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Abstract—Network resource virtualization emerged as the
future of communication technology recently, and the advent of
Software Define Network (SDN) and Network Function Virtual-
ization (NFV) enables the realization of network resource virtu-
alization. NFV virtualizes traditional physical middle-boxes that
implement specific network functions. Since multiple network
functions can be virtualized in a single server or data center,
the network operator can save Capital Expenditure (CAPEX)
and Operational Expenditure (OPEX) through NFV. Since each
customer demands different types of VNFs with various ap-
plications, the service requirements are different for all VNFs.
Therefore, allocating multiple Virtual Network Functions(VNFs)
to limited network resource requires efficient resource allocation.
We propose an efficient resource allocation strategy of VNFs
in a single server by employing mixed queuing network model
while minimizing the customers’ waiting time in the system.
The problem is formulated as a convex problem. However, this
problem is impossible to be solved because of the closed queuing
network calculation. So we use an approximation algorithm
to solve this problem. Numerical results of this model show
performance metrics of mixed queuing network. Also, we could
find that the approximate algorithm has a close optimal solution
by comparing them with neighbor solutions.

I. INTRODUCTION

In traditional network infrastructure, network functions are
implemented by hardware based physical middle box. In Net-
work Function Virtualization (NFV) infrastructure, multiple
network functions are assigned to servers or data centers as
software based virtual machines. Virtualized Network Func-
tions (VNFs) have logical connections between them and
process user requests depending on service chain. The service
chain represents sets of VNFs that should be applied to
customers’ requests. For example, some user requests need
to be processed in Firewall, QoS, and WAN opt network
functions and some other users will request Firewall, QoS,
DDos, Rate limiter network functions. So if we have multiple
VNFs in the server, the flows decide which sets of VNFs
should be mapped. Since hardware-based physical boxes are
substituted to software-based virtual machines, NFV decreases
Capital Expenditure (CAPEX) and Operation Expenditure
(OPEX) and makes it possible to configure much more flexible
network architectures. At the same time, the efficient resource
allocation to VNFs is important. Since VNFs receive different
requests from customers depending on service chains, it is
important to allocate appropriate resource to VNFs. We pro-
pose a resource allocation strategy to VNFs in a single server
environment. VNFs will be allocated to a single server and our
strategy determines the efficient resource to VNFs depending
on receiving workload of VNFs.

We employ BCMP mixed queuing network model to an-
alyze the system performance. Arrival rates to VNFs will
be assumed as multi-classes Poisson arrival. Each VNF is
modeled as a queue. The connectivity of VNFs are considered
as mixed queuing network model including multiple open
chains and closed chains. Our purpose is minimizing the
expected waiting time of service chains. VNFs’ routing prob-
abilities to other network functions are assumed to be known
based on the history data and will be learned periodically.
In order to minimize the maximum expected waiting time of
service chains, we formulate the problem as a convex problem
with capacity constraints. The optimal service rates will be
assigned to each VNFs to minimize the maximum expected
waiting time of service chains while guaranteeing the capacity
constraints.

In order to calculate the expected waiting time of mixed
queuing network, Mean value Analysis (MVA) technique
will be employed. However, it is impossible to solve the
optimization problem because the closed queuing network
calculation. The mean value computation of closed network,
expected queuing length, expected waiting time, and expected
throughput, requires recursive algorithm from the empty state
of network. Also, the service rate of the stations are required
to be given when we start the computation. The service rate
is unknown decision variable and our purpose is minimizing
the expected waiting time of service chain through optimal
service rate allocation. So it is not possible to solve the
optimization problem in traditional approach. So we propose
the algorithm that allocates efficient service rates to VNFs by
using approximation approach.

This paper is the first paper studied NFV resource allocation
by using queuing network model. Also, the resource allocation
in mixed queuing network is not studied before in our knowl-
edge. The rest of this paper is organized as follows. Section II
introduces related work on NFV and queuing network models.
The system model is described in Section III and the problem
formulation will be discussed in Section IV. In order to solve
the optimization problem, the approximation algorithm will be
described in Section V. The numerical analysis of the system
will be presented in Section VI and we will end this paper
with conclusions in Section VII.

II. RELATED WORK

The VNF placement problem has been studied widely
because of its influence on system cost and efficiency. A VNF
placement model is proposed by applying NFV and SDN to



LTE mobile core gateways in [4]. They minimized transport
network load overhead while satisfying the data-plane delay
budget.

In [5], virtual Deep Pack Inspection (vDPI) function place-
ment problem is studied. Mathieu Bouet et al. formulate the
problem as an Integer Linear Program (ILP) and minimize the
costs.

Sevil Mehraghdam et al. suggested a model formalizing the
chaining of VNFs using a context-free language and proposed
a mapping scheme to the network by using Mixed Integer
Quadratically Constrained Program (MIQCP) for finding the
optimal placement in [6].

VNF placement problem is also studied in the data cen-
ter and clouds environment. Ming Xia et al. identified the
possibility of minimizing expensive optical/electronic/optical
conversions for NFV chaining in data centers. They formulated
the problem of optimal VNF placement as a Binary Integer
Program (BIP) and proposed a heuristic approach to solve the
problem in [7].

Queuing network model is studied by many researchers.
However, the resource allocation problem in queuing network
models has not been studied well enough. Optimal server
resource allocation problem is presented in [8] only for open
queuing network model. Alex Zhang et al. suggested nonlin-
ear integer programming model for determining the number
of machines in multi-tier server network. They used an open
queuing network model average response time to minimize the
total number of machines while satisfying the average response
time of open queuing network.

The service rate allocation problem is studied in [9] by Onno
J. Boxma. He described the model that allocates the optimal
service rate in Jackson networks and provided closed form
expression for optimal service rate allocation to all stations in
the network.

III. SYSTEM MODEL

We employ OpenNF controller model proposed in [3].
OpenNF is composed of two layers: flow manger and NFV
state manager as we can see in Figure 1. The NFV state
manager continuously monitors the state of VNFs and report
their states to the flow manager. Then the flow manager sends
VNFs status information to SDN switch so that the SDN
switches determine flow controls to VNFs. VNFs are allocated
to the single server and a hypervisor allocates resources to
VNFs depending on their routing and processing status. Since
NFV state manager monitors the status of VNFs continuously,
the NFV state manger and VNFs generate closed network
per service chain. The NFV state manage generates a signal
that keep going around VNFs in the same service chain and
report VNFs status to NFV state manager. The number of jobs
in closed networks are determined depending on how many
VNFs are related to service chain and how many classes are
related to each VNF. Multiple closed networks can exist on
the server depending on service provider’s needs and policy.

After receiving monitoring result from the NFV state man-
ager, flow manager sends monitoring results to SDN switches.
Then, SDN switches determine the flow control to VNFs.

All incoming and departing flows of VNFs are influenced
by SDN switches. SDN switches control the arriving flows
to VNFs depending on their status and forward flows to all
VNFs included in the related service chain of flows. Then,
all flows depart the server through the SDN switches after
finishing the process in all required VNFs. Therefore, VNFs
form open network with SDN switches per service chain to
receive incoming flows and send out the departing flows.

Figure 1. System model

The purpose of this paper is to minimize the maximum
expected waiting time of service chains in the single server
by assigning optimal service rates to VNFs. Each VNF has
different routing probability between VNFs, visiting ratio, and
incoming rates by open networks. Some VNFs receive high
traffic requests from the SDN switch. On the other hand,
some VNFs will not receive frequent requests from users.
Thus, it would not be best to assign equal service rates to all
virtual network functions. We measure the routing probability
or inter-connectivity between network functions continuously
and decide the optimal service rates of VNFs.

IV. PROBLEM FORMULATION

Table 1 shows the notations used in the following formula-
tions.

A. BCMP Mixed Queuing Network Model

We consider a BCMP mixed queuing network model com-
posed of multi-class jobs and multiple stations, VNFs.

The BCMP queuing network contains a finite number, V,
of stations having different disciplines: the First-Come First-
Served (FCFS), Processor Sharing (PS), Infinite Servers (IS),
and Last-Come First-Served (LCFS). FCFS type stations have
a negative exponential service time distribution and others can
have a general service time distribution. The only restriction
of other disciplines is that the service time distribution should
have a rational Laplace transform. The service rate of each
station is expressed as the average amount of work completed
per time unit.

Open class jobs are incoming traffic to the server that runs
VNFs. The classes are classified based on types of the service
chain. Each service chain requires different levels of Service
Level Agreement (SLA). The delay sensitive applications like
video streaming or voice call require higher levels of SLA.
On the other hand, delay tolerant applications have relatively
lower levels of SLA. Thus, each class of open network has



Table I
NOTATIONS

NS Population vector of classes
NC Station population vector of closed classes
NO Station population vector of open classes

sic
Average amount of loads brought by class c jobs
to station i (per visit).

µi
Service rate of VNF i. Average amount of work
completed per unit time.

Ci The inverse of service rate of station i (1/µi).

Ei(n)

Auxiliary function for the calculation of the ef-
fective capacity of mixed station i. Ei(n) =

1

(1−LoCi)
n+1

LOi Load brought to station i by open class jobs.
Xic(N) Throughput of class c jobs at station i.

PCi(NC , NS) Marginal length distribution of closed classes.
POi(NO, NS) Marginal length distribution of open classes.

nic
Expected queuing length of closed class c in
station i.

niC
Expected queuing length of closed classes in sta-
tion i.

nio
Expected queuing length of open class o in station
i.

wic
Expected waiting time of closed class c in station
i.

wio
Expected waiting time of open class o in station
i.

P NFV policy matrix.

a different average amount of work brought by a single job
and it will be considered when we analyze the open networks.
Closed networks correspond to monitoring states of VNFs as
in Figure 1. Closed networks are as many as the number of
service chains.

We employ Mean Value Analysis (MVA) technique to
analyze the characteristics of the queuing networks. MVA is
an efficient method to analyze the product form expressed
queuing network model. MVA employs the mean value equa-
tion augmented by Little’s law. MVA has a significant merit
in terms of computational cost compared to other product
form queuing network model analysis methods such as joint
distribution analysis or convolution algorithm.

Let C denote the set of closed classes, O denote the set
of open classes, and M denote the number of service chains,
O = {1, 2, . . . ,M}, C = {M + 1,M + 2, . . . , 2M}. Since
classes are generated as many as service chains for open
and closed classes, O and C have the same number of
elements. Let NS = [N1, N2, . . . , NM , NM+1, . . . , N2M ] be
the population vector of each class in the system. The state
NM is a vector including the possible distribution of jobs over
the VNFs, NM = [NM1, NM2, . . . , NMV ]. V stands for the
number of VNFs in the server. The number of jobs in closed
queue is fixed at a certain time point and the number of jobs
in an open class denotes the upper bound for the population
of jobs.

The marginal length distribution of closed network is de-
scribed as (3) in [1].

PCi(NC , NS) =∑
c⊆C

sicCi
Ei(nc)

Ei(nc − 1)
Xic(Ns)PCi(nc − 1, Ns − 1) (1)

The marginal distribution of closed queue is a recursive
equation that is defined in terms of PCi(nc − 1, NS − 1).
Therefore, the marginal distribution of closed network can be
calculated by using a recursive algorithm starting from the
empty space of the closed network.

We can obtain the expected number of jobs of closed class
by using the following equation.

nic(NS) =

NC∑
nc=1

ncPCi(nc, NS)

=sicXic(NS)

NC∑
nc=1

ncCi
Ei(nc)

Ei(nc − 1)
PCi(nc − 1, Ns − 1),∀c ⊆ C

(2)

We substitute Ci
Ei(NC)
Ei(NC−1) by ECi which defined as ECi =

Ci

1−LOiCi
in [1]. By using Little’s law, the expected waiting

time in a closed network can be calculated by:

wic(NS) =
nic(NS)

Xic(NS)

=sicECi

NC∑
nc=1

ncPCi(nc − 1, NS − 1),∀c ⊆ C

(3)

We rewrite (3) as,

wic(NS) =sicECi

NC∑
nc=1

(1 + nc − 1)PCi(nc − 1, NS − 1)

=sicECi[

Nc∑
nc=1

PCi(nc − 1, NS − 1)

+

Nc∑
nc=1

(nc − 1)PCi(nc − 1, NS − 1)]

=sicECi(1 + nic(NS − 1c)),∀c ⊆ C
(4)

NS−1c represents the state that one closed class job is reduced
from the state NS . (4) shows that the expected waiting time
of closed class c is affected by the state NS − 1c.

The marginal queuing length distribution of open network
is described in [1].

POi(NO, NS) =NO!Πo⊆O
(λiosio)

NO

NO

NC∑
nc=0

(
nc + no
nc

)

Πnc+no
j=nc+1Ci[Ei(nc)]

−1PCi(nc, NS)

(5)

(5) includes the marginal distribution of closed network,
which means that the marginal distribution of open network
is affected by the marginal distribution of closed network.
Therefore the distribution of open network can be calculated
after we obtain the marginal distribution of closed network in
the state of NC . The expected number of jobs in open network



can be described by using (5) as described in [1].

nio(NS) =

∞∑
no=1

noPOi(no, NS)

=λiosio

NC∑
nc=0

(nc + 1)ECiPCi(nc, NS),∀o ⊆ O

(6)

From Little’s law, the expected waiting time of open network
can be calculated like below:

wio(NS) =sioECi

NC∑
nc=0

(nc + 1)PCi(nc, NS)

=sioECi(1 + niC(NS)),∀o ⊆ O

(7)

So the expected waiting time of open network can be described
based on the expected length of closed network at state NS .

B. Optimal Service Rate Allocation

The purpose of this paper is minimizing the maximum
expected waiting time of service chains in the limited resource.
Each service chain includes different types and number of
VNFs. Therefore, minimizing the maximum expected time of
service chains will guarantee the SLA of NFV.

VNFs receive different numbers of requests depending
on service chain types and routing probability. In order to
minimize the expected waiting time of a service chain, more
resources will be allocated to VNFs with relatively heavy
traffic. We consider resource allocation in a single server. The
resource allocation can be easily managed by the hypervisor
depending on VNF requirements.

We assume a policy matrix P , which is a M × V matrix
that shows policies of each service chain. Each row represents
the policy of service chains and each column corresponding
to VNFs. If Pij = 1, ith service chain needs to be processed
in jth VNF. The convex optimization problem to minimize
the maximum expected waiting time service chains can be
formulated like below. Since P is M × V matrix and ~w is
V × 1 vector, P ~w gives M × 1 vectors which is equal to
the expected waiting time of each service chain. Thus, the
maximum of the vector will give the maximum expected time
of service chains.
Minimizeµi

maxM (P ~w)1×M

Subject to

C1 :
∑
i⊆V

µi ≤ C

C2 : µi ≥
∑
o⊆O

sioλio +
∑
c⊆C

sicnic(NS),∀i

C denotes the total capacity of the server. The total service
rates allocated to VNFs cannot exceed the total capacity of
the server in C1. C2 represents the minimum service rate of
VNF i. For the stability of the system, the minimum service
rates of each VNF should be greater than open and closed
classes job requests. ~w is the vector that denotes the expected

waiting time of each VNF including open and closed networks,
~w = (w1, w2, . . . , wV ) .

−→wi =
∑

j⊆O∪C

wij(NS) (8)

wic(NS) and wio(NS) are defined in (4) and (7). wic(NS)
includes nic(NS − 1c), the expected number of jobs in closed
network at NS − 1c state, and wio(NS) includes nic(NS)
the expected number of jobs in closed queue at NS state.
However, calculating the expected number of jobs in closed
queue requires recursive computation starting from the empty
state of closed queue as mentioned in the previous section. The
expected queuing length calculation in closed network requires
the knowledge of service rate of VNFs. In other words, the
minimization of waiting time through service rate allocation
cannot be accomplished because we cannot calculate the
expected waiting time of closed network without knowledge
of service rates, decision variables, of service stations, VNFs.
So we employ the Schweitzer Core algorithm described in [2].
The Schweitzer Core algorithm estimates the expected queuing
length of closed network by using a iterative algorithm. The
detailed process of the algorithm will be explained in section
V.

The convexity of the problem can be simply proved. The
objective function is a linear combination of wic(NS) and
wio(NS) for arbitrary c and i depending on service policy. If
we can prove that the individual terms wic(NS) and wio(NS)
are convex, the objective function is a convex function.
nic(NS) and nic(NS − 1c) will be estimated as a constant by
the Schweitzer Core algorithm. Equation (5) can be expressed
as:

wic(NS) =sic
Ci

1− LOi
Ci

(1 + nic(NS − 1c))

=
sic

µi − LOi

(1 + nic(NS − 1c))
(9)

If we find the second derivative of wic(NS), ∂2wic(NS)
∂µ2

i
, we

can obtain the equation below.

∂2wic(NS)

∂µ2
i

=
2sic

(µi − LOi
)3

(1 + nic(NS − 1c)) (10)

For the convexity condition, ∂2wic(NS)
∂µ2

i
≥ 0, µ − LOi

should
be greater than zero. The constraint C2 restricts the minimum
service rates VNFs. C2 includes the requirements of open and
closed networks, so the convexity condition is satisfied with
C2. Using the same approach, the convexity condition for open
classes, ∂2wio(NS)

∂µ2
i

≥ 0, are satisfied for all VNFs. Constraint
C1 is a linear combination of µi. The Right Hand Side (RHS)
of C2 is constant. Thus, the problem is convex problem.

V. HEURISTIC ALGORITHM FOR THE MIXED QUEUING
NETWORKS MODEL

A. The Schweitzer Core Algorithm

The heuristic algorithm is suggested because the MVA
algorithm requires a complete solution for all population in the



closed network. For example, if we assume there are NC jobs
in a closed class, the MVA algorithm requires the complete
solution for all possible populations from (0, 0, . . . , 0) to NC
about all stations, VNFs. This process demands high level
of computation and storage complexity. The Schweitzer Core
algorithm approximates the expected number of jobs in the
closed network based on an iterative approximation technique.

Initial distribution of jobs is approximated by distributing
jobs uniformly to related stations, (11). Since classes denote
the service chains in our model, the population of closed
classes will be uniformly distributed to associated VNFs
depending on service chain policy.

nik(NS) =
Nk∑

j⊆V P (k, j)
I(P (k, i)),∀k ⊆ C, i ⊆ V (11)

I(P (c, i)) is an indicator function, which is 0 when
P (c, i) = 0 and 1 when P (c, i)=1 for all c and i.

The population of NS − 1c, one c class job is reduced
from NS state, state is estimated proportional to the NS
state population vector in [2], where NC is the population
distribution state of closed network. When one c class job is
reduced from NS , the expected queuing length of other classes
are not changed from NS state in the first equation of (12).
However, the expected queuing length of c class job is reduced
proportional to the c class job, Nc from NS state in the second
equation of (12).

nik(NS − 1c) =


nik(NS) for k 6= c, k ⊆ C

Nc−1
Nc

nik(NS) for k = c, k ⊆ C
(12)

Since nic(NC) is approximated from (11), nic(NC − 1c)
also can be estimated through (12). After obtaining nic(NC −
1c), we calculate more exact expected queuing length by using
(2) and (4), (nic(NS) → nic(NS − 1c) → nic(NS)). Then,
we repeat this iteration until the queuing length difference
between sequential iterations converges. The Core Schweitzer
algorithm is described in Algorithm 1. nic(NS) is approxi-

Algorithm 1 The Core Schweitzer Algorithm
1: INPUT: Closed classes c, the number of VNFs V, Nc for

all classes c, nic(NS) for each VNF, siC , and ECi
2: Initialize iteration t to 1.
3: Step1. Compute approximate nic(NS − 1c) from (12) ∀c.
4: Step2. Compute approximate nic(NS) by using (3), (4),

and nic(NS − 1c) ∀k.
5: if max∀i,c (nik(NS)t−nic(NS)t−1)

NS
≥ 1

(4000+16|NS |) then
6: Superscript t designates iteration, then set t = t+1 and

goto step 1.
7: else
8: Go to final step.
9: Increase t to t+1.

10: end if
11: Final Step. Compute throughput estimates xiC(NS).
12: Output: nic(NS), xic(NS), wic(NS), ∀c ⊆ C

mated by using (11), which means that the number of jobs
in closed queue are uniformly distributed to related service
chains. Thus, we can compute the number of jobs in closed
queue of nic(NS−1c) state by using (12) (line 3). Then more
accurate expected queuing length of nic(NS) state is computed
again by using (3), (4), and Little’s law (line 4). If the expected
queuing length difference between t and t + 1 iterations are
greater than the evaluation factor, we increase the iteration t
to t + 1 and go back to step 1. If the termination condition
is satisfied, we finish the algorithm and compute the expected
queuing length, throughput, and waiting time of the closed
networks of NS state (line 5 - line 11).

B. Approximate Optimal Service Rates Allocation in Mixed
Queuing Network

The optimization problem could not be solved because it
includes nic(NS) and nic(NS − 1c). Since two terms can be
obtained through recursive algorithm which requires service
rates of VNFs, unknown decision variables, it has not been
possible to solve the optimization problem.

We employ the initial estimation of the Schweitzer Core
algorithm to estimate the expected queuing length of nic(NS−
1c) and nic(NS) states. nic(NS) is estimated by (11) and
nic(NS − 1c) will be obtained by (12) with the estimated
value of nic(NS). By substituting nic(NS) and nic(NS − 1c)
in (4) and (7), the optimization problem can be solved from
approximate mean queuing length of closed classes.

We propose Algorithm 2 that computes the approximate
optimal service rate allocation in mixed queuing networks. In
step 1, the approximate expected queuing length of NS and
NS−1c states are obtained in closed classes network by using
(12) and (11). Iteration value k is set to 1 (line 2 - line 5).
Since the nic(NS) and nic(NS − 1c) are estimated by (12)
and (11), we can solve the convex optimization problem that
finds optimal service rate allocation by substituting nic(NS)
and nic(NS − 1c) in (4) and (7) in step 2 (line 6 - line 9).
By using optimally allocated service rates, we can compute
more exact expected queuing length by using the Schweitzer
Core Algorithm. Improved expected queuing lengths nic(NS)
and nic(NS − 1c) are obtained through the Schweitzer Core
Algorithm with inputs: nic(NS) and nic(NS−1c), and (C∗i )k
in step 3 (line 10 - line 13). The optimization problem is
initially solved with approximate expected queuing length.
Therefore, the resource allocation in kth iteration is not
optimal allocation of k+ 1th expected queuing length. In step
4, we solve the convex optimization problem with k + 1th
iteration’s expected queuing length and obtain new optimal
service rate allocation, (C∗i )k+1. Since the service rate is
changed, the expected queue length of networks will be
changed as well. So the algorithm goes back to step 3 and
repeat the calculation of the expected queuing length and
solving optimization problem (line 14 - line 17). We repeat
this process until k reaches kmax iterations (line 18 - line 23).
In our experiments, this algorithm could achieve convergence
within 10 iterations. After finishing the algorithm, we select
the optimal service rate allocation of iteration k which has
the minimum expected waiting time of service chains through
all iterations. The complexity of algorithm can be calculated



Algorithm 2 Service Rate Allocation Algorithm in Mixed
Queuing Network

1: INPUT: sio, sic, LOi, NC , kmax.
2: Step1:
3: Initialize k=1.
4: Obtain approximate expected queuing length of closed

classes, nic(NS)k by using (11) in NS state ∀ c, i.
5: Compute approximate expected queuing length of

closed classes NS − 1c state, nic(NS − 1c)k by using
(12), ∀ c, i,.

6: Step2:
7: Substitute nic(NS)k and nic(NS − 1c)k in (4) and (7)

and solve the optimization problem.
8: Optimal service allocations, (C∗i )k, are obtained for all

VNFs.
9: Compute the maximum expected waiting time of

service chains, max(C∗
i )k

(P ~w)k at kth iteration.
10: Step3:
11: Increase the iteration k= k+1.
12: Use the Schweitzer Core Algorithm with optimal

service rates, (C∗i )k−1, to compute exact expected
queuing length of closed classes.

13: Obtain advanced nic(NS)k and nic(NS − 1c)k.
14: Step4:
15: Solve the optimization problem by substituting

nic(NS)k and nic(NS − 1c)k in (5) and (8).
16: Obtain new service rate allocation, (C∗i )k.
17: Compute the maximum expected waiting time of

service chain, max(C∗
i )k

(P ~w)k
18: Step5:
19: if k=kmax then
20: Terminate Algorithm.
21: else
22: Go back to step 3.
23: end if
24: OUTPUT: k∗ = argmink[max(C∗

i )k
(P ~w)k], (C∗i )k∗ ,

max(C∗
i )k∗ (P ~w)k∗

as O(optimization solving time + (Kmax − 1)(V C2 +
optimization solving time)).

VI. NUMERICAL RESULTS

The proposed algorithm is implemented in MATLAB and
CVX is used to solve the optimization problem. In our
numerical analysis model, eight types of VNFs are assigned to
a single server: NFV State Manager, Firewall, QoS, Distributed
Denial of Service (DDos), WAN opt, Instruction Detection
System (IDS), Load Balancer, and Rate Limiter. There are four
types of service chains including different VNFs. The system
model is shown in Figure 2. Since NFV State manager works
for monitoring the states of VNFs, NFV State manager is
only related to closed networks. Therefore, all closed networks
require NFV State Manager but this is not included in open
networks. Arrivals to each VNF are generated randomly per
class according to a Poisson distribution with λ = 100. The

Figure 2. Simulation Model

average amount of loads per visit, sc, is randomly provided
by normal distribution with µ = 20 and σ = 5 per classes.
The number of jobs in closed networks is also randomly given
by Normal distribution with µ = 10 and σ = 5. The iteration
parameter kmax is set to 30 and the total service rate of the
server is basically set to 60,000 per one minute. Figure 3 shows

Figure 3. The maximum expected waiting time of service chain

the performance of the algorithm. As the algorithm is repeated,
the expected queuing length is stabilized from the initially
approximate queuing length. As iterations are repeated, the
closed class queuing length is accurately computed for each
VNF and service rates are optimally allocated based on these
queuing length. So we could see that the expected waiting time
difference between iterations becomes smaller with iterations.
The Y-axis presents the maximum expected waiting time of
service chains. We selected the iteration k∗ which has the
minimum value of the objective function value and (C∗i )k∗
to be the approximate optimal solution. Figure 4 represents
the maximum expected waiting time of service chains as we
increase the capacity of the server. As we increase the capacity
of the server, we could reduce the expected waiting time
of service chains. We can observe that the closed network
has more impact on waiting time of the system than the
open network. Figure 5 (a) shows the approximate optimal
service rate allocation to each VNF when the maximum
server capacity is set to 60000. Figure 5 (b) presents the
minimum service rate requirements of open and closed classes
workloads. NFV State Manager (NSM) does not receive any
open classes loads, but the third highest service rate is assigned



Figure 4. The maximum expected waiting time of service chains with increase
in capacity of server

Figure 5. Service rate allocation to VNFs

to NSM. Also, the high service rate is assigned to WAN
opt because WAN opt receives the high workloads from the
closed classes even though WAN opt receives relatively low
workload by open network. Therefore, we can observe that
the workloads of closed classes have a significant impact on
the resource allocation of the mixed queuing network. In order

Figure 6. Neighbor solutions

to verify the effectiveness of the algorithm, we compared the
approximate optimal solution with neighbor solutions. In every
iteration, we search neighbor solution which has different

service rate allocation and closed classes jobs distribution.
Since the service rate is optimized under a given closed classes
jobs distribution, it is required to change the closed class job
distribution as well to find the neighbor solution. Two VNFs
are randomly selected, and five percentage of service rates
and the number of closed class jobs are exchanged between
randomly selected VNFs. In Figure 6, we could observe that
none of the neighbor solutions has a better objective function
value than the algorithm solution.

VII. CONCLUSIONS

In this paper, NFV service chains are modeled as a BCMP
mixed queuing network and formulated a convex problem to
minimize the expected waiting time of service chains. Since
the problem can not be solved in the mixed queuing network
because the expected queuing length cannot be calculated
without knowledge of service rate, an approximate service rate
allocation algorithm is proposed. In numerical analysis, we
could observe that closed class networks have more influence
on the expected waiting time of the system. So high service
rates are assigned to VNFs receiving heavy requests from
closed class networks.
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