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Abstract—The problem of energy consumption in data centers
has attracted many researchers interest recently. This paper
proposes an optimal energy consumption Software Defined Net-
work (SDN) data center model using the dynamic activation of
hosts and switches. We model switches and hosts as queues and
formulate a Mixed Integer Linear Programming (MILP) model
to minimize energy consumption while guaranteeing Quality
of Service (QoS) of data center. Our purpose is minimizing
static power, port power, and memory power of data centers.
Since the problem is NP-hard, we adopt Simulated Annealing
algorithm to obtain the solution. Through numerical experiment,
we could observe that our model is able to save reasonable energy
compared to the full operation data center model.

I. INTRODUCTION
Power consumption in data centers has recently received

significant interest. Increase in data traffic with highend mobile
devices and expansion of Cloud computing environment have
demanded continuous growth in data center usage. As a result,
data centers consumed 91 billion kilowatt-hours of electricity
in 2013, which is equivalent to the energy from 34 large coal
fire power plants.

Internet traffic arriving to data center is not constant. The
traffic is usually increased in the daytime and decreased during
the night. Therefore, running data centers continuously will
cause wastage of energy because data centers will be wasting
many energy to operate unnecessary hosts and switches when
there is low traffic input to data centers. Thus, dynamic
operation of data center techniques have been suggested by
many researchers that control the activation of hosts in data
centers. However, they did not consider dynamic activation of
switches in data center because of its complexity. Deciding
the activation of switches and hosts is very important. If the
data center is running a so small number of hosts compared
to requests, it will not be able to cover all requests from
users. Even if there are enough hosts, if the data center is
operating too small number of switches for energy saving
purposes, it will increase the latency in transferring data in
the data center. Also, it is important to determine which
switches we operate. Data centers are usually built with tree
architectures, so if we do not activate necessary switches that
connect core switches and hosts, this will cause failure of
job allocation. We also activate memory dynamically because
memory also consumes much energy in data center. According
to [1], DRAM consumes 25% of total power in data centers.

In this paper, we develop an optimal energy consumption
model in a Fat-tree architecture data center which depends
on incoming job requests by using dynamic activation model.
Our model guarantees Quality of Service (QoS) of data center
by observing delay constraints and performance of data center
with architecture constraint.

In terms of memory constraint, our model estimates the
number of jobs with high probability in each switch and host,
and decides how much memory we need to activate.

Scalability of data centers is an important issue. As traffic
requests to data centers increase, many data center operator

will face the need for increasing data centers sizes. Most
of data centers are designed homogeneously, which means
it is not easy to expand data center resource capacity. Our
model employs a heterogeneous Fat-tree architecture of data
center that is controlled with SDN controler. SDN provides
programmable centralized controls plane that controls distri-
bution of jobs and routing paths. Since control plane manages
data centers, we can configure more scalable heterogeneous
data center. When we upgrade hosts as necessary, we do not
have to modify the setting of all configurations of switches.
By changing the node information only in the control plane
we can scale the data center easily.

We model an optimal SDN controlled data center using
Mixed Integer Linear Program (MILP) model. Switches are
considered as M/M/1 queues and hosts are considered as
M/M/c queues. This model will minimize the operation power
by deciding active switches, and hosts and operating memory
in each switch and host. We can specify working switches by
deciding load distribution from upper layer switches. So the
problem will decide the workload distribution in each link as
well. We also minimize the switch port power. Ports consume
power when they forward jobs. If each switch consumes
different port power, we can minimize the power consumed by
ports by forwarding packets though inexpensive switch ports.

The rest of paper is organized as follows. Section II discuss
the related work on power minimization in data centers. We
introduce the system model in Section III. In Section IV,
we formulated MILP problem. Since the problem is NP-
hard, we use simulated annealing algorithm to obtain heuristic
solution of the optimization problem in section V. Section VI
introduces the numerical results and we will end this paper
with conclusions in Section VII.

II. RELATED WORK
Fat-tree architecture was invented by Charles Leiserson in

[4], and Mohammad Al-Fares et al. applied this architecture
to data center network in [5]. This paper showed the scala-
bility and superiority of the Fat-tree architecture in terms of
interconnection.

Many researchers propose data center architectures using
SDN technology. Yongli et al have configured OpenFlow based
SDN datacenter testbed including heterogeneous networks [6].
They evaluated the performance of SDN data center and could
observe improvement in allocation efficiency of application
and network resources. Abhinava Sadasivarao et al. suggest
an SDN enabled optical transport architecture between data
centers [7]. Since data centers are spread over long distance
and are required to communicate with each other with growth
of Cloud Computing, they present a strategy that optimizes
transport application between data center with SDN technol-
ogy. Dan Li et al proposed energy aware flow scheduling in
data center by using SDN technique [8]. They could save
more energy with suggested scheduling algorithm and improve
utilization ratio of switches and links.

Energy saving in data center is considered in many aspects



Figure 1: Fat-tree SDN data center architecture (k=4)

because of its importance. Junwei Cao et al. propose optimal
power allocation and load distribution in a heterogeneous data
center environment [9]. They model multicore server processor
as a queuing system with multiple servers and prove optimal
server setting for two different core speed models, idle speed
model and the constant speed model.

Kuangyu Zheng et al. propose power optimization in data
center network with correlation analysis [10]. They suggest
power optimization strategy that leverages workload correla-
tion analysis to jointly minimize total power consumption of
servers and data centers. After they analyze the correlation
among Virtual Machines (VMs), they consolidate VMs that
are not correlated with each other onto the same physical
servers. Through this approach they could achieve up to 51.6%
of energy saving in their testbed.

III. SYSTEM MODEL
There are many data center architectures: Fat-tree, VL2,

Bcube, and MDcube. We will use the most popular architecture
model, the Fat-tree architecture. We also employ the SDN
technique in order to implement our strategy.

A. Fat-Tree Architecture
Fat-tree is the most popular data center architecture as

many companies are using this architecture. Fat-tree is com-
posed of three switch layers (core, aggregation, and ToR layer)
and host layers. All switches have the same number of ports.
If we assume the number of ports in each switch is k, we
can have the k number of core switches and pods. Core
switches are grouped into k/2 groups. Since a core switch
has k ports, we can say each core switch is connected to all
pods. For example, the first core switch in the each group is
connected with the first aggregation switch in each pod and the
second core switch in each group is connected with the second
aggregation switch in each pod. Each pod has k/2 number of
aggregation and ToR switch. Aggregation and ToR switches
have complete bipartite graph. Since a ToR switch uses k/2
ports for connecting to aggregation switches they can serve k/2
hosts each. Therefore, the data center can have k3/4 number
of hosts total.

In Fat-tree architecture data center, we cannot turn off
necessary switches to operate required hosts. For example, we
cannot turn off the first ToR switch when we want to allocate
jobs to the first host in the first pod. Aggregate switches and
ToR switches form a complete bipartite connection. So we do
not have to turn on the first aggregation switch for the first
ToR switch but we need to turn on at least one aggregation
switch for allocating workload to the first pod. In our model,
the core switch should be able to reach to host with three links
and host should reach a core switch with three links as well.
So, we will turn on and off switches without violation of this
rule to guarantee the proper performance of data center.

B. SDN Data Center Architecture
The SDN model is composed of a control plane and a data

plane. The control plan plays the role of managing the network
and deciding routing paths. The data plane just forwards data
according to the forwarding table. In data centers, we define
the core switch layer as the control plane and the aggregation
and ToR switch become the data plane. Since each core switch
plays the role of manager and decides the routing paths, the
data center network will be a distributed SDN model. When
a user request arrives to the data center, the core switch
decides which host will be the best for the request and decide
routing path to hosts. If inter-data traffic is used for moving
a data set from a host to another host, the host should send
a request to core layer as well. In traditional data centers, a
host could move a dataset to another host in the same pod by
going through just ToR and aggregation switches. However,
host should go through core switch any case in this model.
Although the SDN data center model will cause a minor
disadvantage compare to the traditional data centers in terms
of inter-pod communication, it will be a minor issue when
we consider efficient management of data centers through the
SDN data center architecture.

IV. PROBLEM FORMULATION
We formulated problem as an MILP. Our objective is to

minimize the static power, port power, and memory power
consumption in data centers while guaranteeing QoS and
architecture of Fat-tree data center. This model decides the
active state of switches and hosts by using binary variables and
determines load distribution state of switches with continuous
variables. Based on allocated workload in each switch, the
switch can determine how many memory slots they will need to
be on. We assume that jobs arrive to the data center according
to a as Poisson distribution. We have problem variables:
• Cij : working state of ith group jth core switch; binary variable.
• Aij : working state of ith pod jth aggregation switch; binary variable.
• Tij : working state of ith pod jth ToR switch; binary variable.
• Hij Tmn : working state of ith pod jth host connected to Tmn ToR switch;
binary variable.
• P static

Cij
, P static

Aij
, P static

Tij
, P static

Hij Tmn
: Static power consumption of core,

aggregate, ToR switches and hosts during a unit time; constant.
• P port

Cij
, P port

Aij
, P port

Tij
: Power consumption of each port in core, aggregate,

and ToR switche per job; constant.
• Pmemory

Cij
, Pmemory

Aij
, Pmemory

Tij
, Pmemory

Hij Tmn
: Memory power consump-

tion of core, aggregate, ToR switches and hosts during a unit time; constant.
• λ: Job arrival rate to data center; constant.
• λCij , λAij , λTij , λHij Tmn : Job arrival rate to core, aggregate, ToR
switches and hosts; continuous variable.
• λCij l : Job arrival rate to ith pod jth core switch lth port; continuous
variable.
• λAij l : Job arrival rate to ith pod jth aggregation switch lth port;
continuous variable.
• λTij l : Job arrival rate to ith pod jth ToR switch lth port; continuous
variable.
• µCij , µAij , µTij , µHij Tmn : service rate of core switch; constant.
• MCij , MAij , MTij , MHij Tmn

: The number of operating memory in
core, aggregate, ToR switches, and hosts; integer variable.

A. Objective Function

P static + P port + Pmemory (1)

The objective function includes static power, port power,
and memory power consumption during a unit time. Static
power is constant power by turning on switches or hosts.
Port power is the power consumption for transmitting a job
through the port. We assume ports keep idle state when
they do not transmit jobs and consume no power. So port
power is calculated depending on the number of jobs they



transmit. Memory power is determined depending on how
many memory slots are powered. If we turn on too many
memory slots rather than required the number in a switch or
a host, it will waste energy. Therefore, we propose to turn
on the exact number of required memory based on statistical
estimation.

1) Static Power:

pstatic =

k/2∑
i=1

k/2∑
j=1

CijP
static
Cij +

k∑
i=1

k/2∑
j=1

AijP
static
Aij

+

k∑
i=1

k/2∑
j=1

TijP
static
Tij +

k∑
i=1,m=1

k/2∑
j=1

k/2∑
n=1

Hij TmnP
static
Hij Tmn

(2)

We can calculate the static power by multiplying binary
variables that represent the state of each switch and the host
and power consumption constant of each switch and host.

2) Port Power:

pport =

k/2∑
i=1

k/2∑
j=1

k∑
l=1

λCij lP
port
Cij

+

k∑
i=1

k/2∑
j=1

k/2∑
l=1

λAij lP
port
Aij

+

k∑
i=1

k/2∑
j=1

k/2∑
l=1

λTij lP
port
Tij

(3)

Port power is need to be considered only in switches.
The problem decides how each switch will distribute arrived
jobs through which port. Therefore, we can measure the port
power consumption by multiplying the amount of jobs passing
through each port and power consumption variable of each
port.

3) Memory Power:

pmemory =

k/2∑
i=1

k/2∑
j=1

MCijP
memory
Cij

+

k∑
i=1

k/2∑
j=1

MAijP
memory
Aij

+

k∑
i=1

k/2∑
j=1

MTijP
memory
Tij

+

k∑
i=1,m=1

k/2∑
j=1

k/2∑
n=1

MHij Tmn
PmemoryHij Tmn

(4)

We will estimate the number of jobs in each memory and
host by using a queuing model to find memory constraints.
Then we can decide how many memory slots we need to op-
erate based on the estimated number of jobs in each switch and
host. After we decide the number of working memory slots,
we can evaluate memory power consumption by multiplying
the number of memory slot and memory power consumption
of each memory in each switch and host.

B. Load Distribution Constraint
Workload should be distributed in a rational manner in data

centers. Since we are purposing to turn off part of the switches
and hosts in the data center, we have to decide exactly which
port will transfer jobs the lower layers. For example, if the
core switch transfers jobs to an inactive aggregation switch,
we will not be able to allocate those jobs to hosts. Thus, load
distribution constraints decide how we distribute the workload
to low layer switches through which port.

1) Load Distribution in each layer: Summation of work-
load in each layer should be equivalent to λ, the total arriving
workload to the data center. This constraint purposes to the
allocate workload to working switches and hosts while guar-

anteeing that we forward all requests to hosts.
k/2∑
i=1

k/2∑
j=1

CijλCij = λ (5)

k∑
i=1

k/2∑
j=1

AijλAij = λ (6)

k∑
i=1

k/2∑
j=1

TijλTij = λ (7)

k∑
i=1,m=1

k/2∑
j=1

k/2∑
n=1

Hij TmnλHij Tmn
= λ (8)

Equations (5)-(8) are multiplications of binary variables
and continuous variables, so it is non-linear equation. There-
fore we will linearize the non-linear formulation by using the
equation. When x is a binary variable and y is a continuous
variable, we can linearize their product by replacing it by a
continuous variable t with the constraints shown below.

0 ≤ t ≤ max(y) · x (9)
y − (1− x) ·max(y) ≤ t ≤ y (10)

The maximum of continuous variables, λCij , λAij , λTij ,
and λHij Tmn is λ because the maximum workload can be
allocated to each switch and host is the summation of all
workloads in the same layer. Therefore, we can linearize non-
linear constraints (5), (6), (7), and (8) with this linearization
technique.

2) Link Distribution: As mentioned before, it is important
which port we use for transferring jobs. If we use the port
connected with an inactive switch or host for transmitting that
job, we will lose request and cannot forward it properly.

λCij =

k∑
l=1

λCij l ,∀i, j (11)

λAij =

k∑
l=1

λClj i ,∀i, j (12)

λAij =

k/2∑
l=1

λAij l ,∀i, j (13)

λTij =

k/2∑
l=1

λAil j ,∀i, j (14)

λTij =

k/2∑
l=1

λTij l ,∀i, j (15)

λTij l = λHil Tij ,∀i, j, Tij (16)

Equation (11), (13), and (15) regulate the distribution from
each switch to lower layers. Arriving job requests to each
switch should be equivalent to the summation of workloads
to go out through their ports.

Equation (12), (14), and (16) decides how arriving jobs
are handled by each switch. Summation of the number of jobs
going into switches should be equal to summation of arriving
jobs from upper layer through connected port.

Through this constraint, we can decide which port will
transfer how many jobs in every link. We can obtain optimal
workload distribution strategy with these constraints.



3) Distribution Restriction: Jobs cannot be distributed to
inactive switches and hosts. Constraints (5)-(8) regulate the
summation of jobs in each layer but it can allocate any amount
of workload to turned off switches because the summation of
workload is still same if the switch is turned off. Therefore, we
need constraints that prohibit workloads from being allocated
to inactive switches and hosts.

λCij ≤ λ · Cij ,∀i, j (17)
λAij ≤ λ ·Aij ,∀i, j (18)
λTij ≤ λ · Tij ,∀i, j (19)

λHij Tmn ≤ λ ·Hij Tmn ,∀i, j,m, n (20)

C. Performance Constraints
In order to guarantee the QoS of data centers, latency

constraint will be applied to each switch and hosts. Switches
are assumed to be M/M/1 queues and hosts are M/M/c queues,
c is equivalent to the number of cores. In queuing model, we
can obtain the distribution of residual time in queue. Residual
time of job in queue corresponds to latency of the switch. Thus,
we will use residual time distribution to obtain the latency
constraint.

1) Latency Constraint in Switch: Switches are modeled as
M/M/1 queues. We can use the Cumulative Density Function
(CDF) of residual time in M/M/1 queue to obtain the residual
time equation in M/M/1 queue.

FR(tresidual) = 1− e−(µ−λswitch)tresidual (21)

Equation (21) presents the probability that the residual
time in the queue will be less than tresidual. Therefore,
we can achieve the residual time in the queue by letting
FR(tresidual) = α, α is close to 1. If tresidual is obtain to
satisfy α. tresidual will be the residual time in M/M/1 queue
that satisfies the probabilistic upper bound on the residual time
in queue.

1− e−(µ−λswitch)tresidual = α (22)
1− α = e−(µ−λswitch)tresidual (23)

If we take log base e on both sides, we can obtain the
following equation.

ln(1− α) = −(µ− λswitch)tresidual (24)

Then we can obtain residual time in the queue like below,

tresidual = −
ln(1− α)

(µ− λswitch)
(25)

Since the residual time cannot exceed the latency con-
straint, Latency, we can obtain below constraint.

− ln(1− α)
(µ− λswitch)

≤ Latency (26)

If we move the denominator in the left side, we can achieve
the linear constraint below because λswitch is continuous
variable in each switch.

− ln(1− α) ≤ Latency · (µ− λswitch) (27)

By using (27), we can obtain latency constraint about all
switches.

2) Latency in Host: We use same strategy above to obtain
the delay in hosts. The host is modeled as M/M/c queue. The
CDF of residual time in M/M/c queue is [2]:

FR(tresidual) = 1− c

c− ρ
· pc · e−(cµ−λ)tresidual (28)

pc is the probability that there are c jobs in a queue. c
represents the number of cores in our model, which is usually
small number and ρ represents λ

µ . Therefore, we can assume
pc is equal to 1 for the simplification of the problem.

FR(tresidual) = 1− c

c− ρ
· e−(cµ−λ)tresidual (29)

If we obtain residual time which covers the probability α,
with α ≈ 1, then

1− c

c− ρ
· e−(cµ−λ)tresidual = α (30)

(1− α)(c− ρ) = c · e−(cµ−λ)tresidual

If we take log to base e in both sides,

ln
(1− α)(1− ρ)

c
= −(cµ− λ)tresidual (31)

Then we can evaluate the residual time in the M/M/c queue.

tresidual =
ln (1−α)(1−ρ)

c

−(cµ− λ)
(32)

Since the residual time in queue should be less than the
latency constraint, we can get constraint below

ln (1−α)(1−ρ)
c

−(cµ− λ)
≤ Latency (33)

Which can also be written by

− ln(1− α)− ln(1− ρ) + ln c ≤ Latency(cµ− λ) (34)

(34) is non-linear. So we will linearize it by using the
pairwise approximation technique used in [3]. ρ has limited
domain between 0 to 1. Therefore, we can linearize them by
calculating a linear function in each sub domain. We divide ρ to
three sub-domains: [0, 0.75], [0.75, 0.95], and [0.95, 1]. Then,
we could obtain a linear function that fits each sub-domain,
f1(ρ), f2(ρ),and f3(ρ).

Through approximation we could achieve three linear
functions in each sub-domains, f1(ρ) = 1.72ρ, f2(ρ) =
7.1679ρ− 4.1698, f3(ρ) = 40.2359ρ− 35.6308. By replacing
− ln(1 − ρ) in (34) by maxy fy(ρ), y represents a linear
function in y sub-domain, we can obtain the linear constraint
below.

max
y

fy(ρ)− ln(1− α) + ln c (35)

≤ Latency · (cµHij Tmn − λHij Tmn),∀i, j,m, n, y

3) Service Rate: For the stability of the system, the sum-
mation of service rate of each layer should be greater than the
total number of jobs.

k/2∑
i=1

k/2∑
j=1

µCijCij ≥ λ (36)

k∑
i=1

k/2∑
j=1

µAijAij ≥ λ (37)

k∑
i=1

k/2∑
j=1

µTijTij ≥ λ (38)



k∑
i=1,m=1

k/2∑
j=1

k/2∑
n=1

µHij TmnHij Tmn ≥ λ (39)

D. Memory Constraint
Main memory consumes almost 25% of total energy con-

sumption in data center. Therefore, diminishing the number
of working memory slots will contribute to saving energy
consumption in data centers. We decide the number of working
memory slots based on the probability that an arriving job is
rejected.

1) Memory Constraint in switch: Switches are modeled as
M/M/1 queue. If we assume the nq+1 job is rejected in queue,
the probability of losing job is equal to probability of there
exist nq jobs in queue. So we can calculate the probability of
loss like below:

p(loss) = pnq (40)

We set the probability that an arriving job is successfully
queued to α ≈ 1.

p(queuing) = α (41)

Then we can get equation below:

p(loss) = 1− p(queuing) = 1− α (42)

p(loss) is when there are nq jobs in queue. So we can
calculate the probability of loss like below:

p(loss) = 1−
nq−1∑
i=0

pi (43)

If we substitute p(loss) in (42) with (43),
nq−1∑
i=0

pi = α (44)

pi = ρi(1 − ρ) in M/M/1 queue. So from (44) we can
obtain,

1− ρnq−1 = α (45)

If we take the log on both sides, we can achieve:

nswitch =
ln(1− α)
ln(ρ)

+ 1 (46)

Equation (46) represents the number of existing jobs in
a switch with very high probability α. Based on the number
of jobs in queue, we can obtain the number of memory slots
we needed. If we assume the expected size of a job is J and
memory slot size is MS, we can make memory constraint like
below.

nswitch · J ≤Mswitch ·MS (47)

Since all switches are considered as M/M/1 queues, we
can apply this constraint to all switches and decide number of
working memory slots depending on their allocated workloads.

2) Memory Constraint in host: Hosts are considered as
M/M/c queues. We can use the approach in (44) but using
the steady state probability of the M/M/c queue. As mentioned
before, we assume hosts are always busy when they are turned
on. Since c represents the number of cores in a host, we can
consider there will be always more than c jobs in the host.
Therefore we can use the following equation to obtain steady
state probability:

∞∑
i=c

pi ≈ 1 (48)

Steady state of probability in M/M/c queue is given by,
when i ≥ c:

pi =
ccρn

c!
p0, ρ =

λhost
cµ

(49)

Initial state probability p0 can be found by substituting pi
in (48) with (49).

∞∑
i=c

ccρn

c!
p ≈ 1 (50)

ccρc

c!(1− ρ)
p0 ≈ 1

So we can induce initial probability p0,

p0 ≈
c!(1− ρ)
ccρc

(51)

By using (51), we can use steady state probabilities by
substituting p0 in (49).

pi =
cc

c!
ρip0 (52)

If we insert (52) into pi in (44), we can obtain the number
of jobs in hosts according to in coming rate λ.

nhost =
ln(1− α)
ln(ρ)

+ c (53)

By using (53), we can achieve the required number of
memory slots that can accommodate jobs in hosts with the
following constraint.

nhost · J ≤Mhost ·MS (54)

However, (47) and (54) are non-linear. Similar to the above
piecewise linear approximation, we will divide them into three
sub-domains: [0, ρ∗1], [ρ∗1, ρ∗2], and [ρ∗2, 1]. Then we could
get linear function in each sub-domain. The approximation
function is different depending on the service rate of switches
and hosts. So, if we define the functions that obtain that achieve
the number of jobs in each switch and host,nswitch and nhost
as fn(ρ), we can calculate sub-linear functions as:

fn1(ρ) =
fn(ρ

∗
1)

ρ∗1
ρ (55)

fn2(ρ) =
fn(ρ

∗
2)− f∗n(ρ∗1)
ρ∗2 − ρ∗1

(ρ− 1) + fn(ρ
∗
2)

fn3(ρ) =
µ− fn(ρ∗2)
1− ρ∗2

ρ− µ− µ− fn(ρ∗2)
1− ρ∗2

µ is the service rate of each switch and host. Since we
approximate the number of jobs by a linear function, we can
linearize the constraints (47) and (54) like below in each switch
and host:

max
y

(fny(ρCij )) ≤
Mhost ·MS

J
(56)

y represents the number of approximation functions and
M is the number of memory slot which are powered, which
integer variable.

E. Connectivity Constraint
The architecture constraint is applied to the problem to

protect the Fat-tree architecture of data centers. If we turn off
necessary switches for connecting to working hosts, it will
cause the disconnection between the core layer and hosts.
Therefore, we define the least constraints that maintain the



architecture of data centers.∑k/2
j=1 Tij

k
≤

k/2∑
j=1

Aij ,∀i (57)

The ToR switches and aggregation switches in the same
pod have complete bipartite connection. Therefore, ToR switch
can be connected to the core switch layer even if there is only
one working aggregation switch in the same pod. (57) activates
at least one aggregation switch if ToR switches are activated
in the same pod.

k

2

k/2∑
j=1

Hij Tmn ≤ Tmn,∀i (58)

If a host is turned on and is connected to Tmn ToR switch,
Tmn should be turned on as well. Since Tmn is a binary
variable, the right hand side should not exceed 1. So, we divide
the number of turned on host by 2/k in order to make the upper
bound of summation equal to 1.

V. SIMULATED ANNEALING ALGORITHM
The optimization problem includes binary variables and

integer variables in the objective function and constraints:
Cij , Aij , Tij , Hij Tmn , MCij , MAij , MTij , MHij Tmn

. The
binary variables decide the state of switches and hosts and the
integer variables decide the number of working memory slots
in each switch and host. As we include integer variables in the
problem, this optimization becomes a NP-hard problem. When
we consider small size data center, the optimization problem
can be solved in a reasonable time. However, data center is
usually composed of a large number of hosts and servers.
As the size of data center increases, it will consume more
time to get the solution. So, we will use Simulated Annealing
algorithm, which is one of the popular heuristic algorithms that
can find a near optimal solution in reasonable time.

Simulated Annealing is randomized algorithm that provides
reasonable global solution in acceptable computation time. For
the input parameters, we need the service rates of hosts and
switches, total incoming jobs into the data center, parameter
β that has value between 0 to 1, and maximum number of
iteration. We generate the initial allocation of λ into hosts
while guaranteeing the latency constraint and capacity (line
1). The latency goes to infinity when the allocation to hosts is
very close to service rates. Therefore, we decide the allocation
rate that does not violate the latency constraint and let the
allocation of jobs not exceed that ratio. After we decide the
initial allocation to hosts, we can induce which switch will
be needed to operate the data center properly. So Switch()
function finds which switches are required and how many jobs
can be allocated to switches based on the assignment result
of hosts (line 3). After we decide the allocation of jobs over
the entire data center, we calculate the power consumption of
data center based on the result of allocations (line 4). Then
we set that solution and the power as a candidate solution.
We start finding neighbor solution from line 5 to line 20. We
find neighbor solution of job allocation into hosts (line 6). In
the same method, we can find which switches are required
to be operated for working hosts. So we turn on the required
switches by using switch() function (line 7). Then, we can
calculate the power consumption of neighbor solution in line 8.
If power consumption of neighbor solution is less than power
consumption of candidate solution, we replace the candidate
solution with neighbor solution. Simulated Annealing is a ran-
domized algorithm. We also replace candidate solutions with
neighbor solutions with some probability to avoid isolation
of solution. Random number r is generated between 0 and 1.
If epminimum−pcandidate/β is greater than random number r,

Algorithm 1 Simulated Annealing Algorithm

Require: SHij Til , STij , SAij , SCij , λ, β, iteration
Ensure: Pminimum, λHij Til , λTij , λAij , λCij

1: We generate initial allocation to hosts λhij Tmn depends
on service rate of hosts

2: Decide ToR, aggregation and core switches based on
allocation into hosts.

3: λTij , λAij , λCij=Switch(λhij Til )
4: Pminimum=Cal power(λhij Til , λTij , λAij , λCij )
5: while t≤ iteration do
6: Search neighbor allocation λ

′

hij Til

7: λ
′

Tij
, λ
′

Aij
, λ
′

Cij
=Switch(λ

′

Hij Til
)

8: Pcandidate = Cal power(λ
′

Hij Til
, λ
′

Tij
, λ
′

Aij
, λ
′

Cij
)

9: r←rand()
10: if Pcandidate < Pminimum

or e
pminimum−pcandidate

β > r then
11: λHij Til ← λ

′

Hij Til

12: λTij ← λ
′

Tij

13: λAij ← λ
′

Aij

14: λCij ← λ
′

Cij
15: Pminimum ← Pcandidate
16: t++, β ← β · α
17: else
18: t++, β ← β · α
19: end if
20: end while
21: OUTPUT: Pminimum, λHij Til , λTij , λAij , λCij

we replace candidate solution with neighbor solution even if
power consumption of neighbor solution is greater than power
consumption of candidate solution (line 10 - line 15). In every
iteration, β is multiplied by α, which has the value less than 1,
to decrease the β in every iteration (line 16 and line 18). The
algorithm repeats finding neighbor solution until t reaches to
iteration. After finishing iteration, the candidate solution will
become a near optimal solution of the problem.

VI. NUMERICAL ANALYSIS
Optimization problem is solved by CPLEX and Simulated

Annealing algorithm is implemented in C. We designed het-
erogeneous environment data center having different service
rate of hosts. However, all switches have same performance in
each layer. We set the parameters of the model as shown in
Table 1.

Variable Values
P staticCij

, P staticAij
, P staticTij 300W, 150W, 150W

P staticHij Tmn
[100, 150, 200, 250]W

P portCij
, P portAij

, P portTij
0.0005W/job

PmemoryCij
, PmemoryAij

,
PmemoryTij

, PmemoryHij Tmn

25W

Latency 0.01 sec

Table I: Value of key parameters

Static power of switches is different depends on perfor-
mance. Since core switches implement path calculation and
management as control plane, they consume more energy



than aggregation and ToR switches. Hosts have different static
power depending on their service rate. Our model includes
four types of hosts, so hosts have four types of static power
depends on its service rate. High performance hosts consume
more power. Identical hosts will be allocated in the same pod.
Thus, hosts will be heterogeneous between pods.

The service rates of hosts and switches change depending
on the data center size. For example, we set the service rate of a
core switch to 100000, aggregation and ToR switch to 500000,
and hosts have 5000, 6000, 7000, and 8000 when k is equal to
8. Basically, aggregation and ToR switches have higher service
rate than core switch because they just forward jobs. However,
core switches calculate path and manage data center network
so service rates is lower than other layer switches. Since we
have four types of hosts, they have four types of service rate
as well.

We set the expected size of each job to 2MB and all
switches and hosts have four 512MB memory.

Since the problem is NP-hard, we could not obtain optimal
solution about large size data center. Optimal solution of
the problem is achieved when k is equal to 4 in reasonable
time. However, computation time of the problem increased
extremely when we enlarge the size of data center to k that is
greater than 8.

We ran Simulated Annealing for 1000 iterations. β is set
to 1 and α is 0.9 in Algorithm 1.
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Figure 2: Optimal and heuristic solution comparison

Figure 2 compares the solution of optimal solution and
heuristic solution when k is equal to 8. CPLEX uses branch
and bound algorithm. Since the computation time of the
problem is unrealistic, we compare the upper and lower bound
of optimal solution when gap is around 6%. It has taken
around 1300 seconds until we reached the 6% gap. Data center
utilization rate exhibits incoming rate of jobs compared to
maximum capacity of data centers. For stability of data center,
incoming rate cannot exceed maximum capacity of data center.
The Simulated Annealing solution has around 10% difference
with upper bound and 15% difference with lower bound. So we
could see the Simulated Annealing algorithm work properly.

Figure 3 shows how much energy we can save with our
model. Energy saving rate is calculated by comparing energy
consumption of heuristic solution and expected energy when
then data center operates every switch and host. We measure
how much energy we can save depending on the utilization
rate and size of data center. As utilization rate increases, the
energy saving rate is decreased because we cannot turn off
many switches and hosts to guarantee the performance of the
data center. Also, we can observe that the energy saving rate
is increased when the size of data center increases.
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Figure 3: Energy saving rate with Simulated Annealing
algorithm

VII. CONCLUSIONS
This paper presented a power minimization model in Fat-

tree architecture data center. The problem is modeled as a
MILP and could achieve optimal solution about small size
data center. For scalability of the problem, we employ the
Simulated Annealing algorithm. We could achieve high en-
ergy saving rate with reasonable computation time with the
Simulated Annealing algorithm. The result exhibits that we
can save much energy with this model by preventing wastage
of resources. Also, we could have additional saving rate with
dynamic memory model in high request situation as well.
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