
Industry Report

Bluetooth:
Technology for Short-Range
Wireless Apps

H andheld devices are rapidly becoming an
integral part of our daily lives, and many
road warriors already carry a cell phone,

palmtop, and laptop computer with them. In most
cases, these devices do not have compatible data
communication interfaces, or, if they do, the inter-
face requires cumbersome cable connections and
configuration procedures. An obvious solution is
to get rid of the cables and use short-range wire-
less links to facilitate on-demand connectivity
among devices. An ideal solution would also be
inexpensive, enabling of compelling applications,
and universally adopted by device vendors.

In 1998, five major companies (Ericsson, Nokia,
IBM, Toshiba, and Intel) formed a group to create a
license-free technology for universal wireless con-
nectivity in the handheld market. The result is
Bluetooth, a technology named after a 10th-cen-
tury king who brought warring Viking tribes under
a common rule. The Bluetooth specifications,1,2

currently in version 1.1, define a radio frequency
(RF) wireless communication interface and the
associated set of communication protocols and
usage profiles.

The link speed, communication range, and
transmit power level for Bluetooth were chosen
to support low-cost, power-efficient, single-chip
implementations of the current technology. In
fact, Bluetooth is the first attempt at making a
single-chip radio that can operate in the 2.4-GHz
ISM (industrial, scientific, and medical) RF band.
While most early Bluetooth solutions are dual
chip, vendors have recently announced single-
chip versions as well. In this overview of the
technology, I will first describe the lower layers
of the Bluetooth protocol stack. I will also briefly
describe its service discovery protocol and, final-

ly, how the layers of the protocol stack fit togeth-
er from an application’s point of view.

Bluetooth Specifications
The Bluetooth 1.1 specification was released in
February 2001. The specification consists of two
parts: core and profiles.

Core Specifications
The core specification defines all layers of the
Bluetooth protocol stack.1 As shown in Figure 1,
the Bluetooth stack differs from the classical
seven-layer networking model in some ways.
These differences are primarily to support ad hoc
connectivity among participating nodes, while
conserving power and accommodating devices
that lack resources to support all layers of the clas-
sical networking stack.

The radio is the lowest layer. Its interface spec-
ification defines the characteristics of the radio
front end, frequency bands, channel arrangements,
permissible transmit power levels, and receiver
sensitivity level. The next layer is the baseband,
which carries out Bluetooth’s physical (PHY) and
media access control (MAC) processing. This
includes tasks such as device discovery, link for-
mation, and synchronous and asynchronous com-
munication with peers. Bluetooth peers must
exchange several control messages for the purpose
of configuring and managing the baseband con-
nections. These message definitions are part of the
link manager protocol (LMP). The functional enti-
ty responsible for carrying out the processing asso-
ciated with LMP is called the link manager.

Bluetooth is unique in offering the front-end RF
processing integrated with the baseband module.
On-chip integration lowers the cost of the network

96 MAY • JUNE 2001 http://computer.org/internet/ 1089-7801/01/$10.00©2001 IEEE IEEE INTERNET COMPUTING

Pravin Bhagwat • Reefedge Inc.

interface, and the small size makes it easy to
embed Bluetooth chips in devices such as cell
phones and PDAs. A Bluetooth chip can be con-
nected to its host processor using USB, UART, or
PC-card interfaces.

The Host Controller Interface (HCI) specification
defines a standard interface-independent method
of communicating with the Bluetooth chip. The
software stack on the host processor communi-
cates with the Bluetooth hardware using HCI com-
mands. Since no hardware-specific knowledge is
needed, the Bluetooth stack software can easily be
ported from one Bluetooth chip to another. The
HCI layer is part of the Bluetooth stack, but it
doesn’t constitute a peer-to-peer communication
layer since the HCI command and response mes-
sages do not flow over the air link.

The logical link control and adaptation proto-
col (L2CAP) specification can be viewed as Blue-
tooth’s link layer. Usually, L2CAP and layers above
it are implemented in software. L2CAP delivers
packets received from higher layers to the other
end of the link. Bluetooth devices can establish an
L2CAP connection as soon as they are in range of
each other. A client device then needs to discover
the services provided by the server device.

The service discovery protocol (SDP) defines the
means by which the client device can discover ser-
vices as well as their attributes. The SDP design
has been optimized for Bluetooth. It defines only
the discovery mechanisms; the methods for access-
ing those services are outside its scope.

The RFCOMM specification defines a method of
emulating the RS-232 cable connection on top of
the Bluetooth airlink. RFCOMM supports legacy

applications that use the COM port to communi-
cate with the peer host. For example, point-to-
point (PPP) protocols expect a serial line interface
from the lower layer. Since PPP provides a pack-
et-oriented interface to the higher layers, all pack-
et-based network and transport protocols, includ-
ing TCP/IP, can be supported on top of PPP. More
efficient methods of running IP over Bluetooth are
currently under development.

Profile Specifications
Vendors can use the services offered by the Blue-
tooth stack to create a variety of applications.
Because interoperability is crucial to Bluetooth’s
operation, the Bluetooth SIG has defined profile
specifications to support it.2 The current specifica-
tions include 13 profiles listed in Table 1 (next page).

The profiles specify controller and stack para-
meter settings as well as the features and proce-
dures required for interworking among Bluetooth
devices. All vendor implementations of these pro-
files are expected to be interoperable. The Blue-
tooth certification authority uses the profiles to
test and certify compliance, and grants use of the
Bluetooth logo only to products that conform to
the methods and procedures defined in the profiles.

Radio Front End
The 2.4-GHz ISM band in which Bluetooth oper-
ates is globally available for license-free use.
Europe and the United States allocate 83.5 MHz
to this band, but Spain, France, and Japan allo-
cate less. To accommodate these differences, 79
channels spaced 1 MHz apart are defined for
Europe and the U.S., and 23 RF channels spaced

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2001 97

Bluetooth

RF Baseband
controller

Bluetooth chipStack

Link
manager

Host

Applications

PPP

RFCOMM

Service
discovery
protocol

HCI
controlData

Audio
L2 CAP

Link manager protocol

Baseband

RF

Figure 1.The Bluetooth networking stack and chip.The design supports the integration of an analog
radio front end, signal-processing elements, and baseband controller on a single chip.

1 MHz apart are defined for Spain, France, and
Japan. Efforts are under way to open up the full
width of the spectrum in Spain and France, as well
as in Japan so that Bluetooth devices would func-
tion worldwide.

Bluetooth is a frequency-hopping spread-spec-
trum system. This means that the radio hops
through the full spectrum of 79 or 23 RF channels
using a pseudorandom hopping sequence. The hop-
ping rate of 1,600 hops per second provides good
immunity against other sources of interference in
the 2.4-GHz band. The link speed is 1 Mbps, which
is easily achieved using a simple modulation tech-
nique (Gaussian Frequency Shift Keying, or GFSK).
A more complex modulation technique could
achieve a higher rate, but GFSK keeps the radio
design simple and low cost.

The radio front end is usually the most costly
part of a wireless network interface. In typical
radio receivers, the RF filters, oscillators, and
image-reject mixers process input signals at high
frequencies. Such circuits require expensive
materials. To keep costs down, Bluetooth recom-
mends shifting the input signal to a lower inter-
mediate frequency (IF, around 3 MHz), which
allows on-chip construction of low-power filters
using CMOS material. Shifting to low IF, howev-
er, creates new problems, such as reduced receiv-
er sensitivity. Recommended receiver sensitivity
for Bluetooth is –70 dBm or better. The compa-
rable number for IEEE 802.11 Wireless LANs is
about –90 dBm). Thus, for the same transmit
power, the range for Bluetooth is shorter than it is
for 802.11 WLAN.

Piconets and Scatternets
A set of Bluetooth devices sharing a common
channel is called a piconet. As shown on the left
side of Figure 2, a piconet is a star-shaped con-
figuration in which the device at the center per-
forms the role of master and all other devices
operate as slaves. Up to seven slaves can be active
and served simultaneously by the master. If the
master needs to communicate with more than
seven devices, it can do so by first instructing
active slave devices to switch to low-power park
mode and then inviting other parked slaves to
become active in the piconet. This juggling act can
be repeated, which allows a master to serve a large
number of slaves.

Most envisioned Bluetooth applications involve
local communication among small groups of
devices. A piconet configuration consisting of two,
three, or up to eight devices is ideally suited to
meet the communication needs of such applica-
tions. When many groups of devices need to be
active simultaneously, each group can form a sep-
arate piconet. The slave nodes in each piconet stay
synchronized with the master clock and hop
according to a channel-hopping sequence that is
a function of the master’s node address. Since
channel-hopping sequences are pseudorandom, the
probability of collision among piconets is small.
Piconets with overlapping coverage can coexist
and operate independently. Nonetheless, when the
degree of overlap is high, the performance of each
piconet starts to degrade.

In some usage scenarios, however, devices in
different piconets may need to communicate with

98 MAY • JUNE 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Industry Report

Table 1. Profiles defined in Bluetooth 1.1 specifications.

Use case Description

Generic access Generic procedures for discovery and link management of connecting to Bluetooth devices.

Service delivery Features and procedures for a Bluetooth device application to discover services registered in other devices.

Cordless telephone Features and procedures for interoperability between different units active in a “3-in-1”phone.

Intercom Requirements for supporting intercom functionality within a “3-in-1” phone.

Serial port Requirements for setting up emulated serial cable connections using RFCOMM between two peer devices.

Headset End-user service requirements and interoperability features for Bluetooth devices implementing headsets.

Dial-up networking End-user service requirements and interoperability features for Bluetooth devices implementing dial-up networking.

Fax End-user service requirements and interoperability features for Bluetooth devices implementing fax services.

LAN access Definition of (a) how Bluetooth devices can access LAN services using PPP and (b) how the PPP mechanisms form a network.

Generic object exchange Requirements for Bluetooth devices to support object exchange usage models.

Object push Application requirements for Bluetooth devices to support the object push usage model.

File transfer Application requirements for Bluetooth devices to support the file transfer usage model.

Synchronization Application requirements for Bluetooth devices to support the synchronization usage model.

each other. Bluetooth defines a structure called
scatternet to facilitate interpiconet communica-
tion. A scatternet is formed by interconnecting
multiple piconets. As shown on the right side of
Figure 2, the connections are formed by bridge
nodes, which are members of two or more
piconets. A bridge node participates in each mem-
ber piconet on a time-sharing basis. After staying
in a piconet for some time, the bridge can turn to
another piconet by switching to its hopping
sequence. By cycling through all member
piconets, the bridge node can send and receive
packets in each piconet and also forward packets
from one piconet to another.

A bridge node can be a slave in both piconets
or be a slave in one and a master in another.3 For
example, consider a room full of people, where
each person has a cell phone and a cordless head-
set. When users speak into their headsets, only the
cell phones paired with their headsets should pick
up the signal. In this example, each headset and
cell phone pair constitutes a separate piconet. Now
suppose these users also want to send text mes-
sages from their cell phones to one another. This
will be possible only if all piconets are intercon-
nected to form a large scatternet.

The techniques for forming scatternets are still
under development.4

Inquiry and Paging
Bluetooth uses a procedure known as inquiry for
discovering other devices; it uses paging to subse-
quently establish connections with them. Both
inquiry and paging are asymmetric procedures. In
other words, they involve the inquirer and the
inquired (as well as the pager or the paged) devices
to perform different actions. This implies that when
two nodes set up a connection, each needs to start
from a different initial state; otherwise, they would
never discover each other. The profile specifications
play an important role here, defining the required
initial state for each device in all usage scenarios. A
symmetric procedure for establishing connections
is an ongoing topic of research.4

The inquiry and paging are conceptually sim-
ple operations, but the frequency-hopping nature
of the physical layer makes the low-level details
quite complex. Two nodes cannot exchange mes-
sages until they agree to a common channel-hop-
ping sequence as well as the correct phase within
the chosen sequence. Bluetooth solves this prob-
lem simply by mandating the use of a specific
inquiry-hopping sequence known to all devices.
During inquiry, both nodes (one is the listener and

the other is the sender) hop using the same
sequence; but the sender hops faster than the lis-
tener, transmitting a signal on each channel and
listening between transmissions for an answer.
When more than one listener is present, their
replies may collide. To avoid the collision, listen-
ers defer their replies until expiration of a random
backoff timer. Eventually the sender device col-
lects some basic information from the listeners,
such as the device address and the clock offsets.
This information is subsequently used to page the
selected listener device.

The communication steps during the paging pro-
cedure are similar, except that the paging message
is unicast to a selected listener, so the listener need
not back off before replying. The sender also has a
better estimate of the listener’s clock, which enables
it to communicate with the listener almost instan-
taneously. Upon receiving an ACK for the paging
message, the sender becomes the master and the
listener becomes the slave of the newly formed
piconet, and both nodes switch to the piconet’s
channel-hopping sequence. Later, if necessary, the
master and slave roles can be swapped.

The steps for admitting a new slave into an
existing piconet are slightly more complex. The
master can either start discovering new nodes in
its neighborhood and invite them to join the
piconet or, instead, wait in scan (listen) state and
be discovered by other nodes. With both options,
communication in the original piconet must be
suspended for the duration of the inquiry and pag-
ing process. The latency of admitting a new node
into the piconet can be large if the master does not
switch to the inquiry or scan modes frequently.
This latency can be reduced only at the cost of
some piconet capacity. The study of this trade-off
is another topic of ongoing research.

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2001 99

Bluetooth

Piconet Scatternet

Figure 2. Piconet (left) and scatternet (right).The master device at
the center of a piconet can serve up to seven slaves; members of
two or more piconets are called bridge nodes, which support interpi-
conet communication.

Low-Power Modes
Bluetooth offers different low-power modes for
improving battery life. Piconets are formed on
demand when communication among devices is
ready to take place. At all other times, devices
can be either turned off or programmed to wake
up periodically to send or receive inquiry mes-
sages. When a piconet is active, the slaves stay
powered on to communicate with the master. It
is possible to switch a slave into a low-power
mode whereby it sleeps most of the time and
wakes up only periodically.

Three types of low-power modes have been
defined:

� Hold mode is used when a device should be put
to sleep for a specified length of time. As
described earlier, the master can put all its
slaves in the hold mode to suspend activity in
the current piconet while it searches for new
members and invites them to join.

� Sniff mode is used to put a slave in a low-duty
cycle mode, whereby it wakes up periodically
to communicate with the master.

� Park mode is similar to the sniff mode, but it is
used to stay synchronized with the master
without being an active member of the piconet.
The park mode enables the master to admit
more than seven slaves in its piconet.

Piconet Channel
As soon as a piconet is formed, communication
between the master and the slave nodes can begin.
The piconet channel is divided into 625-microsec-
ond intervals, called slots, where a different hop
frequency is used for each slot. The channel is
shared between the master and the slave nodes
using a frequency-hop/time-division-duplex
(FH/TDD) scheme whereby master-slave and slave-
master communications take turns. Slave-to-slave
communication is not supported at the piconet
layer. If two slaves need to communicate peer to
peer, they can either form a separate piconet or use
a higher layer protocol, such as IP over PPP (see

Figure 1), to relay the messages
via the master.

At a 1-Mbps link speed, a 625-
microsecond slot time is equiva-
lent to the transmission time of
625 bits. However, a single slot
packet size in Bluetooth is only
366 bits. This reserves enough
guard time to let the frequency
synthesizers hop to the next

channel frequency and stabilize. Discounting space
for the headers leaves 30 bytes for the user payload.

Synchronous Link
To transmit real-time voice, an application must
reserve a slot in both directions at regular inter-
vals. In Bluetooth terminology, this is called a syn-
chronous (SCO) link. An SCO link can transport
telephone-grade voice. The speech coder generates
10 bytes every 1.25 milliseconds. Since a baseband
packet can carry up to 30 bytes in each slot, only
one slot in each direction is needed every 3.75 ms
(or every sixth slot). The packet type that carries
30 voice bytes is called an HV3 packet. This pack-
et is transmitted without coding or protection, and
is not retransmitted if it is lost.

To cope with bit errors when the channel condi-
tions are not perfect, some forward error correction
(FEC) should be added to the voice payload. An
HV2 packet carries 20 bytes of voice plus 10 bytes
of redundant data (2/3 FEC code). Since 20 bytes of
speech is generated in 2.5 ms, the SCO link should
reserve one slot in each direction every 2.5 ms (or
every fourth slot). To cope with extreme channel
conditions, the baseband specification also defines
an HV1 packet that carries only 10 bytes of speech
and 20 bytes of FEC code. An HV1 SCO link uses
up the entire channel capacity. This means that all
data transfer sessions will be suspended when an
HV1 SCO connection is in progress.

Asynchronous Link
Data communication between a master-slave pair
involves a different set of considerations. For
example, the data payload must be protected by a
cyclic redundancy check (CRC) so that the receiver
can determine whether the received bits are in
error. When losses occur, the baseband layer should
retransmit the data. Furthermore, to make efficient
use of the piconet channel, slots should be allocat-
ed on demand, instead of being reserved for the
usage duration. A data path between a master-slave
pair meeting all of these requirements is called an
asynchronous data link (ACL). SCO links have pri-

100 MAY • JUNE 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Industry Report

Table 2. Channel throughput for different packet sizes.

Packet size (in slots) Throughput in Kbps (with FEC) Throughput in Kbps (no FEC)

In slave In master In slave In master In slave In master
direction direction direction direction direction direction

1 1 108.8 108.8 172.8 172.8

3 1 387.2 54.4 585.6 86.4

5 1 477.8 36.3 723.2 57.6

ority over data, so ACLs can claim only unused
slots. Only a single ACL can exist between a master
and a slave.

The master is responsible for distributing
available slots among all ACLs. This scheme has
two advantages:

� the master can ensure that the slave transmis-
sions do not collide; and

� the slots can be allocated to satisfy the quality
of service (QoS) requirement of each ACL. The
master can grant more bandwidth to a slave by
polling it more frequently or by changing the
packet size.

The baseband specification does not mandate the
use of any specific slot-allocation scheme. Chip
vendors can choose any policy that fits their tar-
get applications.

As with SCO packets, the payload size of single-
slot ACL packets is limited to 30 bytes. After dis-
counting space for the higher layer headers and the
CRC, only 27 bytes are left to transport application
data. When FEC is added, the available space goes
down to 17 bytes. To improve channel efficiency,
the baseband specification has defined multislot
packets, which are three or five slots long and trans-
mitted in consecutive slots. The transmitter stays
fixed on a hop frequency during the length of pack-
et transmission and skips over the missed hops after
the transmission is complete. This reduces the effec-
tive channel-hopping rate, but increases the chan-
nel efficiency because of fewer hops.

Table 2 shows the achievable throughput in the
master-to-slave and slave-to-master directions as
a function of packet size, with and without FEC.
Although link speed is 1 Mbps, achievable aggre-
gate throughput can range from 217.6 Kbps to
780.8 Kbps. The presence of an HV3 or HV2 SCO
link significantly reduces the achievable through-
put of an ACL.

Logical Link Control
and Adaptation Protocol
L2CAP can be viewed as the data plane of the
Bluetooth link layer (see Figure 3). Because the
baseband packet size is too small for transporting
higher layer packets, a thin layer is needed for
exporting a bigger packet size to the higher layers.
While a number of generic segmentation and
reassembly protocols could be used or adapted for
use over ACLs, the Bluetooth SIG instead defined
L2CAP, which is highly optimized to work in con-
junction with the baseband layer. For example,

L2CAP does not support integrity checks because
the baseband packets are already CRC protected.
Likewise, it is assumed that the lower layer deliv-
ers packets both reliably and in sequence. These
two assumptions significantly simplify the design
of segmentation and reassembly logic. The only
caveat is that L2CAP will not work if used over
any media other than the Bluetooth baseband.

The multiplexing and demultiplexing of higher
layer protocols is supported using channels, mul-
tiple instances of which can be created between
any two L2CAP endpoints. Each higher layer pro-
tocol or data stream is carried in a different chan-
nel. The L2CAP channels are connection oriented
in the sense that they require an explicit phase to
establish the channel, during which both ends
choose a local name (channel identifier) and com-
municate it to the other end. Subsequently, each
packet sent over the channel is tagged with the
channel identifier, which—within the context of the
receiver—uniquely identifies the source as well as
the protocol being transported over the channel.

The L2CAP specification also defines a connec-
tionless channel for supporting broadcast and
multicast group communication, but this feature
is not yet fully developed.

Service Discovery Protocol
Both ends of a Bluetooth link must support com-
patible sets of protocols and applications to suc-
cessfully exchange data. In some cases it may also
be necessary to configure protocol and stack para-
meter settings before applications can be started.
Such configuration settings cannot be chosen sta-
tically, since some parameters may require adjust-
ment to match the features and services support-
ed by the peer Bluetooth device.

Bluetooth’s SDP provides a standard means for
a Bluetooth device to query and discover services
supported by a peer Bluetooth device. SDP is a
client-server protocol. The server maintains a list
of service records, which describe the characteris-

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2001 101

Bluetooth

Device 1 Device 2

L2CAP L2CAP

LMP LMP

Baseband Baseband

Data link

Physical

Figure 3. Lower part of stack. L2CAP can be
viewed as the data plane of Bluetooth’s link layer.

tics of services hosted at the server. By issuing SDP
queries, a client can browse all available service
records maintained at the server or retrieve specif-
ic attribute values from a service record.

In addition to defining query and response pro-
tocol formats, the SDP specification also defines
a standard method for describing service attribut-
es. Service attributes are represented using an
<identifier, value> pair. The 1.1 specification
defines some of the commonly used services, but
developers have the freedom to define new sub-
classes of the standard services or to create new
services on their own.

Since new service definitions do not require any
coordination with the Bluetooth SIG numbering
authority, it is necessary to ensure that two inde-
pendently created service definitions do not con-
flict. Collisions are avoided by associating each
service definition with a universally unique iden-
tifier (UUID) which is generated once at the time a
service is defined. UUIDs of the services defined by
the Bluetooth SIG are included in the assigned
numbers document.

If the client already knows the UUID of the ser-
vice it is looking for, it can query the SDP server
for specific service attributes. Alternatively, the
client can browse the list of available services and
select from the list. These are the only two search
options supported in SDP. Although other IP-based
service discovery protocols, such as SLP and Jini,
provide richer service description schema and more
powerful search capabilities, the Bluetooth SDP has
two advantages:

� The majority of version-1.1-compliant Blue-
tooth devices will be non-IP devices. Requiring
them to support IP only for the sake of sup-
porting SLP would be costly.

� SDP is optimized to run over L2CAP. Its limited
search capabilities and non-text-based
attribute-id and attribute-value descriptions
lend an efficient and small footprint imple-
mentation for small devices.

SDP provides a mechanism only for retrieving ser-
vice information from other devices. Methods of
invoking those services are outside the scope of SDP.

Link Manager Protocol
Before a device can establish the L2CAP channel,
the link manager must carry out a number of
baseband-specific actions, such as piconet cre-
ation, master-slave role assignments, and link
configuration. These functions belong to the con-

trol plane of the Bluetooth link layer and require
the link manager to exchange LMP messages over
the air link. Depending on the operating environ-
ment, the link manager must adjust a number of
piconet and link-specific parameters. For exam-
ple, the peer-link controller can be instructed to
switch to a low-power mode, adjust its power
level, increase the packet size, and change the
requested QoS on an ACL.

Security can also be configured using LMP
messages. Before a data or voice exchange can
begin, Bluetooth devices should be able to
authenticate each other. Likewise, transmission
over the air link must be encrypted to provide
protection from eavesdroppers. Both objectives
are easy to achieve when a security association
already exists between a pair of devices. The link
manager can use the shared secret key to verify
the peer device’s authenticity as well as to nego-
tiate a link key for encryption. A typical session
between two Bluetooth devices begins with the
formation of a piconet, followed by the exchange
of LMP messages first to authenticate and then to
negotiate new encryption keys with the peer
device. Only upon successful completion of the
LMP handshake can further data exchange or
voice communication take place.

The level of security built into the version 1.1
specifications is satisfactory so long as the initial
security associations are computed in a secure fash-
ion. The baseband and LMP specifications also
define a method, called pairing, for creating a new
security association between two devices when they
pair for the first time. The method uses an out-of-
band channel for creating a security association,
which is then used as a seed to compute a crypto-
graphically secure shared secret key. By out-of-band
channel I mean a user typing a randomly chosen
PIN number on both devices. Clearly, the security of
a pairing phase is limited by a user’s ability to
choose good PIN numbers. In scenarios when one
device in the pair does not have a keypad, security
can be further compromised if the chosen PIN is
transmitted to the other device in clear text.

Putting the Pieces Together
The ultimate objective of the Bluetooth specifica-
tions is to allow multivendor applications to inter-
operate. Different applications may run on differ-
ent devices, and each device may use a protocol
stack from one vendor and a Bluetooth chip from
another. Yet interoperability among applications
is achieved when different implementations com-
ply with the same core and profiles specifications.

102 MAY • JUNE 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Industry Report

At the lowest layer, Bluetooth chips from dif-
ferent vendors interoperate over the air link
because all Bluetooth chips implement the base-
band and LMP specifications. Bluetooth stacks,
which can be implemented as either firmware or
software, include the L2CAP, SDP, and RFCOMM
layers. It is relatively easy to port a Bluetooth stack
from one platform to another because the lowest
layer of a Bluetooth stack interfaces with a Blue-
tooth chip via a standard HCI interface which is
also a part of the 1.1 specifications.

Porting a Bluetooth application from one stack
to another, however, is more difficult. The appli-
cation can use any standard API to access IP, PPP,
OBEX, or RFCOMM layers of the Bluetooth stack,
but there is no standard API to access the control
functions provided by the Bluetooth stack. For
example, if an application were to initiate a Blue-
tooth inquiry to discover other devices in its
neighborhood, it must use an API specific to the
stack vendor to access those functions.

Support for RFCOMM has been provided only
for backward compatibility reasons. Legacy
applications that run over serial cable, such as
OBEX and PPP, will work over any Bluetooth
stack without modifications. Thus, synchroniza-
tion and IP-based applications already developed
by vendors can be made available immediately
when PDAs, cell phones, and laptops are Blue-
tooth enabled. The next release of Bluetooth
specifications will provide better support for IP
(without going through the PPP and RFCOMM
layers), thus increasing portability of IP-based
applications across all Bluetooth platforms. Stan-
dardization of control APIs, however, remains an
unfinished task that has not yet been taken up by
any standards organization.

Conclusion
Whether Bluetooth will live up to its promise or
not will depend on a number of factors, some of
which involve market forces rather than technical
issues. For example, unless the initial adoption of
Bluetooth is high, it will be difficult to meet the
low-cost objective.

Security is also an open issue—as it is in almost
all Internet applications. The free flow of informa-
tion is desirable in some scenarios, but in general,
proper safeguards are required to prevent the
unauthorized leakage of information. The Blue-
tooth SIG is addressing the security issues associ-
ated with the initial usage scenarios, but new
applications of Bluetooth will require a closer look
at potential security threats.

One technical issue is that profile-based inter-
operability is easy to manage when the number
of profiles is small, but market predictions indi-
cate that more than a billion devices will be
equipped with Bluetooth chips by 2005. This
number is significantly greater than the number
of hosts connected to the Internet today. As peo-
ple find innovative uses of this technology, new
profiles will be needed. Ensuring compliance with
a rapidly increasing number of profiles will like-
ly be difficult to maintain in the future. A good
solution to this problem would be to quickly
standardize an IP-over-Bluetooth specification
since interoperability at the IP layer would auto-
matically translate into interoperability at the
applications layer. Some efforts have already
begun within the Bluetooth SIG as well as in the
IETF to resolve this issue.

Bluetooth has caught the attention of consumers
because it would enable them do things that are
otherwise cumbersome or not possible: synchro-
nizing data between cell phones, laptops, and PDAs;
using cell phones as cordless phones when at home;
and connecting PDAs to the office LAN. The value
proposition is therefore strong. The challenge is for
vendors to meet these expectations.

References

1. Specification of the Bluetooth System — Core; available online

at http://www.bluetooth.com/developer/specification/

Bluetooth_11_Specifications_Book.pdf.

2. Specification of the Bluetooth System — Profiles; available

online at http://www.bluetooth.com/developer/specification/

Bluetooth_11_Profiles_Book.pdf.

3. G. Miklos et al., “Performance Aspects of Bluetooth Scat-

ternet Formation,” poster presentation at Mobile Ad Hoc

Networks and Computing (MobiHOC 2000), IEEE/ACM

workshop, Aug. 2000.

4. T. Salonidis et al., “Distributed Topology Construction of

Bluetooth Personal Area Networks,” Proc. IEEE Infocom

2001, IEEE Communication Society, New York, 2001.

Pravin Bhagwat is the principal architect at Reefedge Inc., a net-

working infrastructure and software company that builds

Bluetooth solutions for enterprise customers. He received a

PhD in computer science from the University of Maryland,

College Park. Bhagwat co-chaired the first Internet Engi-

neering Task Force’s BOF on IP over Bluetooth. He is chief

architect of BlueSky, an indoor wireless networking system

for palmtop computers, and co-inventor of TCP splicing, a

technique for building fast application layer proxies.

Readers may contact the author at pravin@reefedge.com;

http://www.cs.umd.edu/~pravin.

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2001 103

Bluetooth

