
paper tries to discover the upper bound of memory usage of
an allocator when the program memory requirement is
M number of bytes. The memory usage of an allocator is the
sum of M and the extra memory needed due to fragmenta-
tion. The upper bound of memory usage of an allocator is
the sum of M and the extra memory needed due to the
worst possible fragmentation.

A good allocator uses an allocation algorithm that
minimizes memory usage and finishes each allocation or
deallocation task in the least amount of time possible, i.e.,
maximizes performance. Reducing memory usage is
achieved mainly by reducing fragmentation as much as
possible. In order to reduce fragmentation, allocators use
coalescing of free adjacent blocks and allocation policies
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such as best-fit, first-fit, and several other documented
algorithms. However, it has been found that there is a trade-
off between memory usage and performance. An important
purpose of dynamic memory research is to discover better
allocation algorithms that achieve greater reduction in
memory usage, and at the same time, deliver a higher
performance than any known algorithms.

1.2 Paper Goals and Organization

We investigate the worst case memory usage or upper
bound of memory usage of two different allocators. The first
allocator can allocate memory blocks anywhere in the heap,
while the second one uses the address-ordered first-fit
allocation policy. It should be clear that the upper bound of
memory usage of the first allocator is also the upper bound
for all allocators because this allocator operates with the
least constraints or restrictions. The upper bound of memory
usage of this allocator is derived using an elementary
mathematical method. On the other hand, the upper bound
for the first-fit allocator is found using a systematic
approach aimed at maximizing fragmentation. We describe
an allocation/deallocation pattern that leads to the worst
fragmentation. According to one published research [21], for
a first-fit allocator, a store of about M log2 N is sufficient
where the total amount of memory used by the program is
up to M and largest possible block size is N [20]; however,
the worst case allocation pattern is still not clear and it is
hard to describe the worst case behavior.

The contribution of this paper is twofold. First, we derive
the upper bound of the dynamic memory storage for all
allocators; second, we describe a worst case allocation-
deallocation pattern for the first-fit allocator and derive the
resulting memory usage. The upper bound can be used for
multiple purposes. In an embedded system without disks
for swapping, the upper bound shows the amount of
memory required for programs to run without any risk of
running out of memory. For a system without garbage
collection [12], the minimum memory space required by a
particular program to be able to run in all scenarios without
running out of memory can be determined by the upper
bounds derived from this research. In general-purpose
computers also, all sorts of programs can benefit from the
knowledge of worst case memory usage.

The rest of the paper is organized as follows: In Section 2,
related work and background information are provided.
Next, in Section 3, we describe the problem in detail. Then,
in Section 4, we study the upper bound of memory usage
for the allocator which is free to place the requested block
anywhere in memory. In Section 5, we estimate the upper
bound of memory usage for the addressed-ordered first-fit
allocator and use a set of benchmark programs with
different request patterns to validate the upper bound.
Finally, Section 6 contains the conclusion of the paper.

2 RELATED WORK

Several previously published allocators focus on the real-
time applications. A dynamic memory allocator as part of
the Ada runtime is proposed in [17]. The main goal of this
algorithm is to provide allocation and deallocation of
memory in a bounded time. The experiments conducted

in [7] also show that segregating the free list by size can
offer a reasonable bound on the allocation and deallocation
time. It has been reported in [3] that a general-purpose
allocator (the Lea’s allocator [16]) performs as good as the
custom allocators. This work also presented an implemen-
tation of region-based allocator which leads to higher
performance. The aforementioned research papers deal
with the speed issues of allocators. The issues of memory
space usage are discussed in this paper.

Analyses of many different dynamic memory allocation
algorithms have been performed [8], [19], [21]. As mentioned
before, the lower bound of the worst case of memory usage is
proportional to the amount of allocated data multiplied by
the logarithm of the ratio between the largest and smallest
block sizes, i.e.,Oðlog2ðN=nÞÞ, whereN and n are the sizes of
the largest and smallest allocated memory blocks, respec-
tively [21]. In one publication [4], it has been shown that an
allocator that achieves this lower bound is the pure or simple
segregated storage allocator. A pure segregated allocator
does not coalesce or split memory blocks once they are
allocated. Therefore, once allocated a block’s size cannot
change and when freed, it cannot be split or merged with
adjacent free blocks and used to satisfy a future program
request for a memory block of different size. This allocator
keeps a separate free list of freed blocks for each block size
and the allowed block sizes are powers of 2 only. The
number of such lists then is log2ðN=nÞ þ 1 and since each list
can contain a maximum of M bytes only, the allocator’s
upper bound of memory usage is Mðlog2ðN=nÞ þ 1Þ. The
upper bound will be reached if a program using such an
allocator alternately allocates and frees M bytes worth of
blocks of each allowed size from n through N .

The goals of a memory allocator are to minimize memory
usage and maximize performance. Fragmentation is the chief
problem of memory allocation because it leads to increased
memory usage by a memory allocator [22]. The heap is
fragmented when memory blocks freed by a program are
noncontiguous. Two types of fragmentation are defined in
literature: internal and external [13], [14]. Internal fragmenta-
tion refers to the difference between the requested block size
and the allocated block size where the latter is slightly larger
(4-8 bytes in efficient allocators). The allocated block may
include a “header” for storing metadata about the block such
as its size and allocated/free status. On the other hand,
external fragmentation refers to the proliferation of free
memory blocks that are not contiguous. Internal fragmenta-
tion is a property of the allocator and can be reduced to a large
extent by efficient allocation algorithms [10], [16]. For
example, an allocator with block sizes that are multiples of
eight will have much lower internal fragmentation than an
allocator such as the binary-buddy allocator [6] with block
sizes that are powers of 2. All references to fragmentation in
this paper mean external fragmentation. Fortunately, for
most (but not all) practical allocation/free patterns observed
in actual programs, good allocators such as first-fit and best-
fit allocators display low fragmentation, and consequently,
low memory usage [1], [11]. Moreover, the first-fit allocator
tends to have the best speed performance due to its simplicity.
Therefore, the first-fit allocator is among the most commonly
used ones today and is discussed further in this paper.
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Allocators manage the heap space of a program. There
are many strategies developed for allocators to improve
their speed and memory usage. More details on these
algorithms are available in literature [14], [22]. Each
allocation algorithm has its own limitation. Most theore-
tical analyses and empirical evaluations for allocators are
derived with assumptions of randomness which are based
on the behavior of real applications [5], [8], [15], [18], [19],
[20], [21]. While the theoretical upper bounds are of great
interest in the research community, the mathematical
analysis of allocation algorithms has proved to be quite
challenging [14], [18]. This paper focuses on the analysis of
memory space usage for allocators. More specifically, we
intend to derive the upper bound of first-fit allocator.

3 PROBLEM STATEMENT

If a program heap memory requirement is M bytes and the
size of the smallest memory block allocated is n bytes, what
is the amount of memory that is necessary and sufficient to
satisfy the program’s memory requirement even in the
worst case of fragmentation possible? The answer depends
on the memory request and release pattern generated by the
program and allocation policy of the memory allocator.
Clearly, a memory allocator for this program will need at
least M bytes of memory. But due to fragmentation of the
heap space, it will usually need more as mentioned earlier.
The amount of memory used by an allocator when a
particular program’s memory requirement is M bytes and
the size of the smallest memory block that can be allocated
is n bytes is called its memory usage. The maximum
amount of memory that can be used by an allocator for any
program when the program memory requirement is
M bytes and the size of the smallest memory block that
can be allocated is n bytes is called the upper bound on
memory usage of the allocator.

Finding lower and upper bounds of algorithms whether
in terms of memory usage or performance is a classical and
fundamental area of research in computer science. Memory
usage and performance properties of many algorithms such
as searching and sorting algorithms (binary search, quick
sort, shell sort, bubble sort, etc.) have been proven through
mathematical analysis as well as experimental verification.
These results have enabled researchers to devise better and
better algorithms and empowered programmers to easily
identify the best known algorithm for a given task. In this
paper, our purpose is to discover the upper bounds of
memory usage for different types of allocators. We don’t
consider the lower bound because that is already quite
obvious and equal to the program’s memory requirement.

We study upper bounds of memory usage for two
different allocators. In the first case, we consider a general
allocator that can allocate memory blocks anywhere in the
available heap space. Since this allocator is free to place the
block anywhere in the heap, it can cause the maximum
fragmentation possible. And the memory usage obtained in
this case implies that the amount is sufficient for all allocators.
In the second case, we work on the more economical allocator
constrained by first-fit allocation policy. The first-fit alloca-
tion policy was found to be among the most effective in
minimizing memory usage as well as in increasing perfor-
mance [11], [22].

Most modern allocators use 16 bytes for the minimum
block size. The header of the memory block needs 4 bytes to
store the block-size, 4 bytes to point to the next free-block in
the free linked list, and another 4 bytes to point to the
previous free-block in the free linked list. So, we need at least
12 bytes. For portability, we align it on a 8-byte boundary (as
required by processors such as the Sun SPARC processor),
and therefore, the minimum block size becomes 16. The
value of n is usually 8 which allows for block sizes of 16, 24,
32, 40, and all other multiples of 8. Windows XP memory
allocator and Lea’s allocator [16] are examples of modern
allocators that allocate memory blocks in sizes that are
multiples of 8 [2], [3]. Linux dynamic memory allocator is
based on Lea’s allocator [9].

4 AN UPPER BOUND OF DYNAMIC MEMORY

ALLOCATION

In this section, we consider an allocator that can allocate
and deallocate memory blocks anywhere in the heap space
so that it causes maximum fragmentation and reaches the
upper bound of memory usage. Let M be the number of
bytes of dynamic memory used by a program, n be the
smallest allocated block size, and the memory usage be the
sum of M and the extra memory needed due to fragmenta-
tion. We assume that all allocation blocks are multiples of n
in sizes (as most modern allocators round up requested size
for portability; see [2], [3], [16]) and the largest possible
allocation block has a size of M, where M is also a multiple
of n. If n is small (8 or 16), as it is in most modern allocators,
the last assumption changes M by an insignificant amount
(maximum n� 1) for convenience in analysis without
detracting from the practical utility of the derived results.

Initially, the allocator obtains contiguous heap memory
space from the operating system. Let this be S bytes initially
equal to M. Then, the heap memory space S is fragmented
by the allocated and the freed memory blocks. We intend to
find the largest possible memory usage that can result from
all possible allocation/deallocation patterns under the
M and n constraints. The allocator can place a requested
memory block anywhere within S if there is a free block
large enough within S. Only when there is no free block
large enough to accommodate, the requested block can the
allocator obtain more memory from the OS thereby
increasing S which is the same as memory usage here.
For this allocator, we need to find a pattern for allocation
and deallocation that will repeatedly cause S to increase
because of fragmentation until it can be increased no
further. At that maximized value of S, we will have found
our upper bound of memory usage for this allocator as well
as for all allocators.

Intuitively, the maximum fragmentation may be caused
by many small freed blocks. One way to achieve this is to
have many small allocated blocks scattered across the heap
in a noncontiguous fashion. The strategy used by the
allocator to maximize the amount of memory usage is the
following. We suppose that there are p noncontiguous
allocated blocks each of size n. This implies that the given
memory space is broken up into pþ 1 fragmented free
blocks and the memory amount left to be allocated by the
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running program is M � pn. The layout of memory space
used is shown in Fig. 1. If the size of the next allocation
request is M � pn and the size of the largest freed chunk is
less than M � pn, we must obtain more memory from the
OS to extend the used memory by the requested size.

A scenario called insufficient is defined as one where the
size of the next allocation request is greater than the size of
the largest free heap memory block. Assume that every
allocation is to be aligned on an address which is multiple
of n. Next, we will find the maximum amount for memory
storage needed in an insufficient scenario.

Lemma 1. LetM be the maximum amount of memory space used by
a program and n be the smallest allocation block size. If T is the
total amount of memory storage in an insufficient scenario, then

T �M
2

4n
þM

2
� 3n

4
;

for all allocators.

Proof. Suppose that an insufficient scenario occurs after a
sequence of allocations and deallocations. Fig. 2 is the
snapshot of the memory space just before the alloca-
tion request whose size is larger than those of all
available blocks.

Suppose that there are p allocated sections. LetAi be the
size of the ith allocated block for 1 � i � p and Bj be the
size of the jth freed block for 1 � j � pþ 1. Then, we have

1. n � Ai �M for 1 � i � p;
2. B1; Bpþ1 � 0 and Bj � 1 for 2 � i � p; and

3. T ¼
Pp

i¼1 Ai þ
Ppþ1

j¼1 Bj.

Since the size of the coming allocation request can be
up toM �

Pp
i¼1 Ai, we haveBj �M �

Pp
i¼1 Ai � n. Then,

T �
Xp
i¼1

Ai þ ðpþ 1Þ M �
Xp
i¼1

Ai � n
 !

¼ ðpþ 1ÞM � p
Xp
i¼1

Ai � np� n

� ðpþ 1ÞM � pðpnÞ � np� n;

since Ai � n for 1 � i � p. This corresponds to the case of
the obtained memory space which is divided into
pþ 1 pieces by p blocks each of size n. So,
T �MpþM �np2 � np� n. L e t fðxÞ ¼MxþM �
nx2 � nx� n, then we have f 0ðxÞ ¼M � 2nx� n and
f 00ðxÞ ¼ �2n. And the maximum of fðxÞ occurs at x ¼
M�n

2n since f 0ðxÞ ¼ 0 and f 00ðxÞ < 0 for all n > 0. Thus,

T � f M � n
2n

� �
¼M

2 þ 2nM � 3n2

4n
¼M

2

4n
þM

2
� 3n

4
:

Hence, we find the maximum amount for memory
usage under an insufficient scenario. tu

Theorem 1. Let M be the maximum amount of memory space
used by the program and n be the smallest allocation block size.
If S is the minimum amount of memory storage sufficient for
all allocators, then

S ¼M
2

4n
þM

2
þ n

4
:

Proof. By Lemma 1, the worst case occurs when the
memory space is broken into M�n

2n þ 1 available blocks
by M�n

2n freed blocks of size n. And the size of the largest
free memory chunk is less than the size of the newly
arrived allocation request (i.e., Mþn

2 ) by n. If we could
expand one of largest free memory chunks at least by
size n, the next allocation request would be met. Thus,

S ¼M
2

4n
þM

2
� 3n

4
þ n ¼M

2

4n
þM

2
þ n

4
:

This completes the proof. tu
Hence, the upper bound of memory storage for all

allocators used is M2

4n þ M
2 þ n

4 , where M is the maximum
amount of memory used by the program at any time and n

is the size of the smallest allocated memory block and all
blocks are multiples of n.

5 ESTIMATIONS OF MEMORY USAGE FOR

ADDRESSED-ORDERED FIRST-FIT ALLOCATORS

In this section, we consider an allocator that must allocate
freed memory blocks at lower addresses before freed blocks
at higher addresses, if multiples blocks of the requested or
larger sizes exist in the heap space. As in the previous section,
letM be the number of bytes of dynamic memory used by the
program and n be the smallest allocation block size. All
allocation block sizes are multiples of n and the maximum
allocation block size is M, where M is also a multiple of n.

Initially, the allocator obtains some heap memory space
from the operating system. Then, the memory is fragmented
by allocation and deallocation requests without violating
the constraint that the allocator must allocate available
memory blocks with lower addresses before those with
higher addresses. We try to find an allocation/deallocation
pattern that leads to the worst fragmentation under the M
and n constraints. The pattern is based on the heuristic that
each freed space may not be reused in future allocations,
thus effecting incremental increases in the size of heap.

The problem of finding the upper bound of memory
usage may also be seen as a game between the program and
the allocator. The program’s memory requirement is fixed
at M bytes and the allocator’s allocation policy is also fixed
and known to the program. The program’s aim in the game
is to force the allocator to increase its memory usage as
much as possible. The program achieves its aim by
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maximizing fragmentation through the best allocation and
deallocation pattern it can find for this purpose. The
allocator, on the other hand, aims at keeping memory
usage as low, i.e., close to M as possible using it allocation
policy, and coalescing and splitting of memory blocks to
keep fragmentation in check. Supposing that to achieve its
aim, the program always succeeds in finding the best
allocation/deallocation pattern that exists, the game is
really a test of the allocator’s allocation policy. The resulting
memory usage is the allocator’s upper bound on memory
usage for there exists no other program or allocation/
deallocation pattern that can force its memory usage
beyond the upper bound. The upper bound is expressed
in terms of M and n, the two variables.

5.1 A Simple Approach to Increasing Fragmentation

Consider a program that tries to fragment the heap by
allocating and deallocating blocks in the following pattern
for the purpose of maximizing memory usage. The
allocation/deallocation request pattern extends memory
usage cycle by cycle. Each cycle is composed of two phases:
the allocation phase and deallocation phase. The program
first allocates a pair of blocks of size c1n (for an integer c1)
repeatedly when the total amount is not greater than M, as
shown in Fig. 3a. To extend the memory usage, it then frees
all the blocks that are the first of each pair. The heap
snapshot after the deallocations is shown in Fig. 3b. The
unused and freed space in the Fig. 3b is available for
allocation in the next cycle. In each of the following cycles,
memory usage is increased again with allocation blocks
whose sizes are greater than the blocks freed in the previous
cycles. The allocation and deallocation requests are gener-
ated by the pseudocode in Fig. 4.

It should be noted that the allocator does its utmost to
minimize memory usage by following its first-fit allocation
policy and splitting and coalescing memory blocks when-
ever possible but the program’s allocation/deallocation
pattern forces the increase in memory usage in spite of that.
In terms of game playing, both the program and the
allocator are playing their very best moves possible under
the given constraints.

Suppose that cin is the size of allocated/free blocks in
the ith cycle where fcigi�1 be a sequence of integers
where c1 < c2 < c3 < � � � . Let �i be the size of the unused
space after the last allocation in the ith cycle, that is, �i ¼
M � (the sum of the amount of allocated blocks). Thus,
after the first cycle, the extended amount is M � �1 and

the freed amount is M��1

2 . So, the available amount
becomes M��1

2 þ �1 ¼ Mþ�1

2 . Similarly, after the second
cycle, we have that the extended amount is Mþ�1

2 � �2

and the available amount is Mþ�1þ2�2

4 . The memory usage
after the second cycle is shown in Fig. 5. And the
program extends the memory usage repeatedly m times if
the available space is not enough for the mþ 1 cycle, that
is,

M þ �1 þ 2�2 þ 4�3 þ � � � þ 2m�1�m
2m

< 2cmþ1n:

Hence, the total amount of memory usage is the sum of
the amounts of the extended space in each cycle, that is,

M � �1 þ
M þ �1 � 2�2

2
þM þ �1 þ 2�2 � 4�3

4

þM þ �1 þ 2�2 þ 4�3 � 8�4

8
þ � � �

þM þ �1 þ 2�2 þ � � � þ 2m�2�m�1 � 2m�1�m
2m�1

¼ 1þ 1

2
þ 1

4
þ � � � þ 1

2m�1

� �
M � �1

2m�1
� �2

2m�2

� � � � � �m < 2M:

To increase the memory usage as much as possible, ci
should start from the minimum number (i.e., c1 ¼ 1) and
increase very slowly so that more cycles will be needed.

5.2 The Relation between the Increment of
Allocation Request Size and Memory Usage

To study the effect of increasing allocation request size to
the memory usage, we simulate different patterns of size
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increment. It starts with n which means in each cycle, the
requested block size increases by n (i.e., n; 2n; 3n; 4n; . . . ,
etc.). The next increment pattern is 2n which means that in
each cycle, the requested block size increases by 2n (i.e.,
n; 3n; 5n; 7n; . . . , etc.), and so forth.

Fig. 6 shows the empirical results from a software
simulation of the memory model using the simple strategy
described in previous subsection. The program starts by
allocating M=n blocks of size n and ends when the memory
remaining to be allocated cannot be made greater than the
largest contiguous free space, and therefore, no further
increase in memory usage is possible. In every new cycle,
the block sizes are increased by n; 2n; 3n; . . . , respectively.
From the ratio of the memory usage to 2M shown in Fig. 6,
we observe that the memory usage for the increment of
size n is slightly greater than the other cases, while the
differences are insignificant.

It is worth noting that the ratio of deallocated memory to
allocated memory is exactly 1/2. With this ratio, after
deallocation, each freed block is equal in size to the
allocated block in the memory layout (see Fig. 3b). In the
next section, we will consider the memory usage when a
different ratio of deallocation to allocation is used.

5.3 The Relation between the Ratio of Deallocation
to Allocation and Memory Usage

The strategy we have applied so far is based on the idea that
the next allocation request size must be bigger than the sizes
of the previously deallocated blocks. Thus, the next
allocation request will not fit in any of the previously freed
space and the memory usage will grow greater in each
cycle. The more cycles we have, the more will the memory
usage grow. In order to maximize the number of cycles, the
block size in the ðiþ 1Þth cycle will be made greater than
the freed block size in the ith cycle by no more than n bytes,
the smallest increment possible since block size must be a
multiple of n.

In this section, we investigate the deallocation to
allocation ratio as ðr� 1Þ to r, where r is greater than or
equal to 2. Apparently, as the ratio gets larger, the amount
of memory available to allocate gets larger in each cycle.

However, the number of the cycles will be less when the
sizes of deallocated blocks increase. The final value of
memory usage will be determined by the ratio and the
number of cycles. We present the relation between ratio,
number of cycles, and final memory usage in Table 1.

For any ratio t ¼ ðr� 1Þ=r, the memory usage will be

S < Mð1þ tþ t2 þ t3 þ � � � þ tlogr M�1Þ

<
Mð1� tlogr MÞ

1� t :

For t values of 1/2, 2/3, 3/4, or 4/5, it can be calculated that
S < 6M. And that maximum value of S occurs when t is
8=9; 9=10, or 10=11 for M between 1 and 120 MB.

From Table 1 and Fig. 7, we can see that the memory
usage increases when the ratio is in the range from 1=2 to
9=10, then the memory usage oscillates when the ratio is
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Fig. 6. The relation of increasing allocation request size and the memory
usage where n is 8 bytes.

TABLE 1
The Relation of the Ratio of Deallocation to Allocation

and Memory Usage Where M Is 1 MB and n Is 8 Bytes

Fig. 7. The ratio of deallocation to allocation: n is 8 bytes and M is 1 MB.
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between 10=11 and 17=18 . But when the ratio is greater than

18=19, the memory usage starts to become smaller. This is

because the number of cycles gets smaller. There are not

enough cycles to generate more fragmentation, and thus, the

memory usage is lower. We can easily find the maximum

memory usage at the ratio of 9 to 10 (the memory usage is

much greater than the ratio of 1 to 2) when M is 1 MB and n

is 8 bytes. Moreover, it shows a similar behavior for different

values of M and n, though the optimal ratio is not the same.

In the next section, we will examine other approaches to

achieve even greater memory usage.

5.4 Release of Memory Allocated in Previous Cycles

In the previous section, we made the size of next allocation

request just greater than the size of the freed space left by

the last deallocation. This approach frees half (or less or

more depending on the ratio) of the allocated memory

space in the immediately preceding cycle. In this section, we

introduce a method that tries to free more allocated space in

all the previous cycles. Again, to achieve the maximum

memory usage, the allocation request size should be larger

than any freed space in any previous cycle.
Suppose that the size of the next allocated block is x. To

extend the memory usage, x must be larger than the sizes of

any freed blocks so far. Examining the memory layout

carefully, we observe that there is still more allocated space

in previous cycles, besides the immediately preceding cycle,

that can be freed without allowing the resulting sizes of the

contiguous freed spaces to become more than or equal to x.

Freeing this memory increases the size of the memory left to

allocate in the present cycle, and thus, forces a larger

increase in memory usage. The number of allocation/

deallocation cycles is also increased.
Let M ¼ 2‘n for an integer ‘ > 0. Next, we consider

memory requests that only involve the blocks with sizes of

n; 2n; 4n; 8n; 16n; . . . ; 2‘n. We describe the allocation and

deallocation patterns explicitly in Fig. 8 though a similar

one is also discussed in [20]. An example for the case of
M ¼ 16 and n ¼ 1 is shown in Fig. 9.

In the first cycle, the allocated amount is M and the freed
amount is M=2. The freed amount in the ith cycle for 2 �
i � ‘� 2 is

Xi
j¼2

M

2iþ1n
2j�1nþ M

2in
n

¼M
2i
þ M

2i�1
þ M

2i�2
þ � � � þM

4
þM

2i
¼M

2
:

And the allocated amount in the ith cycle for 2 � i � ‘� 2 is
M
2in � 2i�1n ¼M=2. Because the size of the next allocation
request is always greater than all freed blocks, the memory
usage is extended when every new block is placed. Thus,
the amount of the memory usage is the total allocated
amount in all cycles, that is,

M þ ð‘� 1ÞM
2

¼ ð‘þ 1ÞM
2

¼Mðlog2 M � log2 nþ 1Þ
2

:

5.5 Experimental Results

Table 2 shows the summary of empirical results from a
software simulation of the memory model using a first-fit
memory allocator and a driver program that tries to
maximize the memory usage by freeing up memory from
previous cycles whenever possible as described above. In
the simulation runs, we increase the block size of allocation
request in each new cycle, by n; 2n; 3n; 4n; . . . , etc., or we
double the freed block size of the previous cycle. In a given
run, the increment is the same in each cycle. All blocks in
a given cycle are of the same size as this was found to
maximize memory usage. The resulting memory usage is
expressed in terms of a ratio to M log2 M. The program ends
when the memory remaining to be allocated cannot be
made greater than the largest contiguous free space. In the
simulation, we went up to 8 MB for the largest value for
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Fig. 8. A strategy with blocks with sizes of n, 2n, 4n, 8n, 16n, . . . .

Fig. 9. The progression of memory usage for M ¼ 16 and n ¼ 1.

TABLE 2
The Ratio of Memory Usage to M log2 M
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M (the largest allocation request) since it is large enough, in
practice, but the result is the same for greater values of M.
The lowest value of M we show is 217 bytes, but there are
similar patterns even for lower values of M. Hence, they are
not included in Table 2. Despite the oscillation behavior of
the data seen in Table 2, we observe that the ratios of
memory usage to M log2 M are always below 0.5, that is, the
memory usage is always close to 1

2M log2 M. The upper
bound derived in the previous section could not be
surpassed by any of the allocation/deallocation patterns
used to drive up memory usage.

5.6 Simulations with Benchmark Programs

In this paper, we focus on finding the upper bond of
memory usage. As we have discussed above, the memory
request and release pattern directly affects fragmentation
and consequently memory usage. In the research commu-
nity, synthetic memory request distributions have long been
discarded and replaced by request patterns derived from
actual programs. Thus, we next use a variety of benchmark
programs with different request patterns to validate the
theoretical upper bound.

In the simulation, we collected eight publicly available
benchmark programs with a wide range of application. The

functionality of these programs is summarized in Table 3.
We first generate malloc and free traces for each
program. Then, our simulator takes these traces as input
and simulate three allocators. Other than the first-fit
allocator mentioned earlier in this paper, we also simulate
the binary-buddy and best-fit allocators. The simulation
results are expressed in terms of allocator’s memory usage
(the highest amount of memory used during the entire run)
andM (the actual program memory requirement) in Table 4.

From Table 4 (See allocation count column), it can be
seen that some of the benchmark programs invoke the
allocator much more frequently than others, such as
GCBench. The reason of having the same value in first-fit
and best-fit allocators for SciMark, GCBench, and Encode-
mp3 is mainly due to its fixed-size allocation patterns. The
buddy system tends to use more memory space than the
other two schemes due to higher internal fragmentation.
The memory usage of first-fit allocator is very close to that
of the best-fit allocator [10], [11]. The proposed theoretical
upper bound is about 6.77 to 10.43 times higher than the
storages for the first-fit allocator. This confirms our earlier
hypothesis that our upper bound is based on a worst case
allocation/free pattern that is not commonly observed in
the real-world applications.
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TABLE 3
General Information about the Test Programs

TABLE 4
The Memory Usage of Best-Fit, First-Fit and Binary-Buddy Allocators
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5.7 Discussions on Popular Allocation Policies

Unbounded or unpredictably high memory usage is a
potential problem in multithreaded allocation schemes such
as regions as well as in general-purpose allocators such as
simple segregated fit. We have found an upper bound of
memory usage for an allocator, the addressed-order first-fit
allocator with immediate coalescing that is known to be
among the best in keeping memory usage low.

Using a strategy similar to the one used in this section,
memory allocation and release patterns causing worst case
fragmentation and memory usage can be found for other
types of allocators. For example, the worst case memory
usage for the binary-buddy system would be similar to the
one presented in this section for the case where the size
increment in each cycles is twice the previous size. Thus, if
cycle i uses a block size of x, then cycle iþ 1 uses a block
size of 2x and the following cycle a block size of 4x, etc.
This is so because the binary-buddy allocator always
allocates blocks in sizes that are powers of 2; moreover,
coalesced and split blocks are also always powers of 2 in
size. Thus, there are only log2ðM=nÞ block sizes possible if
minimum block size is n, and consequently, there are only
log2ðM=nÞ cycles possible. In each cycle, we can have a
maximum of M=2 bytes of memory available for allocation
including memory freed from all previous cycles. This can
be seen by following a line of reasoning similar to the one
presented for the first-fit allocator earlier. Thus, memory
usage can be as high as M þ 0:5M log2ðM=nÞ. However,
there is also a very large internal fragmentation in the
binary-buddy system. A request for a block of size pþ 1,
where p is power of 2 will be rounded up to 2p, the next
power of 2. The internal fragmentation in the worst case can
be as high as 50 percent, so an actual program need for
M=2 bytes can result in a program requirement for M bytes.
This can double the actual upper bound of memory usage
of binary-buddy allocators compared to first-fit allocators.

The worst case fragmentation pattern used for deriving
the upper bound for first-fit allocators in this paper can be
applied to best-fit allocators as well. In every cycle, none of
the previously freed blocks are reused and all allocated
blocks in a cycle are served from more memory obtained
from the OS. Best-fit allocation policy cannot reduce the
upper bound of memory usage forced by the worst-case
allocation and release pattern described for first-fit alloca-
tors in this section. The above can be seen to be true by
considering that the request size in each cycle is larger than
the size of the largest free block in all the previous cycles
even after all contiguous free blocks have been merged.
Hence, the upper bound of memory usage for best-fit
allocators must be at least as high as that obtained for first-
fit allocators.

6 CONCLUSIONS

Memory usage has always been the important performance
factor of a computer system. Memory space is managed
dynamically in the heap region via allocation and free
functions. The memory usage of a program is equal to the
sum of M and the extra memory needed by the allocator
due to fragmentation caused by unpredictable allocation

and free patterns. This paper attempts to determine the
upper bounds of two allocation schemes. First, we derive
the upper bound of memory usage applicable to all
allocators. Then, we find the upper bound of memory
usage for the efficient first-fit allocator.

Probably, most industrial and commercial application
programs will not reach the upper bounds derived in this
paper although this assumption cannot be guaranteed.
Application programs do not have maximization of
fragmentation as their primary goal. But minimization of
fragmentation is not their goal either. The actual fragmenta-
tion of a given program using a given allocator cannot be
predicted. However, it is very useful to know that no
program will ever run out of memory if the amount of
memory determined by the upper bound of an allocator for
the specified program memory requirement is made
available to it. More importantly, we have shown that there
exists an allocator whose worst case memory usage or
upper bound is lower than any other published upper
bound for any other allocator that we are aware of.
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