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Abstract—The problem of energy saving in data centers has recently attracted significant interest within the research community, and
the adaptive data center activation model has emerged as a promising technique to save energy. However, this model has not
integrated adaptive activation of switches and hosts in data centers because of its complexity. This paper proposes an adaptive data
center activation model that consolidates adaptive activation of switches and hosts simultaneously integrated with a statistical request
prediction algorithm. The learning algorithm predicts user requests in a predetermined interval by using a cyclic window learning
algorithm. Then the data center activates an optimal number of switches and hosts in order to minimize power consumption that is
based on prediction. We designed an adaptive data center activation model by using a cognitive cycle composed of three steps: data
collection, prediction, and activation. In the request prediction step, the prediction algorithm forecasts a Poisson distribution parameter
λ in every predetermined interval by using Maximum Likelihood Estimation (MLE) and Local Linear Regression (LLR) methods. Then,
adaptive activation of the data center is implemented with the predicted parameter in every interval. The adaptive activation model is
formulated as a Mixed Integer Linear Programming (MILP) model. Switches and hosts are modeled as M/M/1 and M/M/c queues. In
order to minimize power consumption of data centers, the model minimizes the number of activated switches, hosts, and memory
modules while guaranteeing Quality of Service (QoS). Since the problem is NP-hard, we use the Simulated Annealing algorithm to
solve the model. We employ Google cluster trace data to simulate our prediction model. Then, the predicted data is employed to test
the adaptive activation model and observe energy saving rate in every interval. In the experiment, we could observe that the adaptive
activation model saves 30 to 50% of energy compared to the full operation state of data centers in practical operating conditions of data
centers.

Index Terms—Data center, operational power minimization, Fat-tree data center, traffic prediction, machine learning, queuing theory,
Mixed Integer Linear Programming.
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1 INTRODUCTION

Increase in data traffic with mobile devices and expansion
of cloud computing environment will demand continuous
growth in data center utilization and energy consumption.
Data centers consumed 91 billion kilowatt-hours of electric-
ity in 2013, which is equivalent to energy from 34 large coal
fire power plants. This huge amount of energy consumption
in data centers has attracted interest from many researchers,
and many energy saving models are proposed. Among
many proposals, the adaptive data center activation model
has emerged as the most promising energy-saving strategies
that controls the activation of hosts and network switches to
save energy. However, the complexity of the problem has
prevented researchers from developing cooperative activa-
tion strategy of switches and servers simultaneously. As a
result, only a few studies have considered the joint adaptive
operation of data center network and server layers [1][2].
However, the latency and service quality constraints are not
considered in the previous study of [1].

With the goal of standardizing energy-aware network
management, the European Telecommunications Standards
Institute (ETSI) published ETSI Standard (ES) 203 237, ’the
Green Abstraction Layer (GAL)’, which is a framework to
manage energy efficient networks of the future [3], [4], [5].
The GAL is an architecture interface that provides informa-
tion exchange between the power managed data plane and
the control plane. The GAL supports discovery, provision-
ing, and monitoring of functionalities in the networks, and
regulates QoS of the network. The overall network power
consumption through adaptation of Network-wide Control
Policies (NCP) and Local Control Policy (LCP). We follow
the GAL scheme in this paper. The NCP is applied by the

controller in the data center and the LCP controls each
server and switch state, such as ports, memory, and node
states, according to the control policy of controller.

In this paper, we propose an advanced interactive adap-
tive data center activation model that controls switch and
host layers’ activation simultaneously while satisfying Qual-
ity of Services (QoS) requirements. This model will be
implemented as an adaptive data center activation model
with a three step cognitive cycle: data collection, requests
prediction, and data center activation. An accurate predic-
tion of user requests should support the implementation of
the adaptive activation model properly. According to [6], in
2013 50% of the energy is wasted in data centers due to lack
of awareness of the traffic. This data shows how the accurate
prediction of the requests will be increasingly important in
the future with an indisputable increase in energy consump-
tion. Also, the accurate request prediction has an effect on
the performance of data centers. Excessive deactivation of
computing or network devices for energy saving will cause
a bottleneck and delay in handling requests.

For the prediction step, we collect the history of requests
arriving at the data center and observe the histogram. Based
on the histogram analysis, we decide on a probability distri-
bution model to fit to the collected data. Then, parameters
of the probability distribution model are inferred using
the Maximum Likelihood Estimation (MLE) method and
saved for the prediction. After enough data is collected
for prediction, the prediction model estimates parameters
of the probability distribution with Local Linear Regression
(LLR) by using a cyclic window approach. Parameters of the
probability distribution are time-dependent on data, which
means the parameters change with time. Therefore, the
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parameters have different patterns during every interval,
but they exhibit the same pattern during the same period in
every day or every week.

Arriving traffic is not constant. The traffic usually in-
creases during daytime and decreases during night. There-
fore, powering all components of data center will waste
unnecessary energy when there is low traffic. Deciding on
the number of activated switches and hosts is important and
depends on arriving job rates. If a data center is running
insufficient hosts compared to requests, it will not be able
to serve all requests from users. Even if there are enough
hosts, if the data center is not operating enough switches
in order to save energy, it will cause latency in transferring
data. Most of data centers architectures are constructed with
a tree architecture, so if the data center does not activate
necessary switches for connecting core switches to hosts, it
will fail to transfer requests to hosts.

We develop an optimal energy consumption model for
the Fat-tree based data center depending on the incoming
rate λ while guaranteeing QoS and connectivity.

For optimal energy consumption of data centers, we con-
trol the activation of switches, server nodes, switch ports,
and memory modules. The server power consumption is
estimated as 40 to 55% and switch layer power consumption
is estimated as 10 to 20% from the total data center energy
consumption [1]. Thus, deactivating unneeded hosts and
switches is expected to save a significant portion of energy.
Turning off unneeded switch ports will result additional
energy savings. Since we deactivate servers and switches,
it is possible to turn off ports connected to inactive nodes.
We also dynamically activate memory of switches and hosts
because the memory also consumes a significant portion
of energy. According to [7], DRAM consumes 25% of total
power in data centers.

Scalability of data centers is an important issue. As traffic
requests to data centers increase, many data center operators
face the need for increasing data centers sizes. Most of data
centers are designed homogeneously, which means that it
is not easy to increase the capacity of data center resources.
Our model employs a heterogeneous Fat-tree architecture
of data centers that is controlled with a Software Defined
Network (SDN) controller.

We model an optimal SDN controlled data center using
a Mixed Integer Linear Program (MILP). Switches are mod-
eled as M/M/1 queue and servers are modeled as M/M/c
queue. This model will minimize the operational power
by deciding active switches, hosts, and operating memory.
The problem is NP-hard. Therefore, Simulated Annealing is
used to find a near optimal solution of the problem within
reasonable computation time.

Google cluster-trace data, which is real measurements of
usage requests in Google cluster, is employed to test our
prediction model and predict λ for the adaptive activation
model.

To summarize, the contributions of this paper are: i)
A request prediction algorithm is developed by using a
cyclic window learning approach. The algorithm predicts
the probability distribution parameters of requests during
every predetermined period. ii) An optimal adaptive data
center activation model is modeled as MILP. The data center
operates the minimum number of switches and hosts while
guaranteeing the QoS requests submitted to the data center.

iii) We designed an adaptive data center activation model
which activates the data center in every predetermined
period based on predicted traffic.

The rest of the paper is organized as follows. Previ-
ous work is reviewed in Section II. The system model for
adaptive activation model is introduced in Section III. We
introduce the requests prediction algorithm in Section IV
and adaptive data center activation model in Section V. In
Section VI, the Simulated Annealing algorithm is presented
to solve the NP-hard optimization problem. Simulation re-
sults of the prediction model and adaptive activation model
are presented in Section VII and we end this paper with
conclusions in Section VIII.

2 RELATED WORK

2.1 Traffic prediction in cloud systems

Request prediction in cloud and data center has been stud-
ied by many researchers for the adaptive scaling of systems.

Akindele A. Bankole et al. employ the machine learning
for predictive resource provisioning in the clouds [8]. Their
prediction model is achieved with machine learning tech-
niques including: Neural Network, Linear Regression, and
Support Vector Machine. They predict the CPU utilization,
response time, and throughput based on collected data from
virtual machines web servers and database servers. The
prediction model generates prediction values in every given
minute with machine learning techniques and measure error
rate with Mean Absolute Percentage Error (MAPE) and
Root Mean Squared Error (RMSE). However, the prediction
model did not show a high prediction accuracy, and their
results show 24% prediction error in predicting the CPU
utilization at a certain point of time and a 21% error in the
response time prediction.

Sedeka Islam et al. present more advanced machine
learning techniques for predicting resource usage in [9].
Error Correction Neural Network (ECNN) and the Linear
Regression techniques are employed for the prediction.
Then they included a sliding window method to reflect the
current state of the system. They generated prediction val-
ues based on window sizes and evaluated them with MAPE,
PRED(25), RMSE, and R2prediction accuracy. The CPU
utilization data is collected from the Amazon EC2 cloud
through the TPC-W benchmark and prediction values are
generated with the ECNN and Linear Regression method.
The prediction values of CPU utilization have around 19%
error rate without the sliding window and have a minimum
18.6% error rate when they employ the sliding window.

Many statistical approaches are also applied to traffic
prediction in clouds. Bruno Lopes Dalmazo et al. propose
a traffic prediction approach based on a statistical model
where observations are weighted with Poisson distribution
inside a moving window [10]. They consider the past in-
formation by means of a sliding window of size λ and
this window is applied by weighting the past observations
according to the Poisson distribution with parameter λ.
Dropbox trace data is employed for testing their predic-
tion model and Normalized Mean Square Error (NMSE)
evaluation method is utilized for error measurement. The
prediction model could achieve NMSE values between 0.044
and 0.112. The prediction is ideal when NMSE value is equal
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to zero and worse when it is greater than one. This approach
achieves a reasonably accurate prediction.

They also propose a traffic prediction model with a
dynamic window approach [11]. The sliding window size
is changed based on variance of the previous window size.
A small variance indicates the predicted data is close to the
actual data while a high variance means the predicted data
is spread out from the mean. Therefore, they update the
window size in every prediction interval by considering
the size of the variance in the previous prediction. The
prediction accuracy is improved from 7.28% to 495.51%
compared to the previous statistical model.

2.2 Cloud system modeling using queuing theory
Jordi Vilaplana et al studied the computer service QoS
in cloud computing based on queuing theory [12]. Cloud
platforms are modeled by an open Jackson network which
consists of multiple nodes, where each node corresponds
to a queue in which the service rates are node dependent.
They modeled multi-server system with Entering Server
(ES) and Processing Server (PS). ESs are modeled by M/M/1
queues, which works for the load balancer, PSs are modeled
as M/M/m queues. However, all queues are assumed to
have the same service rate so heterogeneity of systems is
not considered. By using the queuing system analysis, they
analyzed the response time of the global cloud architecture
with different parameters.

Wei-Hua Bai et al investigated heterogeneous modern
data centers and the service process in data centers by
using queuing theory [13]. They built a complex queuing
model composed of the master server and computing nodes.
The master node works as the main scheduler to allocate
resources for tasks to dispatch a node to execute tasks,
which is modeled as M/M/1/K queue. Computing nodes
which are a multi-core server are modeled as an M/M/c
queue because each multicore execution server can parallel-
process multiple tasks. By using queuing theory analysis,
they investigate system metrics such as the mean response
time, the mean waiting time, and other important perfor-
mance indicators. Although they investigated the system
performance of heterogeneous data centers efficiently, they
did not include the switch node in their consideration.
Since the switch architecture and connections with servers
significantly affect data centers performance, switches are
also required to be considered when we analyze the data
center performance.

Junwei Cao et al studied the problem of optimal multi-
server configuration for profit maximization in cloud com-
puting environments [14]. They included the amount of
service, the workload of an application environment, the
configuration of multiserver system, the service level agree-
ment, the satisfaction of a consumer, the quality of service,
the penalty of a low-quality service, the cost of renting,
the cost of energy consumption, and the service provider’s
profit margin in their profit modeling and maximized
their profit through optimal multiserver configuration. They
modeled a multiserver system as an M/M/m queuing
model so that the optimization problem can be formulated
and solved analytically. For more general analysis, they
derived the density function of the waiting time of a newly
arriving service request and the expected service charge to
a service request is also calculated.

2.3 Power saving in cloud systems

Energy saving in data centers is considered in many aspects
because of its importance. Junwei Cao et al. propose optimal
power allocation and load distribution in a heterogeneous
data center environment [15]. They model a multicore server
processor as a queuing system with multiple servers and
prove optimal server setting for two different core speed
models, idle speed model and the constant speed model.

Kuangyu Zheng et al. propose joint power optimization
of data center network and servers with correlation analysis
[1]. They propose a power optimization strategy that lever-
ages workload correlation analysis to jointly minimize total
power consumption of servers and data center network.
After they analyze the correlation between Virtual Machines
(VMs), they consolidate VMs that are not correlated with
each other onto the same physical servers to save server
power consumption and consolidate network traffic to save
data center network power. Through this approach, they
could achieve up to 51.6% of energy saving in their testbed.
This paper has a similarity with our proposal in terms
of joint optimization of data center networks and servers.
However, the authors consolidate VMs based on correlation
analysis between VMs, and then activates traffic flow be-
tween VMS that are correlated, which means the activation
of servers and switches are not jointly considered. Also, the
traffic flow is consolidated between correlated VMs. Thus,
this strategy cannot guarantee connectivity between physi-
cal servers due to data center network layer deactivation.

This paper has differences from all previous works in the
following aspects: Our prediction model predicts the prob-
ability distribution parameter in a certain period instead
of predicting quantified value of requests. Therefore, we
achieve a more flexible prediction by deciding the desired
probability of the predicted distribution.

The dynamic data center activation model integrates the
dynamic operation of switch layer and server layer while
guaranteeing the performance of the data center network.
Since we jointly decide activated switches and hosts, we
could save more energy compared to other dynamic activa-
tion models which determine operating hosts and switches
independently.

3 SYSTEM MODEL

3.1 Distribution parameter adaptive data center activa-
tion model

The cognitive cycle of the adaptive data center activation,
which is shown in Fig. 1, is composed of three phases: data
collection, request prediction, and data center activation.
For the first phase, the control plane collects the number
of incoming tasks and refines collected data to utilize it for
the prediction. The collected data is saved in the prediction
data set and the prediction model employs it to forecast the
future requests of users by using a cyclic window learning
algorithm. According to the predicted requests, the control
plane solves the adaptive activation problem and activates
the optimal set of switches and hosts, and keeps unneces-
sary components in the idle state. This cycle is repeated
periodically in every predetermined period. For example,
if we set the duration to 30 minutes, the system repeats one
cycle every 30 minutes. Thus, the system can reconfigure the
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data center every 30 minutes in order to reduce the waste of
resources.

In adaptive data center activation, the system setup time
is not a negligible factor of system performance. The inactive
devices are kept in standby or low power idle states as
described in [3], [4]. If the devices are put in the low power
idle state for power saving purpose, a longer wake up time
will be required when the device is activated. By using the
cognitive cycle of the system, the wake up delay of devices
can be minimized through the predictive system activation.
The prediction process is executed in advance of the system
activation. Based on the prediction result, the controller can
put newly activated devices in the standby state. So the
system wake up time will be minimized according to the
prediction and activation schemes.

Figure 1: Cognitive cycle of system

3.2 Fat-Tree Data Center
There are many data center architectures: Fat-tree, VL2,
Bcube, and so on. In this paper, we adopt the Fat-tree
architecture, the most widely used data center architecture
by many cloud service providers [16], [17].

Fat-tree is composed of three switch layers (core, aggre-
gation, and Top of Rack (ToR) layer) and a host layer as
shown in Fig. 2. All switches have the same number of ports.
If we assume the number of ports in each switch is k, we
have k core switches and k Points of Delivery (POD). Core
switches are grouped into k/2 groups. Since a core switch
has k ports, each core switch is connected to all PODs. For
example, in Fig. 2, the first core switch in each group is
connected to the first aggregation switch in each POD and
the second core switch in each group is connected to the
second aggregation switch in each POD. Each POD has k/2
aggregation switches and k/2 ToR switches. Aggregation,
ToR switches, and their interconnection network forms a
complete bipartite graph. Since a ToR switch uses k/2 ports
for connecting aggregation switches, they can serve k/2
hosts each. Therefore, the data center has a total of k3/4
hosts.

The Fat-tree architecture is widely used because of its
scalability and interconnection capability [16]. Due to the
scalable characteristic of Fat-tree data center, it is able to
configure large size data center with lower Capital Expendi-
ture (CAPEX). Also, interconnections between hosts in the
same data centers are easy with full bandwidth.

In the Fat-tree architecture, we cannot deactivate nec-
essary switches to operate required hosts because of its
connectivity. For example, the first ToR switch cannot be
turned off when we want to allocate jobs to the first host in
the first POD. In our model, the core switch should be able
to reach any host using three links and a host should be able
to reach a core switch using three links as well. Therefore,
we will turn on and off switches without violation of this
rule to guarantee connectivity.

3.3 SDN based data center

For comprehensive management of network management,
we employ an SDN based data center model. The SDN
based data center is composed of the control plane and the
data plane. The control plane plays the role of managing
the network and deciding routing paths. The data plane
just forwards data according to the values in the forwarding
table.

The control plane should have access to data plane
switches and needs to receive system status information
from all data plane switches. All switches implement the
data plane functionality since they have to forward data. In
addition, the core switch layer implements the control plane.

Since the workload distribution and resource allocation
are determined by the control plane switches, the data center
can activate only a limited number of switches and hosts by
allocating workloads optimally.

Figure 2: SDN fat-tree data center model (k=4)

4 REQUEST PREDICTION ALGORITHM

The prediction model estimates parameters of the proba-
bility distribution of future user requests in every prede-
termined period. For the traffic analysis, one week traffic
data is selected from Google Cluster trace data in [18].
Since the data is selected starting from a random point of
the whole data, we do not know the exact data and time
of the traffic measurement. However, we could find that
user requests have obvious patterns and the patterns are
repeated periodically, as shown in the Fig. 3.

The hourly pattern shows high peaks for the first 4 hours
and the last 10 hours. So, we can assume daytime starts
around the 10th hour from the measurement and end at the
4th hour in Fig. 3. If we observe the daily pattern, the first
two days and the last two days show higher requests. In the
same way, we can assume weekdays start on the 4th day
of the measurement by assuming requests increases during
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weekdays rather than the weekend. The daily pattern analy-
sis of task arrivals presents obvious patterns of the incoming
requests. Therefore, the cyclic data collection should be an
effective approach for the prediction. Based on our analysis,
the prediction model adopts periodic history data at the
same time point in order to make predictions about future
data center loads.

Figure 3: Prediction data set

We introduce three time scales for the prediction periods:
Pattern Period (PP ), Target Period (TP ) and Utilization
Period (UP ). The PP is a cyclic interval that exhibits pattern
repetition. The TP is a unit duration for which we want
to make a prediction. The UP is a cyclic window that we
use for predicting the activities in TP . In the example, we
predict the request distribution during a certain Monday by
assuming the same pattern is repeated every week. Then,
we can set the TP to a day and the PP to a week because
we assume the pattern of a day is repeated every week. If
we only use the past Mondays′ data for the prediction, the
UP becomes one day.

Since patterns are repeated on every PP , any time
duration for the prediction corresponds to a certain TP on
the PP . Therefore, we can predict the request distribution
during any time interval by correlating them to a certain TP
on the PP . For precise prediction, data is accumulated for
several PP s. Although patterns of the traffic distributions
will be similar at the same time point in every PP , the
traffic amount will be different. In other words, we can
say the distribution of the traffic shows similar pattern in
every Monday, but we cannot ensure that the amounts of
traffic will be the same. Therefore, the prediction model can
achieve higher prediction accuracy by accumulating data
during several PP s.

To implement prediction, the data set saves the past data
in an m× l matrix. m represents the number of TP s on the
PP and l denotes the number of PP s we accumulate. In Fig.
4, each vertical block corresponds to saved parameters of the
probability distribution in each TP during a PP . We start
to stack the data from the first block of the first iteration.
If the data set is filled until the TPm’s block, which is the
last TP, we move to the second iteration and stack the data
from the first block of the second iteration, which means
we have saved data during a PP . When the matrix is full,
the data set goes back to the first block of the first iteration

Figure 4: Prediction data set

and replaces the old data to reflect the tendency of recent
requests.

Any time duration that we want to predict the traffic
distribution can be related to a certain TP on the matrix.
In order to make a prediction, the UP data is employed.
In Fig. 4, we can see that distribution parameters of TPm
can be predicted by using UPm. We can set the size of UP
depending on how many previous TP s will affect the state
of the current TP . For example, UP is set to two days and
TP is one day, e.g., previous Sunday and Monday′s history
parameters are utilized to predict next Monday’s request
distribution.

In this paper, the prediction model forecasts the number
of task arrivals during each target period. In the first step of
prediction, the prediction model constructs a histogram of
user requests in every target period to observe distributions
of requests. Then, it fits a probability distribution to the dis-
tribution of requests. When the probability distribution ker-
nel is decided for fitting, we adopt MLE in order to obtain
parameters of the probability distribution in every observed
period and the parameters are saved on the data set. After
the data set accumulates enough data for prediction, it is
able to predict parameters of a following TP . LLR will be
employed to predict parameters of the future requests. LLR
is one of the kernel smoother techniques for estimating a
real valued function, when no parametric model for this
function is known. Since the data set is updated and solved
in every predetermined period, the prediction model is a
dynamical operation problem. The detailed process of the
algorithm is included in [18].

5 ADAPTIVE DATA CENTER ACTIVATION MODEL

We formulate an adaptive data center activation problem
as an MILP. Our objective is to minimize the activation
power, port power, and memory power consumption in the
data center while guaranteeing QoS. This model decides the
active state of switches and hosts by using binary variables
and determines load distribution over switches and hosts
with continuous variables. Based on allocated workload in
switches and servers, controllers can determine how many
memory modules need to be on. We assume that jobs arrive
at the data center according to a Poisson distribution with
rate λ. We define the following variables:
• Cij : working state of ith group jth core switch; binary variable.
•Aij : working state of ith POD jth aggregation switch; binary variable.
• Tij : working state of ith POD jth ToR switch; binary variable.
• Hij ToRmn : working state of ith POD jth host connected to ToRmn

ToR switch; binary variable.
•MCij , MAij , MTij , MHij ToRmn

: The number of operating memory
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modules in core, aggregate, ToR switches, and hosts; integer variables.
• λCij , λAij , λTij , λHij ToRmn : Job arrival rate to core, aggregate, ToR
switches and hosts; continuous variable.
• λCij l : Job arrival rate to ith POD jth core switch lth port; continuous
variable.
• λAij l : Job arrival rate to ith POD jth aggregation switch lth port;
continuous variable.
• λTij l : Job arrival rate to ith POD jth ToR switch lth port; continuous
variable.
• P static

Cij
, P static

Aij
, P static

Tij
, P static

Hij ToRmn
: Static power consumption of

core, aggregate, ToR switches and hosts during a unit time; constant.
• P dynamic

Cij
, P dynamic

Aij
, P dynamic

Tij
, P dynamic

Hij ToRmn
: Dynamic power con-

sumption of core, aggregate, ToR switches and hosts on the full utiliza-
tion state during a unit time; constants.
• P port

Cij
, P port

Aij
, P port

Tij
: Power consumption of each port in core,

aggregate, and ToR switche per job; constants.
• Pmemory

Cij
, Pmemory

Aij
, Pmemory

Tij
, Pmemory

Hij ToRmn
: Memory power con-

sumption of core, aggregate, ToR switches and hosts during a unit time;
constants.
• µCij , µAij , µTij , µHij ToRmn : service rate of core switch; constants.
• λ: Job arrival rate to data center; constant.

5.1 Objective Function

Minimize
pactivation + pport + pmemory (1)

The objective function includes activation power, port
power, and memory power consumption during a unit
time. Activation power is the power consumption necessary
for operating switches or hosts. Port power is the power
consumption for transmitting a job through the port. We
assume that ports are in the idle state when they do not
transmit jobs and do not consume power in the idle state. So
port power is calculated depending on the number of jobs
they transmit. Memory power is determined depending on
how many memory modules are powered. If we turn on
more memory modules than those required in a switch or a
host, this will waste energy. Therefore, we propose to turn
on the appropriate number of required memory modules
based on statistical estimation.

5.1.1 Activation Power

pactivation =

k/2∑
i=1

k/2∑
j=1

Cij(P
static
Cij + P dynamicCij

λCij
µCij

)

+

k∑
i=1

k/2∑
j=1

Aij(P
static
Aij + P dynamicAij

λAij
µAij

)

+

k∑
i=1

k/2∑
j=1

Tij(P
static
Tij + P dynamicTij

λTij
µTij

)

+

k∑
i=1,m=1

k/2∑
j=1

k/2∑
n=1

Hij ToRmn(P
static
Hij ToRmn

+ P dynamicHij ToRmn

λHij ToRmn
µHij ToRmn

)

(2)

We can calculate the activation power by considering the
static and dynamic power of switches and hosts. The static
power is a constant power required for activating switches

and hosts. The static power can be calculated by multiplying
the binary variables that represent the state of each switch
and host by the static power consumption constant of each
switch and host. The dynamic power increases proportion-
ally to the utilization rate of switch and host. Thus, the
dynamic power can be computed by multiplying the utiliza-
tion, λµ , and dynamic power consumption constant of each
switch and host. The dynamic power expression includes
a non-linear term, corresponding to the multiplication of
the binary variable and continuous variable. This non-linear
term can be linearized by using a simple transformation
introduced in Section 5.2.1.

5.1.2 Port Power

pport =

k/2∑
i=1

k/2∑
j=1

k∑
l=1

λCij lP
port
Cij

+

k∑
i=1

k/2∑
j=1

k/2∑
l=1

λAij lP
port
Aij

+

k∑
i=1

k/2∑
j=1

k/2∑
l=1

λTij lP
port
Tij

(3)

Port power should only be considered in switches. The
problem decides how each switch will distribute arriving
jobs through which port. Therefore, we can measure the
port power consumption by multiplying the amount of jobs
passing through each port and the power consumption per
job of each port.

5.1.3 Memory Power

pmemory =

k/2∑
i=1

k/2∑
j=1

MCijP
memory
Cij

+

k∑
i=1

k/2∑
j=1

MAijP
memory
Aij

+

k∑
i=1

k/2∑
j=1

MTijP
memory
Tij

+

k∑
i=1,m=1

k/2∑
j=1

k/2∑
n=1

MHij Tmn
PmemoryHij ToRmn

(4)

We will estimate the number of jobs in each switch and
host memory by using a queuing model. Then we can
decide how many memory modules we need to operate
based on the estimated number of jobs in each switch
and host by queuing theory. After we decide the number
of working memory modules, we can evaluate memory
power consumption by multiplying the number of memory
modules and memory power consumption of each memory
module in each switch and host.

5.2 Load Distribution Constraints

Workload should be distributed rationally in the data center.
Since we are proposing to turn off parts of the switches and
hosts, we have to decide exactly which port will transfer
jobs to the lower layers in order to prevent job losses. For
example, if the core switch transfers jobs to an inactive
aggregation switch, we will not be able to allocate those
jobs to hosts. Thus, load distribution constraints decide how
we distribute the workload to low layer switches through
which ports.
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5.2.1 Load Distribution in Each Layer

The summation of workload in each layer should be equiv-
alent to λ, the total arriving workload to the data center.
The inter-POD traffic does not need to go through the core
switch layer in traditional data centers. However, all traffic
goes through the core switch layer in SDN data center
architecture. Therefore, the summation of traffic in each
layer will be the same. The purpose of this constraint is to
allocate the workload to working switches and hosts while
guaranteeing that we forward all requests to hosts.

k/2∑
i=1

k/2∑
j=1

CijλCij = λ (5)

k∑
i=1

k/2∑
j=1

AijλAij = λ (6)

k∑
i=1

k/2∑
j=1

TijλTij = λ (7)

k∑
i=1,m=1

k/2∑
j=1

k/2∑
n=1

Hij ToRmnλHij ToRmn = λ (8)

Equations (5)-(8) are multiplications of binary variables
and continuous variables, so they are non-linear equation.
Therefore we linearize those non-linear constraints. When
x is a binary variable and y is a continuous variable that
is greater than or equal to zero, we can linearize their
product by replacing it by a continuous variable t with the
constraints shown below.

0 ≤ t ≤ max(y) · x (9)

y − (1− x) ·max(y) ≤ t ≤ y (10)

The maximum of continuous variables, λCij , λAij , λTij ,
and λHij Tmn is λ because it is the maximum workload
that can be allocated to each switch and host, and is the
summation of all workloads in the same layer. Therefore,
we can linearize non-linear constraints (5), (6), (7), and (8)
with this linearization technique.

5.2.2 Link Distribution

As mentioned before, it is important to determine which
port to use for transferring jobs. If we use a port connected
to an inactive switch or host for transmitting that job, we
will lose the request.

λCij =

k∑
l=1

λCij l ,∀i, j (11)

λAij =

k∑
l=1

λClj i ,∀i, j (12)

λAij =

k/2∑
l=1

λAij l ,∀i, j (13)

λTij =

k/2∑
l=1

λAil j ,∀i, j (14)

λTij =

k/2∑
l=1

λTij l ,∀i, j (15)

λTij l = λHil ToRij ,∀i, j, ToRij (16)

Equations (11), (13), and (15) regulate the distribution from
each switch to lower layers. Arriving job requests to each
switch should be equivalent to the summation of workloads
to go out through their ports.

Equations (12), (14), and (16) decide how arriving jobs
are handled by each switch. Summation of the number of
jobs going into switches should be equal to the summation
of arriving jobs from upper layer through connected port.

Through this constraint, we can decide which port will
transfer how many jobs in each link. We can obtain an opti-
mal workload distribution strategy with these constraints.

5.2.3 Distribution Restriction
Jobs cannot be distributed to inactive switches and hosts.
Constraints (5)-(8) regulate the summation of jobs in each
layer but it can allocate jobs to deactivated switches because
the summation of workload is still the same if the switch
is turned off. Therefore, we need constraints that prohibit
workloads from being allocated to inactive switches and
hosts, and these are as follows:

λCij ≤ λ · Cij ,∀i, j (17)

λAij ≤ λ ·Aij ,∀i, j (18)

λTij ≤ λ · Tij ,∀i, j (19)

λHij ToRmn ≤ λ ·Hij ToRmn ,∀i, j,m, n (20)

These constraints force the workload allocated to a switch
or a host to zero if the binary variable corresponding to the
switch or host is zero.

5.3 Performance Constraints

In order to guarantee the QoS of data centers, latency
constraints will be applied to each switch and host. Switches
are assumed to be M/M/1 queues and hosts are M/M/c
queues, where c is equivalent to the number of cores of
the host using the queuing model, we can obtain the dis-
tribution of residual time in the queue. Residual time of a
job in queue corresponds to how long each job will stay
in switches and hosts. Thus, we will use the residual time
distribution to obtain the latency constraint.

5.3.1 Latency in a Switch
Switches are modeled as M/M/1 queues. Using the Cu-
mulative Density Function (CDF) of the residual time in
M/M/1 queue to obtain the residual time equation in
M/M/1 queue, we have

FR(tresidual) = 1− e−(µ−λswitch)tresidual (21)

Equation (21) represents the probability that the residual
time in the queue will be less than tresidual. Therefore, we
can obtain the maximum residual time in the queue by
letting FR(tresidual) = α, where α is close to 1 and tresidual
satisfies.

1− e−(µ−λswitch)tresidual = α (22)
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Slightly manipulating (22) we have the upper bound on the
residual time in the queue as,

tresidual = −
ln(1− α)

(µ− λswitch)
(23)

Since the residual time cannot exceed the latency constraint,
Latency, we have the following constraint.

− ln(1− α)
(µ− λswitch)

≤ Latency (24)

which can be expressed in the following linear form, where

− ln(1− α) ≤ Latency · (µ− λswitch) (25)

By using (25), we can obtain the latency constraint for all
switches.

5.3.2 Latency in a Host

We use a strategy similar to the above to obtain the delay in
hosts. A host is modeled as an M/M/c queue, and the CDF
of the residual time in an M/M/c queue is [19]:

FR(tresidual) = 1− c

c− ρ
· pc · e−(cµ−λ)tresidual (26)

pc is the probability that there are c jobs in a queue,
c represents the number of cores in our model, which is
usually a small number and ρ represents λ

µ . For the most
cases of practical interest, all cores will be active and we can
assume pc to be equal to 1 for the purpose of simplifying
the problem. Therefore,

FR(tresidual) = 1− c

c− ρ
· e−(cµ−λ)tresidual (27)

Again, if the residual time satisfies (27) with probability
α, with α ≈ 1, then

1− c

c− ρ
· e−(cµ−λ)tresidual = α (28)

After simple manipulations of (28) we obtain

tresidual =
ln (1−α)(1−ρ)

c

−(cµ− λ)
(29)

Since the residual time in the queue should be less than the
latency constraint, we can get constraint below

ln (1−α)(1−ρ)
c

−(cµ− λ)
≤ Latency (30)

Which can also be written as

− ln(1− α)− ln(1− ρ) + ln c ≤ Latency(cµ− λ) (31)

Equation (31) is non-linear because it includes the non-
linear term, −ln(1 − ρ). We will linearize (31) by using the
piecewise approximation technique used in [24]. Since ρ has
a limited domain between 0 to 1, then we can linearize
−ln(1 − ρ) by calculating a linear function which lower
bounds −ln(1 − ρ) in each of a number of sub-domains
of ρ. We divide ρ to three sub-domains: [0, 0.75], [0.75, 0.95],
and [0.95, 1]. Then, we obtain a linear function that fits each
sub-domain, f1(ρ), f2(ρ),and f3(ρ), which lower bounds
−ln(1− ρ).

Through approximation, we could achieve three linear
functions in each sub-domain, f1(ρ) = 1.72ρ, f2(ρ) =

7.1679ρ− 4.1698, f3(ρ) = 40.2359ρ− 35.6308. By replacing
− ln(1 − ρ) in (31) by maxy fy(ρ), y represents a linear
function in the y sub-domain, and we obtain the linear
constraint below.

max
y

fy(ρ)− ln(1− α) + ln c

≤ Latency · (cµHij ToRmn − λHij ToRmn),∀i, j,m, n, y
(32)

5.3.3 Service Rate
For the stability of the system, the summation of service
rates of each layer should be greater than the total arrival
rates jobs. That is,

k/2∑
i=1

k/2∑
j=1

µCijCij ≥ λ (33)

k∑
i=1

k/2∑
j=1

µAijAij ≥ λ (34)

k∑
i=1

k/2∑
j=1

µTijTij ≥ λ (35)

k∑
i=1,m=1

k/2∑
j=1

k/2∑
n=1

µHij ToRmnHij ToRmn ≥ λ (36)

5.4 Memory Constraints
Main memory consumes almost 25% of total energy con-
sumption in the data center. Therefore, minimizing the num-
ber of working memory modules will contribute to saving
energy consumption in data centers. We decide the number
of working memory modules based on the probability that
an arriving job is rejected. We assume the job is rejected only
when there is not enough memory in the queue.

5.4.1 Memory in Switch
Switches are modeled as M/M/1 queue. If we assume the
nq + 1 job is rejected in the queue, the probability of losing
a job is equal to probability of nq jobs in the queue. So we
can calculate the probability of loss like below:

p(loss) = pnq (37)

We set the probability that an arriving job is successfully
queued to α ≈ 1.

p(queuing) = α (38)

Then we can get the equation below:

p(loss) = 1− p(queuing) = 1− α (39)

p(loss) is when there are nq jobs in queue. So we can
calculate the probability of loss like below:

p(loss) = 1−
nq−1∑
i=0

pi (40)

If we substitute p(loss) in (39) with (40) to obtain pi = ρi(1−
ρ) in the M/M/1 queue.

nq−1∑
i=0

pi = α (41)
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So from (41) we can obtain,

1− ρnq−1 = α (42)

If we take the log on both sides, we can achieve:

nswitch =
ln(1− α)
ln(ρ)

+ 1 (43)

Equation (43) represents the number of existing jobs in a
switch with very high probability α. Based on the number
of jobs in the queue, we can obtain the number of memory
modules we need. If we assume the expected size of a job
is J and memory module size is MS, we can establish the
following memory constraint.

nswitch · J ≤Mswitch ·MS (44)

Since all switches are modeled as M/M/1 queues, we can
apply this constraint to all switches and decide the number
of working memory modules depending on their allocated
workloads.

5.4.2 Memory in Host
Hosts are modeled as M/M/c queues. We can use the same
approach used with the switch, but instead using the steady
state probability of the M/M/c queue. As mentioned before,
we assume hosts are always busy when they are turned
on. Since c represents the number of cores in a host, we
can consider there will be always more than c jobs in the
host. Therefore we can use the following equation to obtain
steady state probability:

∞∑
i=c

pi ≈ 1 (45)

The steady state of probability in M/M/c queue is given for
i ≥ c,

pi =
ccρn

c!
p0 (46)

where ρ = λhost
cµ .

The initial state probability p0 can be found by substitut-
ing pi in (45) by (46).

∞∑
i=c

ccρn

c!
p0 ≈ 1 (47)

ccρc

c!(1− ρ)
p0 ≈ 1

So, the initial probability p0 is given by,

p0 ≈
c!(1− ρ)
ccρc

(48)

By using (48), we can use steady state probabilities by
substituting p0 in (46).

If we substitute (46) in (41), we can obtain the number of
jobs in hosts in terms of utilization.

nhost =
ln(1− α)
ln(ρ)

+ c (49)

By using (49), we can achieve the required number of
memory modules that can accommodate jobs in hosts with
the following constraint.

nhost · J ≤Mhost ·MS (50)

However, (44) and (50) are non-linear. Similar to the
above piecewise linear approximation, we will divide them
into three sub-domains: [0, ρ∗1], [ρ∗1, ρ∗2], and [ρ∗2, 1]. Then we
could get a linear function in each sub-domain. The approx-
imation function is different depending on the service rate
of switches and hosts. So, if we define the functions that
obtain the number of jobs in each switch and host,nswitch
and nhost as fn(ρ), we can calculate sub-linear functions as:

fn1(ρ) =
fn(ρ

∗
1)

ρ∗1
ρ (51)

fn2(ρ) =
fn(ρ

∗
2)− fn(ρ∗1)
ρ∗2 − ρ∗1

(ρ− ρ∗2) + fn(ρ
∗
2)

fn3(ρ) =
µ− fn(ρ∗2)
1− ρ∗2

ρ+
fn(ρ

∗
2)

1− ρ∗2
µ is the service rate of each switch and host. Since we
approximate the number of jobs by a linear function, we
can linearize the constraints (44) and (50) like below in each
switch and host:

max
y

(fny(ρCij )) ≤
Mhost ·MS

J
(52)

y represents the number of approximation functions and M
is the number of memory module that are powered, which
is an integer variable.

5.5 Connectivity Constraints
The connectivity constraints are applied to the problem to
protect the connectivity of the data center. If we deactivate
necessary switches for connecting to working hosts, it will
cause the disconnection between the core layer and hosts.
Therefore, we define the connectivity constraints that main-
tain the architecture of data centers.∑k/2

j=1 Tij

k
≤

k/2∑
j=1

Aij ,∀i (53)

ToR switches and aggregation switches in the same POD
have a complete bipartite connection. Therefore, ToR switch
can be connected to the core switch layer even if there is
only one working aggregation switch in the same POD. (53)
activates at least one aggregation switch if ToR switches are
activated in the same POD.

k

2

k/2∑
j=1

Hij ToRmn ≤ Tmn,∀i (54)

If a host is turned on and is connected to Tmn ToR switch,
Tmn should be turned on as well. Since Tmn is a binary
variable, the right hand side should not exceed 1. So, we
divide the number of turned on hosts by 2/k in order to
make the upper bound of summation equal to 1.

6 SIMULATED ANNEALING ALGORITHM

The optimization problem includes binary variables and
integer variables in the objective function and constraints.
The binary variables decide the state of switches and hosts
and the integer variables decide the number of working
memory modules in each switch and host. As we include
integer variables in the problem, this optimization becomes



10

NP-hard. When we consider a small size data center, the
optimization problem can be solved in a reasonable time.
However, data centers usually include a large number of
servers and switches. In such cases, it will take a long time
to solve. Therefore, we will use the Simulated Annealing al-
gorithm which, is a popular randomized heuristic algorithm
that can find a near optimal solution in a reasonable time.

Algorithm 1 Simulated Annealing Algorithm
Require: SHij ToRmn

, STij , SAij , SCij , λ, β, iteration
Ensure: Pminimum, λHij ToRmn , λTij , λAij , λCij
1: We generate initial allocation to hosts λHij ToRmn depends on

service rate of hosts
2: Decide ToR, aggregation and core switches based on allocation into

hosts.
3: λTij , λAij , λCij=Switch(λhij ToRmn )
4: Pminimum=Cal power(λhij ToRmn , λTij , λAij , λCij )
5: while t≤ iteration do
6: Search neighbor allocation λ

′
hij ToRmn

7: λ
′
Tij

, λ
′
Aij

, λ
′
Cij

=Switch(λ
′
Hij ToRmn

)

8: Pcandidate = Cal power(λ
′
Hij ToRmn

, λ
′
Tij

, λ
′
Aij

, λ
′
Cij

)

9: r←rand()

10: if Pcandidate < Pminimum or e
pminimum−pcandidate

β > r then
11: λHij ToRmn ← λ

′
Hij ToRmn

12: λTij ← λ
′
Tij

13: λAij ← λ
′
Aij

14: λCij ← λ
′
Cij

15: Pminimum ← Pcandidate

16: t++, β ← β · α
17: else
18: t++, β ← β · α
19: end if
20: end while
21: OUTPUT: Pminimum, λHij ToRmn , λTij , λAij , λCij

The algorithm requires input parameters: the
service rates (jobs/sec) of hosts and switches
(SHij ToRmn , STij , SAij , SCij ), total incoming jobs into
the data center (λ), parameter β that has a value between
0 to 1, and the maximum number of iterations, iteration.
We generate the initial allocation of λ into hosts while
guaranteeing the latency constraint and capacity (line 1).
The latency goes to infinity when the allocation to hosts is
close to service rates. Therefore, we decide the allocation
rates that do not violate the latency constraint and let the
allocation of jobs not exceed that ratio. After we decide
the initial allocation to hosts, we can determine which
switches will be needed to operate the data center properly.
So then the Switch() function finds which switches are
required and how many jobs can be allocated to switches
based on the assignment result of hosts (line 3). After we
decide the allocation of jobs over the entire data center,
we calculate the power consumption of the data center
based on the result of allocations (line 4). Then we set that
solution and the power as a candidate solution. We start
finding neighbor solutions in lines 5 to 20. We find the
neighbor solution of job allocation into hosts (line 6). In
the same method, we can find which switches are required
to be activated to reach working hosts. So, we turn on the
required switches by using Switch() function (line 7). Then,
we can calculate the power consumption of a neighbor
solution in line 8. If the power consumption of the neighbor
solution is less than the power consumption of candidate
solution, we replace the candidate solution with the

neighbor solution. We also replace candidate solutions with
neighbor solutions with some probability to avoid isolation
of solution. A random number r is generated between 0 and
1. If epminimum−pcandidate/β is greater than random number
r, we replace candidate solution with the neighbor solution
even if power consumption of neighbor solution is greater
than power consumption of candidate solution (line 10 -
line 15). In every iteration, β is multiplied by α, which has
a value less than 1, to decrease the β in every iteration (line
16 and line 18). The algorithm repeatedly finds neighbor
solutions for t iterations. Then, the candidate solution will
become a near optimal solution of the problem.

7 EXPERIMENTS

7.1 Google Cluster Data
The experiments reported in this section are implemented
using Google cluster-usage traces data [20]. Google cluster
is a set of computing resources composed of thousands of
machines. A job is composed of several tasks which can be
processed separately. So each task will be a unit processing.
We consider the number of task arrivals. Each task has a
time-stamp which represents when the task arrives at the
cluster. Therefore, the distribution of the number of task ar-
rivals can be observed by using the time-stamp. The cluster
starts measurement 600 seconds after the system is operated
and has accumulated data for one month approximately.
We select a random point to collect data for the prediction
model. One week data is sampled as a training data set
for the prediction modeling and the following week data
is employed to test the accuracy of the prediction model.

7.2 Request Prediction
7.2.1 Time Dependent Parameter Prediction
Predicted parameters are obtained from the accumulated
data within blocks of 30 minutes each. Based on our ob-
servation of Google cluster data, the data is fitted to a
Poisson distribution with parameter λ which is evaluated
using the data in every predetermined period, values of λ
are then saved in prediction the data set. Parameter values
are stacked in data set for the several periods. Therefore, it is
possible to estimate the parameter values in future periods
more accurately as we accumulate more data. Following
parameter values are achieved by implementing LLR over
corresponding UP . For example, if we implement LLR over
UP including the 1st to the 10th TP s, the last point value of
LLR function becomes the prediction value of the eleventh
TP . The prediction values change depending on the UP we
set or bandwidth value that we use for LLR.

Fig. 5 represents the prediction of Poisson distribution
parameter λ of arriving tasks during a week. Since we set
the TP to 30 minutes, we have 336 target periods during
the week. Blue points represent parameter values of training
data set in each TP and green points are parameter values
of test data set in each TP . Solid lines represent parameter
prediction values for different values of bandwidth. We set
the UP to 25 hours in Fig. 5, which means that predic-
tion value is obtained based on the last 25th hours data.
Parameter λ is equivalent to mean the number of arrivals
during 30 minutes. We can observe that the graph has a
regularly repeated pattern. It has seven high peaks in the
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Figure 5: Poisson distribution parameter λ estimation of
arrival tasks

graph, which means similar patterns repeated during the
week.

7.2.2 Error Assessment

In order to quantify the accuracy of prediction, we measure
Mean Absolute Percentage Error (MAPE) between predic-
tion model and test data set. MAPE is a measurement of
the accuracy of prediction for constructing fitted time series
value. MAPE expresses error rate as the percentage.

MAPE =
1

n

n∑
j=1

|Pj − Tj |
Tj

(55)

Pj is the predicted value of the actual target value Tj .
MAPE value is equal to zero when the prediction model is a
perfect fit to target value and increased when the prediction
is not properly fitted to target values.

Figure 6: MAPE measurement of arrival tasks prediction
Fig. 6 is the MAPE measurement graph of the Poisson

distribution parameter λ. Poisson distribution parameter λ
has MAPE value between 38.84% and 52.49% in Fig. 6.
The prediction model could achieve higher accuracy with
longer UP , which is equivalent to the window size, because
increasing the UP means employing more data from history

for prediction. However, the large UP requires the more
complex computation. In other words, proper selection of
utilization period is required to satisfy both prediction ac-
curacy and calculation time. Choosing the best bandwidth
value is also an important issue in order to reduce prediction
error. Too small bandwidth causes very spiky estimates
while large bandwidth leads to over-smoothing. If data
values are spread widely, smaller bandwidth will not result
in higher prediction accuracy. In contrast, the regression
achieves higher accuracy with small bandwidth if data
values are compacted. Fig. 6 shows higher accuracy with
the increase in bandwidth because parameter data points
are more spread as we can see in Fig. 5.

Figure 7: NMSE comparison
The proposed prediction algorithm is compared with

the fractal differential equation modeling based prediction
method proposed in [21]. The Mean Square Error (MSE) of
the proposed algorithm and comparison prediction model
is measured for CPU and memory requests and normalized
by baseline prediction algorithm. The auto-regressive pre-
dictor is used for baseline model by employing 16 previous
time slot values, which is equivalent to using 16 UP in
the proposed algorithm. In memory request prediction, the
proposed model achieves 25% reduction MSE compare to
the fractional modeling based predictor and 84% reduced
MSE than the auto-regressive predictor. In CPU request pre-
diction, the proposed algorithm shows a slightly enhanced
prediction accuracy than fractal modeling based predictor,
3% reduced MSE but it achieves 75% MSE reduction com-
pared to the baseline prediction model.

7.3 Adaptive Data Center Activation

The optimization problem is solved using CPLEX for small
data centers and also using the Simulated Annealing algo-
rithm implemented in C. We consider heterogeneous envi-
ronment data centers having different service rates of hosts.
However, all switches have the same performance in each
layer. We set the parameters of the model as shown in Table
1.

Power consumption parameters of switches are esti-
mated with practical power consumption of data center
switch, HP Altoline 6712 Switch Series [22]. Since core



12Table 1: Value of key parameters

Variables Values

P static
Cij

, P static
Aij

, P static
Tij

100W, 50W, 50W

P dynamic
Cij

, P dynamic
Aij

, P dynamic
Tij

300W, 150W, 150W

P static
Hij ToRmn

[30, 50, 70, 90]W

P dynamic
Hij ToRmn

[100, 150, 200, 250]W

P port
Cij

, P port
Aij

, P port
Tij

0.0005W/job

Pmemory
Cij

, Pmemory
Aij

, Pmemory
Tij

,
Pmemory
Hij ToRmn

25W

switches implement path calculation and management as
control plane, they consume more energy than aggregation
and ToR switches in the data plane. Switches in the data
plane are set to consume half energy consumed by core
switches. Hosts have different activation power parameters
proportional to their service rate. Our model includes four
types of hosts, and therefore hosts have four levels of
activation power consumption depending on their service
rates with high performance hosts consuming more power.
Identical hosts are allocated to the same POD. Thus, hosts
heterogeneity will be across PODs.

The size of requests are randomly generated by normal
distribution with µ=20MB. All switches have two 512MB
memory modules and hosts have two 1GB memory mod-
ules. The latency constraint of each switch is set to 1µs based
on the reference switch data sheet and the latency constraint
of hosts is set to 1ms to satisfy the QoS of data center.

The service rate of a core switches are set to 1000 tasks
per unit time, and aggregation and ToR switch have the
ability to handle 5000 tasks per a unit time. Since we
predict the traffic distribution every 30 minutes and decide
system activation states, a unit time is 30 minutes in our
simulation. Hosts have 80, 100, 120, and 140 service rates
(jobs/sec) which are corresponding processing speed be-
tween 1.6 GHz, lower performance host, to 2.4 GHz, high
performance host. Data plane switches, aggregation and
ToR switches, have higher service rate than control plane
switch,core switches, because they just work for forwarding
tasks.

Since the problem is NP-hard, we could not obtain
the optimal solution for large size data centers. Optimal
solutions only when k is equal to 4 were obtained within
a reasonable time using CPLEX. However, the computa-
tion time of the problem increased significantly when we
increase the size of te data center to k that is greater than 8.

Therefore, we employ Simulated Annealing to obtain a
near optimal solution of the problem. The algorithm uses
1000 iterations, β is set to 1, and α is 0.9 in Algorithm 1.

Fig. 8 compares the solution of the optimal solution
and heuristic solutions when k is equal to 8. Since the
computation time of the problem is unrealistic, we compare
the upper and lower bounds of the optimal solution when
the gap is around 6%. It has taken around 1300 seconds until
we reached the 6% gap and could not get to less than 6% gap
even after 3 hours of computation. Data center utilization
rate exhibits the incoming rate of tasks compared to max-
imum service rate capacity of data centers. For stability of
data centers, the incoming rate cannot exceed the maximum
service capacity of the data center. The Simulated Annealing

Figure 8: Optimal and heuristic solution comparison

solution has around 10% difference with the upper bound
and 15% difference with the lower bound.

Figure 9: Power saving rate with Simulated Annealing
algorithm

Fig. 9 shows how much energy we can save with our
model. The power saving rate is calculated by comparing
the energy consumption of the heuristic solution and full
operation power consumption of data center when the data
center operates every switch and host. We measure how
much energy we can save depending on the utilization
rate and the size of the data center. As the utilization rate
increases, the power saving rate is decreased because we
cannot turn off many switches and hosts to guarantee the
performance of the data center. Also, we can observe that
the power saving rate is increased when the size of data
center increases.

The predicted Poisson distribution parameters which are
obtained in Fig. 5 are employed as the input to the data
center in Fig. 10. The predicted parameters include 336
prediction points during a week. So each point corresponds
to Poisson distribution parameter for 30 minutes. We have
made a modification in the data center parameter in order
to make it close to Google cluster environment. The port
number k is set to 24, and therefore the data center has 24
core switches, 48 ToR and Aggregation switches, and 3456
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Figure 10: Power saving rate with Simulated Annealing
algorithm for different bandwidth values

hosts. Energy consumption and latency parameters are the
same as in Table 1 and service rates of switches and hosts
are assumed as the same condition.

Figure 11: Power saving rate comparison between
predicted and measured user requests

The first graph in Fig. 10 presents predicted parameters
during a week and the second graph shows how power
saving rate is changed depends on λ in every 30 minutes. In
Fig. 10, we can observe the data center power saving rate is
decreased when the number of arriving tasks increases and
it increases when the data center receives fewer requests.
The algorithm saves average 47.7 to 48.2% operation energy
compared to the full operation state depending on the
bandwidth.

Fig. 11 shows the difference between actual parameters
and predicted parameters. The prediction model makes
accurate prediction generally. However, we can observe the
prediction model has a weakness in predicting traffic bursts.
If the number of requests soars in a short time, the prediction
model could not follow that variation. Power saving rate
of the data center model also presents the similar pat-
terns. However, the data center activation model activates

switches and hosts by forecasting the high probability traffic
of given probability distribution. For example, the α is set to
0.95 in (22), (28), and (38) in the experiment. Therefore, the
data center could cover in some degree of traffic burst.

Figure 12: Power saving rate comparison with LCP
algorithm

Power saving rates of proposed dynamic data center ac-
tivation mode algorithm are compared with Lazy Capacity
Provisioning (LCP) algorithm proposed in [40]. The LCP
algorithm decides the optimal number of activated servers
by considering operating cost and transition cost, the cost of
server on-off transition. Since the LCP algorithm has been
developed for homogeneous server condition and does not
affect to activation of switch layer, we modified our simu-
lation model to a homogeneous data center. Heterogeneous
server service rates are replaced by a unique service rate and
power consumption of servers are set to a single value but
the total capacity of the homogeneous data center is set to
same as the heterogeneous data center model. Since the LCP
algorithm does not control the activation of switch layer, all
switches are activated if at least one server is activated in
the same POD but switches are deactivated if none of the
servers are activated in the same POD. In Fig. 12, power sav-
ing rate of the proposed algorithm and the LCP algorithm
are compared. The proposed algorithm saves an average of
9.1% more power compared to the LCP algorithm. Also,
we can observe that the LCP algorithm does not perform
well for traffic burst. During the time slot between 5 to
25, we can observe that the data center utilization rates
vary a lot. Since the LCP algorithm minimizes operation
cost and transition cost, the data center tries to keep the
current state of activated servers. Since the traffic burst
is a common situation in cloud computing environments,
considering transition cost is not the appropriate model for
power saving purposes.

8 CONCLUSIONS

This paper proposed adaptive data center activation model
with request prediction algorithm. With accurate prediction
model, the data center could save the energy in the more
efficient way. The prediction model exhibits accurate pre-
diction compared to another prediction algorithms and the
adaptive activation model presents flexible energy saving
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rate depending on incoming rates of requests. When the
model is tested with predicted data based on real data,
we could save 30 to 50 percent of energy compared to full
operation environment.
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