
Abstract— We consider optimal datasets allocation in distributed
Cloud Computing systems. Our objective is to minimize
processing time and cost. Processing time includes virtual
machine processing time, communication time, and data transfer
time. In distributed Cloud systems, communication time and data
transfer time are important component of processing time
because data centers are distributed geographically. If we place
datasets far from each other, this increases the communication
and data transfer time. The cost objective includes virtual
machine cost, communication cost, and data transfer cost. Cloud
service providers charge for virtual machine usage according to
usage time of virtual machine. Communication cost and transfer
cost are charged based on transmission speed of data and dataset
size. The problem of allocating datasets to VMs in distributed
heterogeneous Clouds is formulated as a linear programming
model with two objectives: the cost and processing time. After
finding optimal solutions of each objective function, we use a
heuristic approach to find the Pareto front of multi objective
linear programming problem. In the simulation experiment, we
consider a heterogeneous Cloud infrastructure with five different
types of Cloud service provider resource information, and we
optimize dataset placement by guaranteeing Pareto optimality of
the solutions.

I. INTRODUCTION

Cloud Computing is a promising solution to handle a large
size datasets. Since Cloud systems have large size computing
resource pools, large size datasets can be processed in parallel
after being divided to smaller partitions. For example,
MapReduce and Hadoop are representative frameworks for
distributed processing used in Cloud systems. MapReduce
model is composed of Map and Reduce part. Map divides large
size datasets to smaller sub problems by filtering and sorting
them. Then, Reduce part collects all the results from
sub-problems and merges them.

Distributed Cloud Computing systems are designed with
geographically separated Cloud data centers. When a user
wants to send a request to the Cloud, the Cloud manager can
choose the closest data center for processing. Thus, it is
beneficial to reduce latency between users and data centers.
However, user requests have many different requirements.
Some applications require high performance computing, some
other application need low latency, and for some others low
cost is the most important requirement. It cannot be guaranteed
that the closest data center can satisfy all user demands.
Therefore, efficient resource allocation is required so that
Cloud systems satisfy various user demands. Processing time is

an important objective for both of service providers and users.
Service providers can offer service to more users, and hence
increase revenue, by reducing the processing time, which will
also offer improved performance to users. Cost is also an
important objective for both of users and service providers.
Needless to say, users want to spend less money to use Cloud
service. The main cost for users is the virtual machine cost.
Users pay virtual machine cost depending on usage time of
virtual machines, which increases with increased VMs’
computational power. The service provider can also help
reduce network cost by allocating datasets to virtual machines
having low communication cost between each other.

Processing time includes data transfer time, virtual machine
processing time, and communication time. Data transfer time
occurs when a data center, which receives the dataset initially,
needs to send subsets of these datasets to other data centers for
processing. If the dataset size is too large to handle in the initial
data center, the Cloud manager will divide the dataset and send
the subsets to other data centers. So, data transfer time is the
time before the start of processing. Virtual machines
processing time is the processing time in virtual machines to
process jobs. Virtual machines have different computational
power, memory, storage size and operating systems. Therefore,
processing time is very different depending on which type of
virtual machine we use. The Cloud manager will select high
performance virtual machines to reduce processing time within
given constraints. Communication time is time for
communication after complete processing of allocated dataset.
The final results of computing over divided datasets need to be
merged. Communication time occurs in this step to share status
information of those datasets.

Cost consists of data transfer cost, virtual machine cost,
communication cost, and bandwidth cost. Data transfer cost is
related to data transfer time. When datasets have to be sent to
different data centers from the first data center, this cost is
incurred. Most Cloud providers charge data transfer cost only
for outgoing data from data centers according to dataset size.
Therefore, data transfer cost will be only charged to move
sub-datasets from initially allocated data center to other data
centers. Virtual machine cost increases depending on how long
user uses the virtual machine. So, reducing virtual machine
cost is also related to minimizing virtual machine processing
time. However, high performance virtual machines have high
cost for using that. Thus, efficient selection of virtual machines
is important to reduce both of the virtual machine cost and

Optimal Dataset Allocation in Distributed
Heterogeneous Clouds

Min Sang Yoon, Ahmed E. Kamal
Department of Electrical and Computer Engineering

Iowa State University, IA, 50010, USA
Email : {my222, kamal}@ iastate.edu

processing time. Communication cost is also the cost for
sending overhead of sub-dataset after finishing processing in
order to share their processing status. Communication cost is
also only charged for outgoing data from the data center. So we
only consider outgoing overhead from each allocated virtual
machine to Cloud manager.

Contribution of this paper is to obtain the optimal allocation
of datasets to VMs, using two objectives: processing time and
cost. Processing time and cost is changed a lot according to
which virtual machine or which types of service platform we
use. Therefore, our purpose is finding optimal dataset
placement in heterogeneous computing resource environment
in order to reduce processing time and cost simultaneously.

Our model is multi-objective linear programming model.
We can solve each objective functions by using many known
solutions. After solving each objective independently, we can
start to find Pareto front by using Benson’s algorithm. We will
find Pareto front of multi objective linear problem.

Previous research of resource allocation issues in Cloud
systems are presented in SectionⅡ. Section Ⅲ describes the
dataset allocation problem by using multi objective linear
Programming model. We will introduce an algorithm that can
solve multi linear objective problem in Section Ⅳ. We
developed a simulation model based on practical Cloud service
providers’ resource in Section Ⅴ. In the Section Ⅵ, we will
compare results of each objective function separately and show
Pareto front of our simulated Cloud systems. The conclusions
are given in SectionⅦ.

II. RELATED WORK

The importance of virtual machine placement is recognized
by various objectives. Since the Clouds have heterogeneous
resources, it is possible to achieve various objectives by
allocating virtual machines according to different strategies.
In distributed Clouds, latency could be minimized by using
standard assignment algorithms as in [1]. Alicherry et al. used
an integer linear programming model for reducing latency
between virtual machines. Latency is mainly affected by the
geographical distance between data centers. The model is
optimized using one of two objective functions. The first is
minimizing the total access time and the other is minimizing
the maximum access time. Minimizing total access time can
reduce overall access time of running the job. However,
minimizing maximum access time is used when performance
of the job is the most important. In other words, minimizing
maximum of objective function could guarantee performance
of the application but it increases total access time compared to
minimizing total access time.

Many optimization formulations have been introduced to
reduce the cost of power consumption in Clouds. Optimizing
power allocation and load distribution has been achieved in [7]
by using a queuing network model. Also, a load balancing
model was introduced to reduce Carbon Emission in [5].
However, minimizing the cost of virtual machine usage has not
received enough attention even though it is a very important
factor from a user’s perspective.

Also, only a few attempts to optimize multiple objective in
Clouds exist in the literature. In [8], Ruiz-Alvarez et al.
minimized cost, latency, and bandwidth. However, they have
scalarized multi objectives to a single objective function.
Consequently, the problem could not guarantee Pareto
optimality of each object.

An important contribution of this paper is finding Pareto
Optimal solutions [10]. We use a special case of Benson’s
algorithm [16], outer approximation algorithm for multi
objective linear programming problem, which uses a vector
summation of objective values, and then finds solutions that
guarantee Pareto optimality.

III. PROBLEM DESCRIPTION

Our goal is to optimize the allocation of datasets to Cloud
Computing systems that have heterogeneous resources. We
have two objective functions: 1) processing time, and 2) cost.
Processing time and cost are in inverse proportion to each other.
In order to decrease processing time, it is helpful to allocate
datasets to high performance virtual machines. However,
dataset placement to high performance virtual machines
increases the cost. Therefore, we attempt to find Pareto optimal
points that guarantee optimality of processing time and cost
simultaneously.

Large size datasets will be divided into small dataset, and the
datasets will be assigned to different virtual machines that have
different resources. We assume parallel processing of datasets
and do not consider serial processing of partitioned datasets.
We develop a linear programming model for this problem.
There are two objective functions that have the dataset size as a
decision variable. Both objective functions share the same
constraints. There are four types of constraints in the problem:
Storage capacity, summation of total dataset size, individual
dataset size, and communication latency. Table 1 shows the
glossary of all terms used in our model.

TABLE1. PROBLEM MODEL VARIABLES
Variable Description

Dmnl Decision variable. The dataset size allocated to the l th machine
in the nth data center, which is derived from mth dataset

i Constant. The number of datasets
j Constant. The number of data centers

Kn Constant. The number of virtual machines in jth data center
DSmn’ Constant. The mth dataset initially submitted to n’th data center

Bnl Constant. Network bandwidth of nth data center lth virtual
machine(Gb/sec)

Bn’n Constant. Bandwidth for data transfer from n’th data
center(initially arrived) to nth data center (Gb/sec)

Pnl Constant. Processing time of nth data center lth virtual machine
(Gb/sec)

CCnl Constant. Communication Cost about outgoing data from nth
datacenter lth virtual machine ($/GB)

TCj’n Constant. Transfer Cost about outgoing data from initial arrived
datacenter j’th to nth data center ($/GB)

VCnl Constant. Virtual machine cost of nth data center lth virtual
machine ($/GB)

Cnl Constant. Available Capacity of lth virtual machine in nth data
center

LTnl Constant. Maximum available latency of communication time
from nth data center (sec)

BCnl Constant. Cost to upgrade the bandwidth of nth data center lth
virtual machine ($)

α Constant. Communication overhead rate from original dataset
size (0≤ α ≤ 1)

A. Processing Time
Minimize∑ {∑ ∑ × D +∑ ∑ () × D +∑ ∑ } (1)

The processing time objective function includes time to
allocate sub-datasets to other data centers, virtual machine
processing time, and time to send dataset overhead to Cloud
manager for share their processing status. Each datacenter has
Cloud manager. The data center that receives dataset first
becomes Cloud manager for the dataset. Therefore, we
consider data transfer time from initial arrived data center and
communication time to send processing status to initial
datacenter, and virtual machine processing time of sub-datasets
in each virtual machine. The first term is communication time
between all virtual machines. Since a large size dataset is
divided into several smaller datasets, each virtual machine
needs to check processing status of sub-datasets. Therefore,
after finishing the processing in each virtual machine, virtual
machines send their status to the Cloud manager. We consider
only the outgoing time from allocated virtual machines for
communication time. Some Cloud service providers provide
high bandwidth for outgoing data transfer from the virtual
machine with additional cost. Thus, only considering outgoing
time from the virtual machine will be the dominant factor in
communication time. We don’t need to transfer all data for
communication. Communication overhead is configured with
some rate α from dataset size Dmnl, allocated sub-dataset in the
lth virtual machine in nth data center. By dividing the dataset
overhead size with bandwidth of lth virtual machine in nth data
center, communication time of the virtual machine can be
obtained.

The second term refers to the data transfer time. The initial
dataset is such that their required resource exceeds available
resources in a certain data center. If it is able to reduce
processing time by dividing initial dataset and allocating
sub-datasets to other virtual machines in a certain data center,
we have to transfer the datasets to other data center’s virtual
machines. This process would consume some transfer time. So
transfer time can be calculated by dividing allocated dataset
and communication overhead size by communication
bandwidth of the initially allocated data center. We assume
datasets have no serial relationship. All datasets are possible to
be processed in parallel model in this problem.

The third term refers to the virtual machine processing time.
Virtual machine processing time is one of the most important
factors in deciding the processing time objective value. Cloud
service providers offer different types of service depending on
user’s demands. The most representative difference is the
number of CPUs. High performance virtual machines provide
more number of cores. So it is able to reduce processing time
by the allocating more data to the virtual machine that has high
performance processor or high processing ability.

B. Cost
Minimize∑ {∑ ∑ α × D × +∑ ∑ (1 +)×D × ′ +∑ ∑ D × VC } + ∑ ∑ (2)

We consider similar factors in the cost objective function:
communication cost, data transfer cost, virtual machine cost,
and bandwidth cost.

The first term stands for communication cost. Most Cloud
Computing service providers charge for only outgoing data
transfer depending on data size and communication bandwidth.
In the first term, we only consider cost for dataset size. Similar
to communication time, only outgoing communication
overhead is charged for communication cost.

The second term is about data transfer cost. As mentioned in
section A, initial dataset has to be moved to other data center as
necessary. Since data transfer cost is also only charged for
outgoing data, we multiply cost by dataset and overhead size.

The third term is virtual machine cost. Virtual machine cost
charged depends on hours of use and its performance. High
performance virtual machines are more expensive than low
performance virtual machine. It may seem cheaper if we just
use low performance virtual machine to reduce virtual machine
cost, but virtual machine cost also increases with usage time of
the virtual machine. If the virtual machine processing time
increases, the virtual machine cost is increased simultaneously.
So the virtual machine cost is multiplied by virtual machine
processing time in the third term in order to make the best
decision between performance and usage time of virtual
machine.

Bandwidth cost is not proportional to dataset size. When
user wants to upgrade communication bandwidth of certain
virtual machines, most Cloud service providers charge
additional cost per month. We do not consider that long term
processing time over a month. Therefore, bandwidth cost is
fixed and is not affected by dataset allocation.

C. Constraints
Dmnl ≤ Cnl, ∀m,n,l (3)∑ ∑ D ≥DS ′ , ∀ (4)DS ′>= D ≥0, ∀ , , (5)∑ α∗DB ≤ Lt , ∀m, n (6)

(3) is virtual machine capacity constraint. Virtual machines
have their own given amount of storage. New allocated dataset
size cannot exceed the current available storage size of virtual
machine.

(4) is summation of allocated dataset size constraint. Total
size of assigned datasets originated from same dataset has to be
greater than or equal to the original dataset size.

(5) is each dataset size constraint. Allocated dataset size
cannot be greater than original dataset size.

(6) is latency constraint. This provides performance
guarantees on the communication time from each data center.
Latency will be different according to the types of datasets.
Some datasets are sensitive to latency but some are not.

Therefore, we can set latency constraint depending on dataset’s
property.

The problem is multi-objective linear programming model.
There are many known algorithms for solving single objective
linear programming model like Simplex algorithm, Criss-cross
algorithm, and Conic sampling algorithm. After solving each
objective function, we will use a special case Benson’s
algorithm to find Pareto front of optimal solutions.

IV. ALGORITHM FOR MULTI OBJECTIVE OPTIMIZATION

In this section, we introduce a heuristic algorithm for finding
the Pareto front of the multi objective linear programming
model. The algorithm, which is shown in Algorithm 1, is
designed for the maximization problem. We will reformulate
the problem to an equivalent vector form of the maximization
problem.

Maximize
Zetap = - PT×D (7)
Zetac = -CT×D+ (8)

PT denotes the transpose of processing time coefficient
vector about each D. D denotes the vector of decision variables
Dmnl. Since PT and D have the same dimension, we can obtain
the objective value of processing time. Let us assume we
allocate one dataset to two data centers which have 2 virtual
machines each. Then D vector becomes [D111 D112 D121
D122]. The elements of vector P are summation of each term in
(1). The each element in P will be summations of the data
transfer time, virtual machine processing time, and
communication time about all Dmnl elements in the. CT is also
transpose of cost coefficient vector having same dimension
with D. Elements of the C vector are the summations of each
term in (2) for all elements of D, just as like the P vector. b is
the summation of all bandwidth cost, the last term in (2), which
is not relevant to the decision variable Dmnl. So we can also
obtain objective function of cost.

The algorithm starts with two Pareto optimal solutions of
each objective functions: Dp and Dc. If Dp and Dc are on the
same line, we can say all points between Dp and Dc are Pareto
solutions. In order to verify if the Dp and Dc are on the same
line or not, a new objective function is generated that has
potential optimal points between Dp and Dc.

Zetak = [PT(Dc–Dp)C+CT(Dp–Dc)P]TD (9)

(9) is a new objective function that has optimal values
between the optimal values of Dp and Dc. The first term in (9)
is processing time vector having size between processing time
of Dp and Dc in processing time. Also, the second term in (9) is
cost vector having size between cost of Dc and Dp in cost axis.
By summing two vectors, we can get new vector having new
Pareto optimal point not dominated by both of Dp and Dc.
Since we solve new objective function by same constraints, we
can obtain new feasible optimal solution Dk. The next step is
observing whether three Pareto points are in the same line or

not. If Zetak(Dk)=Zetak(Dp)=Zetak(Dc), the three points are in
the same line.

If they are on the same line, which guarantees that the line
between Dp and Dc is the Pareto front. If they are not on same
line, we have to find new optimal points between Dp and Dk,
and then between Dk and Dc. If we can find all pairs of adjacent
lines connecting all Pareto points, we stop the iteration of the
algorithm.

Algorithm 1 Exploring Pareto Front
1. Input : Dp, Dc, Zetap(Dp), Zetac(Dp), Zetap(Dc), Zetac(Dc)
2. Output : All pairs of Pareto points and Pareto front
3. Di = Dp, Dj = Dc
4. Hash (K1, Di = Dp, Dj = Dc, Optimal Pair)
5. l = 1
6. While ()
7. {
8. Kl = (.) (.) (.) (.)
9. Klist← Kl

10. ZetaKl = [PT(Kl.Di–Kl.Dj)C+CT(Kl.Dj– Kl.Di)P]TD
11. Dkl = Find Optimal Solution of ZetaKl

12. if {
13. ZetaKl(Di)= ZetaKl(Dkl) = ZetaKl(Dj)
14. line between Dj and Dj is Pareto front
15. Kl ← Optimal Pair(Di,Dj)
16. if {
17. l is the biggest index among Kl in

Klist

18. break;
19. }
20. else
21. l=l+1
22. }
23. else if {
24. ZetaKl(Di)= ZetaKl(Dkl) ≠ ZetaKl(Dj)
25. line between Dj and Dkl is

Pareto front
26. Kl ← Optimal Pair(Di, Dkl)
27. Make hash
28. Hash (K1+1=(D ,D), Di = Di, Dj = Dkl, Optimal Pair)

29. l=l+1
30. }
31. else if {
32. ZetaKl(Di)≠ ZetaKl(Dkl) = ZetaKl(Dj)
33. line between Dkl and Dj is

Pareto front
34. Kl ← Optimal Pair(Dkl, Dj)
35. Make hash
36. Hash (K1+1=(D , D), Di = Di, Dj = Dkl, Optimal Pair)

37. l=l+1
38. }
39. else if{
40. ZetaKl(Di)≠ ZetaKl(Dkl) ≠ ZetaKl(Dj)
41. Make hash
42. Hash (K1+1=(D , D), Di = Di, Dj = Dkl, Optimal Pair)

43. Hash (K1+2=(D , D), Di = Dkl, Dj = Dj, Optimal Pair)

44. l=l+1

45. }
46. }
47. Sort Kl in Klist by Kl value
48. K’list : Sorted Kl list
49. for(n=1;n=l;n++)
50. {
51. Obtain optimal value pairs of all Pareto points in optimal value domain
52. On = (Zetap(K’n.Di),Zetac(K’n.Di)),(Zetap(K’n.Dj),Zetac(K’n.Dj))
53. }
54. If we connect all paris of On, we can get Pareto front

The algorithm starts from two optimal points of each of the
objective functions and objective values (Line 1). In order to
manage each point efficiently, hashmap function is employed
including key value, two nearest optimal points not on the same
line, and optimal pairs when optimal pairs exists (Line 4). Key
value, which shows position of points, is determined depending
on optimal values of nearest two points. By averaging optimal
values of nearest two points, we can get key value sequentially
to arrange optimal pairs (Line 8). After obtaining key value, Kl
is saved in Klist (Line 9). New objective function is generated
with two optimal points in Kl hashmap as explained in previous
paragraph, and then solves the problem with the same
constraints (Line 10 – Line 11). If optimal value of
Zetakl(Di)=Zetakl(Dkl)=Zetakl(Dj), three points are in the same
line. So we add optimal points Di and Dj to Kl hashmap as
optimal pairs. If we cannot find anymore Kl in the Klist, then
the Pareto front has been found. So we stop the iteration (Line
12 – Line 21).

If Zetakl(Di)=Zetakl(Dkl)≠Zetakl(Dj), Di and Dkl are in the
same line but Dkl and Dj are not in the same line. Therefore,
only Di and Dkl are added to Kl hashmap as optimal pairs.
Since Dkl and Dj are not in the same line, new objective
function having optimal point between Dkl and Dj has to be
generated again. So we make new hashmap Kl+1 including two
points Dkl and Dj and empty optimal pairs (Line 23 – Line 30).

If Zetakl(Di) ≠Zetakl(Dkl) =Zetakl(Dj), Dkl and Dj are in the
same line but Di and Dkl are not in the same line. As like
previous paragraph, we save Dkl and Dj to optimal pairs of Kl
hashmap and make new Kl+1 hashmap including Di and Dkl
(Line 31- Line 38).

If all three points are not in the same line, two hashmaps are
generated including Di and Dkl, and then Dkl and Dj (Line 39 –
Line 45).

The iteration is repeated until there is no more Kl in the Klist.
If we cannot find any more Kl, this guarantees that every
hashmap k will include optimal pairs or empty pairs. By sorting
Kl according to the Kl key value, Kl will be ordered
sequentially. Then the Pareto front can be drawn by connecting
all optimal points in Kl (Line 49 – Line 54).

V. SIMULATION MODEL

In this section, we evaluate the performance of the model
and find Pareto optimal points of the multi objective problem
by using the proposed algorithm.

We consider a Cloud consisting of 10 data centers having
heterogeneous virtual machines. Data center resource

information is configured from actual data of Cloud
Computing service providers. Five types of Cloud data center
infrastructures are employed: Microsoft Azure, Rackspace,
Google Cloud, Amazon EC2, and IBM Cloud. Each Cloud
provider offers different infrastructure services. For an
example, Microsoft Azure has four options for CPU and has an
option for upgrading network bandwidth. Rackspace provides
all different network bandwidth depending on performance of
virtual machines. A single core virtual machine provides
60Mbps of bandwidth, but a dual core virtual machine has
120Mbps network bandwidth. Google Cloud provides the
highest performance virtual machine. Google services provide
16 core virtual machine model. All data centers have
heterogeneous resources similar to this. Microsoft Azure (data
centers number 1 and 6) includes 8 types of virtual machines,
Rackspace(data centers number 2 and 7) has 10 types of virtual
machines, Google Cloud (data centers number 3 and 8) has 5
types of virtual machines, Amazon EC2 (data center number 4
and 9) has 12 types of virtual machines, and IBM cloud (data
center number 5 and 10) includes 8 types of virtual machines,
and two data centers exist from each data center platform. So
we have a total of 86 types of virtual machines to allocate
dataset. Each virtual machine in a different data center has a
different cost, processing time, and bandwidth. We generate
the storage capacity of virtual machine randomly between 0 to
data the storage size of virtual machines for constraint (3).

Three datasets are allocated to the Cloud. The first dataset
has1000GB size and assigned to datacenter 3. The second
dataset is assigned to data center 1 with 500GB size. The third
dataset is placed to data center 4 with 700GB size.

VI. SIMULATION RESULTS

We used GUSEK, open source Linear/Mixed Integer Linear
Programming solver to solve the two objective functions
separately. The problem includes 258 decision variables and
548 constraints. In order to find the Pareto front, we
implemented Algorithm 1 in MATLAB.
Figure 1 is the result of minimizing processing time. Dnl stands
for the lth virtual machine in nth data center. High performance
virtual machine has large index number l. In Figure 1, we can
see most of the dataset is assigned to high performance virtual
machines. Also, the dataset is mainly assigned to the initial
datacenter to which it is submitted in order to reduce the data
transfer time. The third dataset shows that 83% of the dataset is
assigned to data center 4 in order to reduce data transfer time.
Also, 90% of the first dataset is allocated to high performance
virtual machine of data center 9 and 10 in the result.

Figure 2 is result of minimizing the Cost objective function.
Compared to processing time minimization problem, the
datasets are evenly distributed. Cost minimization also shows a
similar allocation trend. In order to reduce data transfer cost,
the dataset is mainly allocated to the initial data center.
However, most datasets are not only assigned to low
performance virtual machines, but many datasets are also
allocated to high performance virtual machines.

This means that virtual machine cost is not a dominant factor
in deciding the Cost. It seems like the effect of the data transfer

cost and communication cost is relatively more important than
virtual machine cost according to the result.

Fig 1. Minimum Processing Time Optimization Result

Fig 2. Minimum Cost Optimization Result

According to the optimization result of two separate
objective functions, we could find two Pareto optimal points.
The first point has cost value of 2088 and processing time of
8215. The second point has cost value of 2047 and processing
time value of 8651 in Figure 3. Both points are not dominated
by each other. Thus, both points are Pareto optimal points.

According to the introduced algorithm, we could find more
Pareto optimal points between initial optimal points.

Fig 3. Pareto optimal points with iteration 5

At iteration 2, we could find two Pareto optimal pairs, K1
and K2. According to the algorithm, K1 and K2 are on the
same line but K2 and Dp are not in the same line. So another
Pareto optimal points will exists between K2 and Dp. Since K1
and K2 are on the same line, we can get partial Pareto front by
connecting these two points. In iteration 3, we could find K3

point on the same line with Dc. In the same way, the line
between Dc and K3 will be partial a Pareto front and there will
be one more Pareto points between K3 and K1.

After five iterations of the algorithm we could search Pareto
points between Dc and Dp. If we connect these points
sequentially, we can obtain Pareto front of this simulation
model.

VII. CONCLUSIONS

In this paper, we have developed a strategy for allocating
data sets to VMs in a heterogeneous cloud consisting of
different types of data centers with each datacenter offering
different types of VMs. The strategy is based on jointly
considering the cost and processing time. We therefore
formulated the assignment problem as a dual objective
optimization problem, and introduced an algorithm for finding
the Pareto front of optimal solutions. The result of separate
objective function optimization shows proper characteristics of
each objective. When we minimize processing time, the dataset
is usually assigned to high performance virtual machines.
However, dataset is allocated relatively to lower performance
virtual machine when cost is optimized.

With the joint optimization, many of the Pareto points enable
us to allocate datasets in many ways depending on properties of
datasets.

References
[1] M. Alicherry and T.V. Lakshman. Optimizing Data Access Latencies in
Cloud Systems by Intelligent Virtual Machine Placement. IEEE INFOCOM,
2013.
[2] M. Alicherry and T.V. Lakshman. Network Aware Resource Allocation in
Distributed Clouds. IEEE INFOCOM, 2012.
[3] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the Scalability
of Data Center Networks with Traffic-aware Virtual Machine Placement. IEEE
INFOCOM, 2012.
[4] Mohamed Abu Sharkh, Manar Jammal, Abdallah Shami, and Abdelkader
Ouda. Resource Allocation in a Network-Based Cloud Computing
Environment: Design Challgnes. IEEE Communization Magazine, November
2013.
[5] Joseph Doyle, Robert Shorten, and Donal O’Mahony. Stratus: Load
Balancing the Cloud for Carbon Emissions Control. IEEE Transactions on
Cloud Computing, vol. 1, no. 1, pp.116–128, 2013.
[6] Tsahee Zidenberg, Isaac Keslassy, and Uri Weiser. Optimal Resource
Allocation with MultiAmdahl. IEEE Computer Architecture Letters, vol. 11,
no. 2, pp.65-68, 2012.
[7] Junwei Cao, Keqin Li, and Ivan Stojmenovic. Optimal Power allocation
and Load Distribution for Multiple Heterogeneous Multicore Server
Processors across Clouds and Data Centers. IEEE Transaction on Computers,
vol. 63, no. 1, 2014.
[8] Arkaitz Ruiz-Alvarez, Marty Humphrey. A Model and Decision Procedure
for Data Storage in Cloud Computing. IEEE/ACM 12th International
Symposium on Cluster, Cloud, and Grid Computing, 2012.
[9] Yin Li, Min Yao, and Chuang Lin. Joint Study on Optimizations of Data
Center Deployment, VM Assignment and Migration. IEEE/ACM 21st
International Symposium on Quality of Service. 2013.
[10] R.T.Marler and J.S. Arora. Survey of Multi-Objective Optimizations
Methods for Engineering. Struct Multidisc Optim 26, pp.369-395,2014.
[11] Google Cloud price: https://developers.google.com/storage/pricing
[12] Amazon Cloud price: http://aws.amazon.com/ec2/pricing/
[13] IBM Cloud: http://www.ibm.com/cloud-computing/us/en/iaas.html
[14] Rackspace Cloud price: http://www.rackspace.com/cloud/servers/pricing/
[15] Microsoft Cloud price: http://azure.microsoft.com/en-us/pricing
[16] Harold P. Benson. An Outer Approximation Algorithm for Generating All
Efficient Extreme Points in the Outcome Set of Multi Objective Linear
Programming Problem. Journal of Global Optimization13 (1), pp 1-24, 1998.

