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Abstract

In this paper, a multiple server queue, in which each server takes a vacation after serving one
customer is studied. The arrival process is Poisson, service times are exponentially distributed
and the duration of a vacation follows a phase distribution of order 2. Servers returning from
vacation immediately take another vacation if no customers are waiting. A Matrix Geometric
Method is used to find the steady state joint probability of number of customers in the system
and busy servers, and the mean and the second moment of number of customers and mean
waiting time for this model. This queueing model can be used for the analysis of different kinds
of communication networks, such as multislotted networks, multiple token rings, multiple server
polling systems and mobile communication systems.

I Introduction

Queueing systems that allow servers to be on vacation arise in many computer and communication
systems. Server vacations may be due to lack of work, server failure or another task being assigned
to the server. In these systems the server is not always available to serve its primary customers.
Some of the applications which can be modeled using these systems are computer maintenance and
testing!, CPU scheduling, TDMA networks?, and priority queues®. Another important application
of vacation systems are polling systems or cyclic queues*®. Cyclic queues arise in multiprocessor
systems®, multiple token ring and multislotted networks®”®. Single server queues with vacations
have been used to study single server cyclic queues?; similarly multiple server queues with vacation
can be used to study multiple server cyclic queues.



There are several variations of vacation models that can be defined. There may be a single
server or multiple servers. The server may take a vacation at a random time (non-exhaustive),
after serving at most k customers (k-limited) or after all the customers in the queue are served
(exhaustive). Also, depending on the application, when the server finishes a vacation and there is
no customer to be served, the server may take another vacation (multiple vacation model Vi) or
it may wait, ready to serve, until a customer arrives (single vacation model V).

In this paper a 1-limited M/M/S/Vas vacation queueing model is studied. The customer in-
terarrival and service times are assumed to be exponential; while the vacation times obey a phase
distribution of order 2. This gives us more flexibility in adapting the queueing model to analyze
different applications. Applications of this model are discussed in detail in Section 6, they include
cyclic queue applications such as multiple token ring networks and mobile communication systems.
The transition rate matrix of this model is infinite in size, and is of the quasi-birth-death process
type 9. The steady state probability vector can be solved by using one of the following five methods:

1. truncation of the state space,
2. the matrix geometric method for matrices of the G/M/1 type?,

3. methods for the structured stochastic matrices of the M/G/1 form!0.

4. methods based on the generating functions!!, or
5. methods based on obtaining the eigenvalue and eigenvectors of difference equations involving
the steady state probabilities'.

In this paper we use the matrix geometric method to obtain the joint probability of number of
customers in the system and the number of servers, mean number of customers in the system
and mean waiting time for any value of S, the number of servers. It should be noted that the
2-phase vacation distribution has been chosen for the sake of mathematical tractability. Yet, with
two phases, it is still possible to match the first three moments of the phase type distribution to
measured moments, which should result in a reasonably accurate system model.

In the next section we survey the M/M/S type Vacation queues which have already been studied
in the literature. The basic queueing techniques which have been used by the different researchers
to analyze these queues are presented. In Section 3, we briefly explain the phase distribution and
matrix geometric solution. In Section 4, the model presented in this paper is developed. Numerical
results are presented and analyzed in Section 5. In Section 6 we describe two applications of our
model and in Section 7 we present a brief conclusion.

We should note that as an easy reference, and for the benefit of the reader, we placed a list of
all the symbols used in Appendix B.

IT A Survey of Analytical Models for Queues with Vacations

Single Server Vacation models have been studied for different arrival, service and vacation char-
acteristics. Some of the techniques that have been used to analyze this model are an embedded
Markov chain approach®!'3142 a decomposition method'®® and a level crossing argument!'?. In
this section, analyses of M/M/S queues in which the servers take exponentially distributed vacations
are discussed.

An M/M/S/Vys queue with exhaustive service has been analyzed by Levy and Yechiali'® and
Kao and Kumar!?. In both of these papers, the service follows an exponential distribution, arrivals
are Poisson distributed and vacation times are exponential. Levy and Yechiali, use a balance



equation method based on generating functions. Kao and Kumar'® use a matrix-geometric approach

for modeling the system. They derive the stationary, joint probability distribution of queue length
and the number of busy servers, the distributions of waiting time and the length of busy period. The
balance equation method is also used to study a single vacation model, M/M/S/Vs with exhaustive
service!8.

There are few other M/M/S vacation models that have been studied. A steady state M/M/S/Vy,
queueing system where each server is subject to random breakdown (non-exhaustive vacation
model) of exponentially distributed duration has been studied by Mitrani and Avi-Itzhak?® and
Neuts and Lucantoni?'. Mitrany and Avi-Itzhak have used the balance equation method similar
to the one used by Levy and Yechiali'® to obtain the generating function of the queue size. For
S < 2, they derive the explicit form but for large S a numerical method is suggested. Neuts and
Lucantoni used the Matrix Geometric Method to solve this model and they obtained an algorithm
to solve the waiting time distribution and steady state probability.

In?? the balance equation method is used to analyze a similar M/M/S/V); model with 1-Limited
service (the model studied in this paper). However it is only possible to derive the distribution of
the number of customers in the system and the mean number of customers in the system for S < 3.
For higher values of S the method fails to give results due to the lack of sufficient equations. In
this paper we study this model using a matrix geometric method.

IIT Background

In this section we provide information on the Phase type distribution which has been assumed for
the servers’ vacation. We also describe briefly the matrix geometric solutions.

III.1 The Phase Type Distribution

The phase distribution is a generalization of Erlang’s method of stages®® and is well-suited for
numerical computation®. Since it is more general but still numerically solvable, it is preferred
to the exponential distribution. The advantage of using this distribution is the ability to more
accurately model practical and complex distributions. Moreover, a large number of distributions
are special types of phase distributions. For example an n-stage Erlangian distribution can be
treated as an n order phase distribution, similarly an exponential distribution can be treated as
a phase type distribution of order 1, by properly choosing the values of parameters required to
describe a phase distribution. Thus from the results of phase type distribution we can derive
results for other distributions as well.

A phase type distribution of order m is described by an (m + 1) state Markov process, with
infinitesimal generator @) defined as follows®:

T 79
Q:lo 0

where the m x m matrix T satisfies Ty < 0, for £ < m and Ty; > 0, for k # [. The elements of
T, T}, give the rate of transition from phase k to phase I. The column vector T° gives the rate of
entering the absorption phase from the different phases. Also Té+7° = 0 since Q is an infinitesimal
generator. The initial probability vector of @ is given by (v , vm41) with v€+ vy 1 = 1. All the
states 1,...,m are transient, so that the absorption into state m -1 from any initial state is certain.
In our model, this implies that the vacation time is finite. If the vacation time is phase distributed,
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Figure 1: Phase Distribution of order 2

then its mean value is given by o = —vT~1€. A phase distribution of order 2 is shown in figure 1
and describes the vacations of the servers in our model. A server on vacation can move between
phase 1 or 2. Once it enters phase 3 (the absorbing phase), it returns and, if no unserved customer
is present, it will immediately take another vacation. When a server leaves (either upon service
completion or if it arrives at an empty line) it will enter either phase 1 or 2 with probability ;1 or
1o respectively. In our case the value of v3 = 0, since a server must take a vacation when it leaves
a queue.

II1.2 The Matrix Geometric Solution Approach

A generalized quasi-birth-death transition matrix Q is as follows:

A0 A9 -
Ay AT A
A3 A3 A
Q= ASTT ASL g5
A5 A5 4
Ay AL A

The matrix Q is an infinitesimal generator and hence A4+ A}e+ A}€ = 0 and Agé+ A 8+ A€ =0
are satisfied.

The stationary probability of Q is denoted by ¥ = (£, 1,...). The normal procedure to
solve for the joint probability vector X is to use %(Q = 0 equations and the normalizing equation
Y20 Tié; = 1, where €; is a column vector with all elements equal to 1. The solution using the above
procedure seems quite impossible due to the infinite number of unknown variables. However, the
stationary joint probability ¥ is “modified matrix-geometric”, that is, it is of the form 2}, = 25 R*~5,
k > S, where R is the nonnegative solution to a matrix quadratic equation. Therefore, it is only
required to obtain the values of (£y, #1, ..., Z5) by using the normal procedure and the rest can be
obtained by using the “matrix-geometric” property.



IV The Model and Its Solution

IV.1 Model Description

The model can be formulated as a continuous time Markov chain (CTMC). The possible states are
defined by (i, j; k) where ¢ denotes the number of customers in the system, j denotes the number of
servers at the queue, and k& denotes the number of servers in phase 1 of the vacation distribution.
The remaining servers S — j — k are in phase 2 of the vacation distribution. The variables can take
on the following values: 0 <7 < oo and 0 < 5,k < S. Being a multiple vacation model, the i > j
condition holds.

Next, we define the submatrices of Q. The entries within the submatrices, are subsubmatrices
(Byi’s and E’s), which are defined in detail below. We define I; as the identity matrix of dimension
(S —j +1). In this section, the matrix 0; is a square matrix whose elements are all zeros, and has
the same dimensions as I;. We define O'j, as a (S —j+1) x (S — j) matrix whose elements are
all zero. The matrices I;, 0; and O'j are used to clearly define the matrices A’s, B’s and E and to
make their dimensions consistent.

} gives the rate at which the server leaves and hence a customer leaves after service completion
when the system has 4 customers. The value of A5, where i = 1,... S is as follows:

- 0, -
B} 0;

Ay = B2

0;—1

Bé (i+1)(25+2-1) ,, i(25+3-i)
- 2 2

Bg denotes the rate of entering one of the phases of vacation after service completion by a server
when there are j servers at the queue.

The definition of A} is as follows. The off-diagonal matrices of A% give the rate of server arrival
to the queue. The diagonal matrices give the rate at which the number of customers and the servers
at the queue remains the same though the number of servers in the two phases may change. The
diagonal matrices are obtained using the relationship A€ + Aie + A€ = 0 and AY = BY + E°,
where E' denotes the rate of transition when there are servers on vacation but there are no more
customers to be served at the queue, thus (i, j; k) — (4, 7; k') fori=35=0,...,5. The value of A%,
where 1 = 1,... S is as follows:

[ B! Bj
Bi B,

i—1

By

Bl + E* | g+nes+2-i o (DS +2-1)
2 2

B{ denotes the rate of transition of servers among the two phases and the rate at which the number
of servers and customers remains the same in the system when there are j servers at the queue. B}
denotes the rate of vacation termination of a server when there are j servers at the queue.

The matrix A} gives the rate of arrival of a customer. A} = [ BY 0, ], while A} for i =



1,...5 —1 is as follows:

B; 0; (+1)(2S+2-0) | (i+2)(25+1-i)
2 2

When the number of customers in the system exceeds S, the matrices A%, A% and A} correspond
to As, A1 and Ay and are defined as follows:

0,
B} 0y
Ay = Bg 02
i Bf§ 0
B! Bj
B! B!
1 2
Bt B!
i By
Ay = A

The dimensions of Ay, A; and A are (5+1)2(S+2) X (5+1)2(5+2)_

Now we define the subsubmatrices (B7 and E7) that make the A submatrices. The superscript
of these subsubmatrices give the number of servers at the queue before transition. The positions
of elements within the subsubmatrices correspond to the number of servers in phase 1 and 2 of
vacation. For example, if there are j servers serving the queue then the rest of the S — j servers
should be in one of the two phases.

B} denotes the rate of entering one of the phases of vacation after service completion by a server
when there are j servers at the queue. Thus, the transition occurs from (4,5;k) — (i — 1,7 — 1; k)
forj=1,...5.

Jpve  jpv
Bl = :

Juve JEvE g1y (s—j+2)

B{ denotes the rate of transition of servers among the two phases and the rate at which the
number of servers and customer remains the same, where (i,7;k) — (i,7;k ) for j = 0...S. TIts
contents are (Let f; = iT11 + (S — j — i)Ta2.)

fo (8—J)Tx

. T .
Bl = 12 _fl _ - (A + i),
. - T21

(S - J:)le fs—j



Bg denotes the rate of vacation termination of a server, thus (i,5;k) — (i,j + L;k), j =
0,....8 — 1.
[ (S =T
Ty (S—j-1T7
2T10 (S—j— 2)T20

T
(S -1 |

where T7 and T5 are the rates at which a server comes back to the queue after vacation from phase
1 and phase 2 respectively. This is shown in figure 1. B} = MI;, denotes the rate of customer
arrival.

In order to compute E', note that a server, after completing its vacation, checks the queue,
finds that there are no customers to be served then goes for another vacation instantaneously. If
hj = (S —i— j)T9vs + jI{v1, then

ho (S - ‘i)T2()Vl
Tlollg h1
E' =
. T201/1
(S —i)TPvy hs ;i |

hj gives the rate of service completion and instantaneous return to the same phase of vacation by
a server.
IV.2 Stability Condition and State Probabilities

As the infinitesimal generator Q has been defined completely, we now derive the condition for the
system to reach steady state. To do this we define matrix A = Ay + A; + Ag. A can be written as

[ BY + A B9 T
B}  Bl+XL Bj

: BS"
B§ BY + M5 |

The stationary probability vector IT = (7, 71,...7s) of A can be obtained using the ITA = 0
relationship and the normalizing relationship, -, 7;€; = 1, where the vector €; is a column vector
of 1’s of size (S —j + 1).
Using the stability condition, that is ITAg€ < TIA2€ (see?), we can verify that for the equilibrium
and also for Q) to be positive recurrent, the following equation should be satisfied.
v+ 1 < 5 (1)
[T



The above relation means that the sum of mean vacation time and service time divided by S
(equivalent to mean server availability) should be less than the mean interarrival time for the
system to achieve steady state.

To study the performance of this system we require the steady state probability. Let X =
[Zo,Z1,...,Z5-1,%s,%5+1,---] be the steady state probability vector. The probability that there
are ¢ customers in the system is &; =(Z,0,%i,1,- - - »T4,min(s,i)), Where T; ; is the joint probability that
there are ¢ customers in the system, and j servers at the queue and is equal to ($(i,j;0)a T(i,5i1)s « -+
T(s,j; S_j)). Finally z(; j.,x) denotes the probability of 7 customers in the system, j servers present
at the queue and k servers present in phase 1 and S — j — k servers present in phase 2 of the
vacation distribution. The value of &), where k > S can be obtained by the relation #}, = ZgR*~5.
R is an (S+1)2(S+2) X (S+1)2(S+2) matrix and is the minimal non-negative solution of the quadratic
equation(refer to%)

R2A2 + RA;1+A4;=0 (2)
The value of R can be obtained from the above quadratic equation and the following relation:
RAyE = Agé 3)

The above equation implies that the rate of transition from a state where there are i customers, to
a state with i + 1 matches the transition rate from i to i — 1.

Using the simultaneous equations obtained from [Zy, Z1,...,Zs—1,Zs, Lgt1,- - ]Q =0
A+ AL = 0 (4)
T AV AT 7 AT =
forl1<r<8§-1 (5)
T 1A+ @s(A7 + RA2) = 0 (6)

and the normalizing equation
To+Z1€+...+ s 18+ Zs(I-R) 'e=1 (7)

we can solve for [Zo, Z1,...,Zs_1,%Ss,Ls+1,---|-
To find R, we know that

R?Ay + RA; + Ay =0
= R=—A)AT' — R2A,AT?

Taking the initial value of R = 0 we can iteratively solve for R and can check the accuracy of this
approximation by using equation 3. The value of R will converge since —Afl and (Ag + R%A,) are
positive. Hence, in each iteration, the value of R will increase monotonically.

Now, to solve for X, we represent each Tj, where £ < S in terms of Zg and then obtain the
value of Zg. We can write g = Tgl.

Using equation 6 we can write

Ts_1 = —Zs(A} + RA9)As_1 (A7)

where Ag 1(A7!) is of dimension (
indices are equal, the value of that element is A1

C) +1)2(S+2) x 2 (52+3) and all its elements are 0 except, where the



From equation 5 we get

Tsor = —(Fs—r1 AT + o245 ) Ag_, (A7)
forr=2to S

where Ag (A71) is of dimension (S+r+1)2(5—r+2) o

To represent &y for £ < S in terms of Zs, we assume

(S—r+1)(S+7+2)
> .

Ts_r = TgCs_, r=0to S (8)

The value that C; will take at different ¢ is as follows:

Csg = I
Cs.1 = —(A7 +RA)As (A7) 9)
Cs—r = —(Cs_rp1 AT+ Cs AT Ag_ (A1)

forr=2toS

The dimension of Cg_, is (5+1)£(5+2) X (S_r+1)2(s+2+r). From the above set of equations we can

recursively solve for C;(i = 0,1,...,5 —1).
Using equation 8, and equations 4 - 6, we can solve for Zg.

S—1
Zg[Y_ Ce+(I-R)'el=1 (10)
r=0
Zs[Cr 1 AT+ CL AT + Cr 1 ASTY = 0
forr=1to S—1 (11)
Zs[CoA) + C1A] = 0 (12)

Each value of r will give S — r + 1 equations. Using the normalizing equation, that is, equation 10
we will have the required number of equations to obtain the value of Zg.

From #g, we can find the values of Z;, for ¢ = 0,1,....S , by using equation 8 and T, for k > §,
by using the relation ), = £sRF~°. In this way, we can obtain the steady state joint probability
vector X, for any value of S. The boundary probabilities, that is (Zy, Z1,...,Zg) can be obtained
from equations 11 and 12.

These steady state joint probabilities are then used to find the mean and the second moment
of number of customers in the system and finally to derive the mean waiting time.

IV.3 Analysis of the Number of Customers

The mean and second moment of the number of customers in the system can be obtained exactly
as in 19921, Using the following relations:

S
E[Q] = ) i#é+ZsR[(I-R)?+S(I-R)"¢ (13)
=0
E[Q* = S_lz'iné'—i— #s[(S? —28+1)(I-R) ' +(25-3)I-R) ?
=0
+2(I — R)™® — §21)e — (E[Q])? (14)



IV.4 Waiting Time Analysis

In order to derive the waiting time distribution, we consider an arriving (tagged) customer. States
corresponding to the number of customers present in the system {0,1,2,...} and an absorbing state
{ *} form the state space of the CTMC. Thus the state space of the CTMC is {x} U{0,1,2,...,
S—1,8,S+1,...}. On entering the absorbing state denoted by *, a tagged customer starts
receiving service. This happens at the arrival of a server from vacation when the customer is at
the head of the queue.

We define the transition rate matrix for this CTMC as @)1, which is given by

% 0 0
0 90 Do
1 g F D
Q1= : 2 .
S—1 gs—1 Ds_4
S gs Fs D
S+1 A2 D

(i+1)(25+2—1)
2

gi is a column vector of size and is given by

[ Os+1 ]
0s
0s—i+1

9= (S — 4)TY
P+ (S —i—-1)13

(S —'z‘)T{’

where 0; is a column vector of size ¢+ with all elements equal to 0. g; gives the rate at which the
tagged customer enters the absorbing state. This only happens when the number of customers
ahead of the tagged customer are equal to the number of servers at the queue and then a server
arrives after completing its vacation.

The matrix D; gives the rate at which servers arrive at the queue and hence the customers
ahead of the tagged customer start receiving service, and is given by A% but without the \’s and
E'. In matrix Q, A, the customer arrival rate, is not required since we are considering a FCFS
queue and hence customers that arrive after the tagged customer do not have any impact on the
analysis of waiting time. E’ is also not included because the tagged customer is present at the
server arrival instant and therefore it will not take another vacation instantaneously.

The matrix F; = A} gives the rate at which customers depart from the system. When the
number of customers ahead of a tagged customer exceed S then D; corresponds to D, which is
given by A; + AI. Here I is an identity matrix of dimensions w

To derive the mean waiting time, we apply a method used in'® and 2! with modifications as
required by our model. The basic intent is to find the time it takes for the tagged customer to reach
the absorbing state (). At steady state, the tagged customer on its arrival will see the system
in state (,7; k) with probability z; ;... The tagged customer will not receive service immediately

10



upon arrival since it must wait for the customers which are ahead of it to receive service (handled
by D’s and Ajy’s). If all customers ahead of it have received or are receiving service it must wait
for a server to arrive from vacation (handled by g;’s). Thus the tagged customer receives service
only when the number of servers in the queue becomes equal to the number of customers present
and then a server arrives at the queue after vacation. . .

Define y(t) = (y«(t),yo(t),y1(t),...), where y;i(t) = {vi;x(t)} is of size w when
1 < S and w when ¢ > S and denotes the probability of ¢ customers in the system, j servers
at the queue and k servers in phase 1 of the vacation present at time t. y.(t) is the probability
that the tagged customer is in the absorbing state at time ¢. Because of the memoryless property
of the Poisson arrival process, at time 0, y(0) = {0, Zo, 1, Z2, ...}, where Z;s are the steady state
probabilities obtained earlier. Let w(t) denote the pdf of waiting time. Then w(t) = y.(t).

The tagged customer sees the system in state (4, j; k) with probability y; ;.5(0) for ¢ > S, the

LST of the first passage time to a state (S, ; k) in S is given by the (% + k+1)th element
of the row vector U(s).

U(s) = Y_yi(0)[(s] — D) " 4s] (15)
=S

Let ¢;(i,s;k) be the LST of the absorption time to state * given that the process starts from

state (4,7;k), for 0 <i < S,0<j<iand 0<k < S —j. Let ®(i,s) denote the column vector

(i+1)(25—i+2)
2

of dimension containing the elements ¢;(7, s; k). On the basis of Q1 we can write the

following relations:

®(0,s) = (sI — Do) tgo (16)
®(i+1,5) = (sI—Dip1) "Fp1®(i,s) + (s — Dit1) ' gis1 (17)
0<i<S—1

The LST for the waiting time distribution is given by
S—-1
W*(s) = > yi(0)2(i,s) + U(s) (S, s) (18)
i=0

Mean Waiting Time
The mean waiting time can be obtained from W*(s):

!

S—1
EW]=-3" yi(0)® (i,0) — T'(0)& — T(0)® (S,0) (19)
=0

The first term gives the mean time to reach an absorbing state by the tagged customer if the
system is in a state < (S — 1) on its arrival; the second and third terms give the time to reach the
absorbing state if the system is in state > S on the arrival of a tagged customer.

To solve for the mean waiting time we must calculate the value of each term in equation 19.
Differentiating and substituting s = 0 in equation 16 will give

'(0,0) = —(—Do) ™' I(~Dy) g0 (20)
Similarly, differentiating ®(i + 1,s) and substituting s = 0 in equation 17 and using the relation

Fie+ D;é+ g; = 0 gives
@ (i +1,0) = D3 [6 — Fi11® (,0)] (21)

11



Thus we can find &' (i,0) recursively. Since y;(0) = 7, and using equations 20 and 21 we can solve
the first term of equation 19

The value of ¥(0) = 3¢ y;(0)U'~5, where U = (—D)~! As, is obtained by substituting s = 0
in equation 15. The value of ¥'(0)e=1— 229;01 Z;€, since Ue = € due to the relation Ase'+ Dée = 0.
The value of ¥(0)& can also be used, as mentioned in '° to obtain an approximate value of ¥(0) by
finite summation. Using equations 20 and 21 we can get the value of <I>'(S, 0), thus we can solve
the third term of equation 19.

00 k—1
TO) = ~Y yies(0) Y U(-D) U
k=1 j=0
where U = (—D)~! A,. Using the U = € relationship we obtain
, oo k=1
~U(0)e= yiis(0) Y U'(-D) ‘e (22)
k=1 j=0

To obtain the value of —¥’ (0)& (second term of equation 19) from equation 22 we modify the
method used in '? and 2!. We define a stochastic matrix U° by deleting the last row and column of
our U matrix. We can obtain the values of vector u® by using the relations that it should satisfy
u%U% = u0 and u%¢ = 1. A square matrix U, can be constructed in the following way

Ua)pwr = ud, for 0 < k< GHNETD 1 g < ff < (404

= 0, forogkgw_l,k':w_l_

The following relation is satisfied owing to the property UUs = UsU = Us

k—1
NU(I-U+Up)=1-U*+kU, (23)
r=0

Using this relation and the fact that (I — U + Up)~! exists??, equation 22 can be simplified to
, o0 o0
—¥(0)E = {D yrs(0) = > yris(0)U*
k=1 k=1

£3 ks O (T - U + Up) (D) 1¢ (24
k=1

The value of —¥' (0)€ can be calculated by substituting the following values:
o0
> vkis(0) = Zs(I-R)™"~1)
k=1
o
> yres(OUF = T(0) - Zg
k=1

S kyias(0) = Fs(( - B)2R)
k=1

The second relation is obtained from equation 15 by putting s = 0. Thus we can solve the second
term of equation 19. Now all three terms of equation 19 can be solved and we can obtain the mean
waiting time.

12



We are able to calculate the value of steady state joint probability and the mean waiting time
using algorithms for this model. In Appendix A we consider the analysis of a special case of the
phase distribution, viz., the exponential distribution

IV.5 Vacations with Higher Order Phase Distribution

In this paper we have discussed the 2-phase vacation distribution for the sake of mathematical
tractability. However, the model is extendable to higher phase distributions. For a 3-phase distri-
bution, the states can be defined as (3, j; k, 1), where [ denotes the servers in phase 2. The remaining
S — 7 — k — [ servers are in phase 3.

In the 3-phase distribution the entries within the matrices B; will be submatrices Bj for
possible value of k, number of servers in phase 1. This extension will make the dimensions of
matrices A, A1, Ag and R an order higher (that is, O(n?®) instead of O(n?)). The dimensions will
be Y7, w = £534+52+11S. The same technique used for the 2-phase vacation distributions
can then be applied to this 3-phase vacation distribution.

V  Numerical Results and Their Analysis

In this section we first present verification of our model implementation and then present numerical
results obtained for our model. The effect of various stopping criteria on the mean customer number
in the system and mean waiting time are discussed. We discuss the effect of arrival, service and
vacation rates on the mean number of customers in the system and the mean waiting time for the
special case of exponentially distributed vacations. We perform similar experiments for the more
general phase distribution. Special cases of the order 2 phase distribution: Erlangian distribution
and hyperexponential distribution results are also presented. Using the stability condition in ( 1)

we define the stability factor for the system as a = % * (% + %) The load per server is defined as
_ A
P=35u

V.1 Model Verification

The model implementation is verified using exponentially distributed vacations. This is done in
several ways: first using an alternative analytical model that provides exact results for a small
number of servers, then using simulation for a larger number of servers and finally looking at the
extreme case of very high vacation rate. We also do some experiments on the phase model to see
the effect of the stopping criteria on the results.

In ?? an alternative method was used to derive the mean number of customers in the system
for the case of exponentially distributed vacations and small values of S. The state was defined as
{(i,7) : 4> j;j=0,1,...,S}, where i denotes the number of customers in the system, and j the
number of servers at the queue. Based on this model, balance equations are found. Unfortunately
the number of variables in the balance equations is larger than the number of equations obtained so
the system could not be solved fully. By applying a technique used in 1820 results were found for
S < 4. In Table 1, we give the mean number in the system obtained from the Balance Equation
Method?? and the Matrix Geometric Method for various values of A,z and 6. As is shown in the
table, the results for S = 2 and § = 3 are almost identical. What differences occur is due to
the stopping criteria used in the Matrix Geometric solution. For higher values of S, results for
the exponential case were verified using a simulation. In figures 2 and 4 simulation results for the
curves with g = 1 and @ = 2 are shown. The analytical results are very close to the simulation
results.

13



STA[ u | 0 L L
(Balance) | (Matrix Geometric)

21111 |12 8.9091 8.9085
2.5 .5 |.55| 16.4127 16.4084
213 .3 |.35| 10.4103 10.4075
31.5].26 | 1 5.2992 5.2989
31.5].25| .6 14.6692 14.6664
311 1 1 2.2630 2.2630
3] 2 1 |25 12.3337 12.3321

Table 1: Comparison of Mean Number in System obtained from Balance Equation and Matrix
Geometric Methods

To further check the implementation we compared the results of our model at high vacation
rate (0 = 10%) with the M/M/S queue without vacation. The results in Table 2 show that the
models are very close. The values of the mean waiting time are higher for the vacation model since
the servers still take a (brief) vacation after serving each customer. Further note that the results
satisfy Little’s result (that is, L = XA« (W 4+ 1/u)).

S| A | p L L W w
(M/M/S) | (Matrix Geometric) | (M/M/S) | (Matrix Geometric)

21.95|.5 | 19.4872 19.5014 18.5128 18.5280

3| 7|3 4.4733 4.4773 .3057 .3063

51 9 | 2| 11.3624 11.3790 7625 7643

Table 2: Comparison of Mean Number in the System and Mean Waiting Time obtained from
M/M/S queue and M/M/S/Vys queue at § = 10*

Although the matrix geometric method is exact when summations are taken to infinity, there
are 2 terms R and ¥(0) where a stopping criteria is used to limit the number of iterations. This
introduces some approximation error. In the next two tables we consider the effect of the stopping
criteria on these values. In Table 3 we present the mean waiting time for different stopping criteria
used to calculate ¥(0). For the approximation, the number of terms used to calculate ¥(0) are
10S, 20S and 30S. The other stopping criteria used is to calculate ¥(0) until error in ¥ (0)€ is less
than 1073, 107® and 10~7. The stopping criteria for R is kept the same. Based on these results, it
is evident that with a number of iterations on the order of 305, one can achieve an accuracy within
1073, for the mean waiting time. In Table 4 we present the mean number of customers in the
system and mean waiting time for the stopping criteria used to calculate R. The stopping criteria
used is to have the difference between each term of A5& and RA(€ less than 1072, 107° and 1077.
The stopping criteria for ¥(0) is kept the same. It is evident that the results converge quickly. For
the results in this paper we use a stopping criteria of 10~° for both ¥(0) and R.

V.2 Results for Exponentially Distributed Vacations

To gain an understanding of the performance of this queue, we first study the simpler model with
exponentially distributed vacations. We study the effect of the parameters of A\, 4 and 6 on the
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S| A| u % W(10S) W(20S) W(30S) W(1073) W(1079) W(10~7)
13| 4 20 | 2.37604935 | 2.38441752 | 2.38690536 | 2.38791298 | 2.38795746 | 2.38795790
24|25 20 | 1.77347542 | 1.77682250 | 1.77714980 | 1.77714051 | 1.77718479 | 1.77718527
5131 4 .8 | 2.60800158 | 2.60966106 | 2.60966519 | 2.60850426 | 2.60965302 | 2.60966509
8| 3| 4 | .465 | 2.77454574 | 2.77464388 | 2.77464389 | 2.77255236 | 2.77462380 | 2.77464370
Table 3: Effect of approximation on the Mean waiting time
S[A] p | 2 [LA0O3) [LA0®) [LAOT) | W(10°3) W(1079) W(10~7)
13| 4 20 | 7.893848 | 7.913852 | 7.914060 | 2.38092346 | 2.38690536 | 2.38696757
21425 20 | 8.693833 | 8.708725 | 8.708877 | 1.77382056 | 1.77714980 || 1.77718388
513 | 4 .8 | 8.568927 | 8.578985 | 8.579086 | 2.60666492 | 2.60966519 || 2.60969544
813 | 4 | .465 | 9.060869 | 9.073919 | 9.074043 | 2.77074467 | 2.77464389 | 2.77468100

Table 4: Effect of approximation of R on the Mean Number in System and Mean Waiting Time

mean number in the system and mean waiting time. Figures 2 and 3 show the mean number of
customers in the system as A is increased for the cases of 5 and 8 servers respectively. The value
of A is chosen such that a < .98. As expected, increasing the arrival rate of customers causes
an increase in the mean number in the system. When the stability factor, that is «, approaches
.98, the mean number in the system increases in an unbounded fashion since at this high load the
servers are unable to cope with the arrival rate of customers.
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Figure 2: Mean Number in the System vs A
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Figure 3: Mean Number in the System vs A
(§=28)

On these graphs, results for different values of vacation and service rate are shown as well.
From the figures, it is clear that systems with larger values of vacation rate # can support greater
values of A. This can be understood mathematically from the definition of the stability factor. For
higher values of @, that is for low mean vacation time, the arrival rate of the system can be higher
since the mean time between server availability is lower. We observe the same effect for different
values of 1. When the service rate, u, increases, the mean service time decreases and hence, the
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mean number in the system decreases. With the increase in y the customers are served faster and
therefore leave the queue faster.

The mean waiting times for these experiments were alse calculated and the results are given in
figures 4 (for S = 5) and 5 (for S = 8). We see that as A increases the mean waiting time also
increases. As a — .98, the waiting time increases in an unbounded fashion. Higher A means the
rate of customer arrival is greater and hence an arriving customer sees on average more customers
in the system and thus must wait longer before receiving service. As shown in the figure, for higher

15 T T T T T T 10 — T T T T T T T 1
i ,u:19: | pu=160=2" 1
12 Simulation — 8 u=20=2 —
ol ,u:29:3—_ 6 _
w W%
6 | - 4 -
3| - 2 -
0 == ! 0 —f—r -t i ! !
0 1 2 3 4 5 6 7 01 2 3 4 5 6 7 & 9 10 11
A A
Figure 4: Mean Waiting Time vs A (S = 5) Figure 5: Mean Waiting Time vs A (S = 8)

values of 6 we can accommodate a higher arrival rate without an increase in waiting time. The
same behavior occurs for higher values of u. For higher 6 or u values, the mean server availability
increases and thus reduces the time for which the customers must wait. Note that the mean waiting
time in figures 4 and 5 is lower at a = .98 for higher values of § and u. As seen in figures 2 and
3, this is not true for mean number in the system.

V.3 Constant Stability factor: Exponential Distribution

In the last section, the increasing load strongly effected the values for the metrics. In this section,
in order to gain more insight into the effect of the parameters, we study the effect of increasing the
number of servers when the stability factor is kept constant. In figure 6 we plot mean number in
the system against the number of servers for stability factor .95 and two different loads (.75 and
.9). For load .75, two curves are shown: one for the case where A = S, = 1.333 and 8 = 5 and the
other for the case where A = 0.55, u = 0.667 and 6 = 2.5. Similarly, for load 0.9, two curves are
shown; one with long service times and the other with more arrivals and longer vacation durations.
To keep the load constant for a particular curve, we vary A with S. As seen in the figure, for the
same load but for different y and 6, the mean number in the system is the same. As X and S
increases, there is a slight increase in the mean number in the system. This is due to the increase
in the arrival rate of customers which increases the number of customers. Though the number of
servers is increased proportionally, the servers still must take vacations and cannot serve the queue
all the time. Therefore the arrival rate has more effect than the increase of servers on the mean
number of customers in the system. In figure 7 we plot the mean waiting time against S where A
is varied to keep the load constant at .75 and .9. We find that with the increase in the number
of servers the mean waiting time reduces considerably. This change is due to the increase in the
number of servers which are able to serve the queue better even though there is a slight increase
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Figure 6: Mean Number in the System vs S
(a =.95)

in number in the system due to increased arrival rate. The waiting time also becomes relatively
constant after S increases to a certain value. In contrast to the number of customers metric, mean
waiting time is significantly larger when mean service time is larger for the same load per server.

In figure 8 and figure 9 we plot the number in the system and the waiting time against S for
a = 0.9. Two sets of curves are shown corresponding to cases of A = 3 and A = 4. The stability
factor is kept the same by changing the vacation rate or service rate. We would expect that the
waiting time will be proportional to the mean service and vacation times (divided by the number of
servers) and thus, the curves of figure 9 are relatively flat when the stability factor is kept constant.
In figure 8, we see that the increase in service duration causes the mean number in the system to
rise for the same stability factor at a much faster rate than the increase in vacation time. This is
because when the service duration increases, the customers are in the system for a longer period
of time. For the case where @ is varied, the service rate remains the same so the number in the
system does not rise as quickly. The number in the system does rise slightly though due to the
effect of taking longer vacations when multiple vacations occur. This results in the small increase
in waiting times as well. These results follow Little’s law.

In figures 8 and 9, the results exhibit a decrease, followed by an increase which results in
minima. This is not an anomaly, and can be explained as follows. Consider the case where p is
constant and o = 0.9, where a = SAN + ﬁ. As S increases, two things happen:

1. the first term decreases, and since its contribution to the mean number of customers in the

system is (1 — S%)_l’ it decreases quickly first, and then more slowly (negative exponential).

2. the second term increases linearly, and therefore the mean vacation time also increases linearly.

The mean waiting time (and proportionally the mean number of customers in the queue, since A
is constant) is a linear combination of 1 and 2, which when added together exhibit such minima.
The minima in case of constant 6 can be explained similarly.

V.4 Phase Distribution Results

After gaining an understanding of the effect of the parameters (particularly vacation rate) for the
special case of exponentially distributed vacation times, we now consider the case where vacation
times follow a phase distribution. The experiments that were run for the exponential case were
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also run for the phase distributed vacation case. The results are generally similar so not all of
the graphs are shown here. Two special cases of phase distribution of order 2 are also considered,
namely: Erlangian and Hyperexponential?®. To define an Erlangian distribution, the matrix T and

vector T should take the following values

I B AV AT
T_l 0 —w]

o | O
| g

The value of v; = 1 and hence v» = 0. For the Hyperexponential distribution the matrix T and
vector T should take the following values

| -1 0
T_lo —w]

o_ | T}
-]
The effect of A, 1 and v for all three cases is similar to the case where vacation follows an exponential
distribution. The stability condition for phase distribution is the same as that for exponential
vacation time and hence the definition of stability factor remains the same.

We present the effect on mean waiting time of increasing A for Erlangian, Hyperexponential
and Phase vacation distributions in figures 10, 11 and 12 respectively. In each graph, different
combinations of p and % are considered. The values of A are chosen such that the value of a <
.98. As in the exponential case (see Figure 4), we notice that generally the mean waiting time
decreases for higher values of i and % However in certain cases, such as with the hyperexponential
distribution the mean waiting time when y = 1 and % = 2 is higher than when y = 1, % =1
for @ = .98. The reason for this is that, although the parameters chosen to describe the different
vacation distributions have the same mean value, they have different higher moments.

and

and
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These observations are further supported in figures 13 and 14 which show how the mean number
in the system and mean waiting time depend on S for different types of Phase distributions with
the same parameters of A, ;4 and % = 1. The variance for the Phase, exponential, hyperexponential
and Erlangian are 1.7777, 1, 1, and .5 respectively. For higher variance, as expected, the mean
number of customers in the system and the mean waiting time are both higher.

Finally, figure 15 shows how the mean waiting time varies with S when the stability factor is
kept at 0.9. The graph is similar to the exponential case (See Figure 9). Note, however, that the
curves for the case of varying mean vacation time are more variable than in the exponential case.
This is because, by varying the first moment (to keep constant stability factor), the higher moments
of the vacation distribution change as well.

V.5 Summary

The steady state analysis of the M/M/S/Vj; queue with 1-limited service has been considered in
this paper. The Matrix Geometric solution technique, gives us the mean and second moment of
number of customers in the system and the mean waiting time for phase distributed vacation times.
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These performance measures are obtained algorithmically.
From the study, we make the following important conclusions about this type of queue:

1. The mean number of customers in the system is affected more by decreasing service rate than
the vacation rate since with larger mean service time, the customers will remain in the system
for a longer time.

2. The vacation rate may affect the mean waiting time more than the service rate does since, in
a 1-limited case, the customer waiting for service must wait for a new server to arrive since
the servers at the queue have to leave after serving their respective customers. Also when
vacation durations are larger, the effect of multiple vacations will be stronger.

3. Increasing the number of servers and the arrival rate in order to keep the load the same,
yields a slight increase in the mean number in the system and a decrease in the waiting time.

4. The results for the more complex phase-distributed vacation model, are similar in nature to
the exponential case, however, there are differences due to the higher moments of the vacation
distribution. This has ramifications toward the ability to more closely model vacations in real
systems.

VI Applications

In this section we present two applications where the model analyzed in the this paper can be
used. First we discuss the multiqueue mutliserver polling system and then we present a mobile
communication systems application.

VI.1 The multiqueue mutliserver polling system

In this case, we concentrate on just one queue, and a server’s vacation corresponds to the time
spent by the server on serving other queues as well as on walking between them. Since the vacation
time distribution is dependent on the time spent at queues, an approximate technique can be used
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in which the vacation time of server ¢ can be expressed as

N N
vi=) wigt D sij (25)
J=1 j=1
VL
where w; ; is the time spent by server i in walking between queues j and j + 1, while s; ; is the
time spent by server ¢ on serving customers, if any, at queue j. Since servers are identical, we can
drop the 7 subscript in the above equation. If we let p4 define the probability that the queue is
not empty when a server arrives at the queue, then, assuming independence between servers and
queues,

w
pa = P -
1-p3
where p = Ng‘g , § is the mean service time and w is the mean walking time from queue j to 7 + 1.

The derivation of p4 is as follows. At steady state for our model the ratio of server serving the
customers and walking is equal to Tin’ where p is the load per server. The ratio of the service time
and walking time can also be given by N]\;;%g. Equating the two relations gives the value of p4. s;
is equal to the customer service time with probability p4; otherwise, it is equal to zero.

Equation 25 can be used to match moments of the right hand side to moments of v, therefore
determining the parameters of the phase distribution. That is, after solving the model, assuming any
reasonable parameters for the distribution of v, one can feed the values obtained from the model
in equation 25 to obtain new values for the parameters of v. This procedure can be iteratively

repeated in order to improve the accuracy of the results.

VI.2 Mobile communication systems

In cellular mobile communication systems, calls can be of two types: newly arriving calls; and
handover (or hand-off) calls which cross cell boundaries, and demand service from a new cell base
station. The two-phase vacation system can be used to model the performance of new arriving calls,
in which handover calls have a higher non-preemptive priority over new calls?*. This is particularly
important since the GSM standard for mobile communication systems allows queueing of calls®.
The S servers are the S channels in a cell, with the service time being the holding time of a call
that is admitted to the cell. The two phases of the vacation correspond to a service phase for a
handed over call, and the phase in which the queue of handover calls are inspected, respectively.
Therefore, the vector v is given by [0,1], and v3 = 0, i.e., the process starts by inspecting the queue
of handover calls. The matrices T and 7° are given by

L
py =

B 0
= l (1—p)7]

where 8 the rate of the exponentially distributed service time of the handover call, while 7y is a
very large rate that corresponds to the small time required for the inspection of the queue. p is the
probability that a handover call is found waiting in the queue, while 1 — p is the probability that
the handover call queue is empty, which causes the server to go back to serve waiting new calls, if
available.

and
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In the above model, unless the cell size is very small, i.e., microcells, then the rate of arrivals of
handover calls is very small, and the above two-phase distribution should be sufficiently accurate.
The system can then be used to evaluate the performance of new calls in mobile communication
systems.

VII Conclusions

We have presented a method of finding the steady state joint probability of number in the system
and busy servers, the mean and the second moment of number in the system and mean waiting
time for the M/M/S/Vjs 1-limited model. The vacation follows phase distribution of order 2. From
these results we have found that for applications which can be modeled as 1-limited service models,
the service rate should be kept high if it is required to have a smaller mean number of customers in
the system, but, if the emphasis is on having a smaller mean waiting time, then the vacation rate
should be high.

The model analyzed in this paper has a number of important applications. Two such applica-
tions are multiqueue multiserver polling systems and mobile communication systems are discussed
in the paper.

Appendix A. The Exponential Model

The phase distribution of order 1 is equivalent to the exponential distribution. For the exponential
case the states can be defined as (7, j) where ¢ denotes the number of customers and j denotes the
number of servers at the queue. These variables can take on the following values 0 < ¢ < oo and
0 < j < S. The value of j must be < ¢, since this is a multiple vacation model as described earlier.

We can define this infinitesimal generator Q) as described for phase distribution. The row and
column position of each submatrix in Q indicate the number of customers present in the system
before and after the transition, respectively. The matrices As’s, A1’s and Ay’s can be obtained
directly from the phase distribution matrices by assuming a phase distribution of order 1. To make
the distribution exponential the value of vy = 1, Ths = —0 and T20 = @ and the values of other
phase parameters are 0. The submatrices B;’s and E’s are all of dimension 1 x 1 since the phase
distribution of vacation is order 1.

On the basis of our phase model we can obtain the values of the submatrices. The matrices A9
and AY are —\ and [ A0 ], respectively.

The matrix A% is an (i + 1) x 4 matrix for i= 1 to S. Its contents are

0
p 0

and it gives the rate of departure of a customer and therefore also the server.
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The matrix A} is of size (i + 1) x (i + 2), for i=1 to S — 1, and its contents are

and it denotes the rate of arrival of a customer at the queue.
Let f; = A+iu+ (S —4)0. We can write the contents of A}, where i=1 to S as

[ —fo SO
—f1i (S—1)0

2,
[

(S —i+1)0
—(A+ip)

This matrix is of dimension (¢ + 1) x (¢ + 1) and the off-diagonal elements give the rate of server
arrival to the queue; while the diagonal elements give the rate at which the state remains unchanged
and are obtained using the relationship AL€ + A€+ A4€ = 0.

When the number of customers at a queue exceeds S, the matrices A%, A% and A} correspond
to Ag, A; and Ag, respectively. Their dimensions are (S + 1) x (S + 1).

The matrix Ay = A1, Ay is

0
u 0
Ay = 2u 0
0
Su 0
The matrix A; is as follows
[ —fo SO ]
—-f1i (S-1)6
A= )
L —[s

The steady state probability X can be obtained as described for phase distribution.

The method of solving the mean waiting time is the same as that used in the previous model.
The infinitesimal rate matrix ()1 is similar to that described for phase distribution except that
the values of the submatrices are different. Each element of the state space except * represents
min(i, S)+ 1 state pairs, (7, 7), corresponding to (4,0), (¢,1) ... (¢, min(i, S)), where (i, j) represents
1 customers and j servers at the queue.

gi is a column vector of size ¢ + 1, it gives the rate at which the tagged customer enters the
absorbing state. The value is 0 for all states except where the number of customers present equals
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the number of servers serving the queue, in which case the value is (S — 7)8. F; gives the rate at
which the customers ahead of the tagged customer leave the queue and hence is identical to Aj.
D; is equal to A} + AT — diag{0,...,(S —i)0}. Tt gives the rate at which the number of servers
increases and the rate at which the customers ahead of a tagged customer remain same.

D has the same significance as D; and is identical to A1 + AI. In matrix @1, A, the customer
arrival rate is not required since we are considering a FCFS queue and hence customers that arrive
after the tagged customer do not have any impact on the analysis of waiting time. The transition
rate matrix ()7 is infinitesimal generator. Hence g; + F;€+ D;& = 0 and Az’ + D& = 0.

A technique and argument similar to that used for phase distribution of order 2 give us the
value of mean waiting time.

Appendix B. List of Symbols

‘ Term ‘ Explanation
(,7; k) Denotes the state of the system, where
1: number of customers in the system
j: number of servers at the queue
k: number of servers in Phase 1
X Steady state probability of the system

T(3,5:k) denotes the probability of 7 customers, j servers present at the queue and
k servers present in phase 1 of the vacation distribution

A Arrival rate

I Service rate

0 Vacation rate

v Mean Vacation time

o' Stability Factor = %(i + )
P Load per server = ;%S‘

E[Q] or L | Mean Number of Customers in the System

E[W] or W | Mean Waiting Time

Ap or A} gives the rate of arrival of a customer

Ay or A} The offdiagonal matrices gives the rate of server arrival to the queue and diagonal
matrices give the rate at which the server and customers queue remain the same

Ag or A gives the rate of service completion

B} denotes the rate of entering one of the phase of vacation after service completion
by the server

B! denotes the rate of transition of servers among the two phases and the rate at
which the number of servers and customers remain the same at the queue

B} denotes the rate of vacation termination of a server

B denotes the rate of customer arrival

E denotes the rate of transition of servers among the phases when the server on

vacation completion finds no customer to serve at the queue

Table 5: Description of symbols
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